Documentation Verification Report

ZetaAppendix

📁 Source: PrimeNumberTheoremAnd/ZetaAppendix.lean

Statistics

MetricCount
DefinitionsIsHalfInteger, e
2
Theoremsasummable, asummable'', bernsteinApproximation_monotone, cos_ne_zero, cpow_split_re_im, hsummable, hsummable', hsummable'', integral_power_phase_ibp, lemma_IBP_bound_C1, lemma_IBP_bound_C1_monotone, lemma_IBP_bound_abs_antitone, lemma_IBP_bound_monotone, lemma_aachIBP, lemma_aachcanc, lemma_aachcanc_pointwise, lemma_aachdecre, lemma_aachfour, lemma_aachmonophase, lemma_aachra, lemma_abadeuleulmit1, lemma_abadeulmac, lemma_abadeulmac', lemma_abadeulmit2, lemma_abadeulmit2_continuousAt_integral_tsum_one_div_sub_int_sq, lemma_abadeulmit2_deriv_neg_pi_mul_cot_pi_mul, lemma_abadeulmit2_integral_eq_cot_diff, lemma_abadeulmit2_integral_tsum_inv_sub_int_sq, lemma_abadeulmit2_tsum_one_div_sub_int_sq, lemma_abadimpseri, lemma_abadsumas, lemma_abadtoabsum, lemma_abadusepoisson, lemma_approx_monotone_C1, lemma_approx_monotone_C1_I, neg_one_pow, proposition_applem, proposition_dadaro, sin_ne_zero, summable_inv_sub_inv_aux, telescoping_sum, trig, trig', trig'', tsum_even_add_odd'
45
Total47
⚠️ With sorrylemma_abadsumas, lemma_abadusepoisson, proposition_dadaro
3

Real

Definitions

NameCategoryTheorems
IsHalfInteger 📖MathDef

ZetaAppendix

Definitions

NameCategoryTheorems
e 📖CompOp
6 mathmath: lemma_aachIBP, lemma_aachfour, lemma_abadsumas, lemma_aachmonophase, integral_power_phase_ibp, lemma_abadusepoisson

Theorems

NameKindAssumesProvesValidatesDepends On
asummable 📖hsummable
asummable'' 📖neg_one_pow
hsummable''
bernsteinApproximation_monotone 📖
cos_ne_zero 📖
cpow_split_re_im 📖
hsummable 📖
hsummable' 📖hsummable
hsummable'' 📖
integral_power_phase_ibp 📖mathematicale
lemma_IBP_bound_C1 📖
lemma_IBP_bound_C1_monotone 📖lemma_IBP_bound_C1
lemma_IBP_bound_abs_antitone 📖lemma_IBP_bound_monotone
lemma_IBP_bound_monotone 📖lemma_approx_monotone_C1
lemma_IBP_bound_C1_monotone
lemma_aachIBP 📖mathematicaleintegral_power_phase_ibp
lemma_aachcanc 📖Real.IsHalfIntegerlemma_aachcanc_pointwise
lemma_aachcanc_pointwise 📖Real.IsHalfInteger
lemma_aachdecre 📖
lemma_aachfour 📖mathematicalelemma_aachIBP
lemma_aachdecre
lemma_aachmonophase
lemma_aachmonophase 📖mathematicalelemma_IBP_bound_abs_antitone
lemma_aachra 📖
lemma_abadeuleulmit1 📖trig''
hsummable
hsummable'
hsummable''
telescoping_sum
neg_one_pow
tsum_even_add_odd'
asummable
asummable''
lemma_abadeulmac 📖Real.IsHalfIntegerlemma_abadeulmac'
lemma_abadeulmac' 📖Zeta0EqZeta
lemma_abadeulmit2 📖lemma_abadeulmit2_deriv_neg_pi_mul_cot_pi_mul
lemma_abadeulmit2_tsum_one_div_sub_int_sq
lemma_abadeulmit2_continuousAt_integral_tsum_one_div_sub_int_sq 📖
lemma_abadeulmit2_deriv_neg_pi_mul_cot_pi_mul 📖
lemma_abadeulmit2_integral_eq_cot_diff 📖lemma_abadeulmit2_integral_tsum_inv_sub_int_sq
summable_inv_sub_inv_aux
lemma_abadeulmit2_integral_tsum_inv_sub_int_sq 📖Complex.hasDerivAt_ofReal
lemma_abadeulmit2_tsum_one_div_sub_int_sq 📖lemma_abadeulmit2_continuousAt_integral_tsum_one_div_sub_int_sq
lemma_abadeulmit2_integral_eq_cot_diff
lemma_abadimpseri 📖
lemma_abadsumas 📖 ⚠️mathematicalReal.IsHalfIntegere
lemma_abadtoabsum 📖Real.IsHalfIntegerlemma_abadeulmac
lemma_abadusepoisson 📖 ⚠️mathematicale
lemma_approx_monotone_C1 📖lemma_approx_monotone_C1_I
lemma_approx_monotone_C1_I 📖bernsteinApproximation_monotone
neg_one_pow 📖
proposition_applem 📖Real.IsHalfIntegerlemma_aachfour
lemma_aachcanc
proposition_dadaro 📖 ⚠️Real.IsHalfInteger
sin_ne_zero 📖
summable_inv_sub_inv_aux 📖
telescoping_sum 📖
trig 📖
trig' 📖sin_ne_zero
cos_ne_zero
trig'' 📖trig'
tsum_even_add_odd' 📖

---

← Back to Index