Documentation Verification Report

ZetaBounds

πŸ“ Source: PrimeNumberTheoremAnd/ZetaBounds.lean

Statistics

MetricCount
DefinitionsriemannZeta0, ΞΆβ‚€'
2
TheoremsBddAbove_to_IsBigO, cpow_inv_tendsto, cpow_tendsto, one_div_cpow_eq, continuousOn_deriv, hasDeriv_deriv, DerivUpperBnd_aux1, DerivUpperBnd_aux2, DerivUpperBnd_aux3, DerivUpperBnd_aux4, DerivUpperBnd_aux5, DerivUpperBnd_aux6, DerivUpperBnd_aux7, DerivUpperBnd_aux7_1, DerivUpperBnd_aux7_2, DerivUpperBnd_aux7_3, DerivUpperBnd_aux7_3', DerivUpperBnd_aux7_4, DerivUpperBnd_aux7_5, DerivUpperBnd_aux7_integral_eq, DerivUpperBnd_aux7_nonneg, DerivUpperBnd_aux7_tendsto, DerivZeta0EqDerivZeta, Icc0_eq, Icc_eq_Ico, Ioc_eq_Icc, Ioc_eq_Ico, Finset_coe_Nat_Int, HasDerivAtZeta0, HasDerivAt_cpow_over_var, HasDerivAt_neg_cpow_over2, HolomophicOn_riemannZeta, HolomorphicOn_riemannZeta0, Ioi_union_Iio_mem_cocompact, LinearDerivative_ofReal, LogDerivZetaBnd, LogDerivZetaBndUnif, LogDerivZetaHolcLargeT, LogDerivZetaHolcSmallT, LogDerivZetaHoloOn, self_div_floor_bound, differentiableAt_cpow_const_of_ne, log_natCast_monotone, ResidueMult, ResidueOfTendsTo, Tendsto_nhdsWithin_punctured_add, Tendsto_nhdsWithin_punctured_map_add, UpperBnd_aux, UpperBnd_aux2, UpperBnd_aux3, UpperBnd_aux5, UpperBnd_aux6, Zeta0EqZeta, ZetaBnd_aux1, ZetaBnd_aux1a, ZetaBnd_aux1b, ZetaBnd_aux1p, ZetaBnd_aux2, ZetaCont, ZetaDerivUpperBnd, ZetaDerivUpperBnd', ZetaInvBnd, ZetaInvBnd_aux, ZetaInvBnd_aux', ZetaInvBnd_aux2, ZetaInvBound1, ZetaInvBound2, ZetaLowerBnd, ZetaLowerBound1, ZetaLowerBound1_aux1, ZetaLowerBound2, ZetaLowerBound3, ZetaLowerBound3_aux1, ZetaLowerBound3_aux2, ZetaLowerBound3_aux3, ZetaLowerBound3_aux4, ZetaLowerBound3_aux5, ZetaNear1BndExact, ZetaNear1BndFilter, ZetaNoZerosInBox, ZetaNoZerosOn1Line, ZetaSum_aux1, ZetaSum_aux1_1, ZetaSum_aux1_1', ZetaSum_aux1_2, ZetaSum_aux1_3, ZetaSum_aux1_3a, ZetaSum_aux1_3b, ZetaSum_aux1_4, ZetaSum_aux1_4', ZetaSum_aux1_5, ZetaSum_aux1_5a, ZetaSum_aux1_5b, ZetaSum_aux1_5c, ZetaSum_aux1_5d, ZetaSum_aux1derivΟ†Cont, ZetaSum_aux1Ο†Diff, ZetaSum_aux1Ο†deriv, ZetaSum_aux1₁, ZetaSum_aux2, ZetaSum_aux2a, ZetaSum_aux3, ZetaUpperBnd, ZetaUpperBnd', ZetaZeroFree, Zeta_diff_Bnd, Zeta_eq_int_derivZeta, add_le_add_le_add, add_le_add_le_add_le_add, analyticAt_riemannZeta, analytic_deriv_bounded_near_point, deriv_eqOn_of_eqOn_punctured, deriv_f_minus_A_inv_sub_clean, deriv_fun_re, deriv_inv_sub, derivative_const_plus_product, diff_translation, differentiableAt_deriv_riemannZeta, div_cpow_eq_cpow_neg, div_rpow_eq_rpow_div_neg, div_rpow_eq_rpow_neg, div_rpow_neg_eq_rpow_div, dlog_riemannZeta_bdd_on_vertical_lines_generalized, finsetSum_tendsto_tsum, harmonic_eq_sum_Icc0, harmonic_eq_sum_Icc0_aux, hasDerivAt_Zeta0Integral, integrability_aux, integrability_auxβ‚€, integrability_aux₁, integrability_auxβ‚‚, integrableOn_of_Zeta0_fun, integrableOn_of_Zeta0_fun_log, integrable_log_over_pow, isOpen_aux, isPathConnected_aux, le_transβ‚„, logDerivResidue, logDerivResidue', logDerivResidue'', logt_gt_one, lt_abs_mem_cocompact, lt_transβ‚„, measurable_floor_add_half_sub, mul_le_mul₃, neg_s_ne_neg_one, nonZeroOfBddAbove, norm_addβ‚„_le, norm_addβ‚…_le, norm_add₆_le, norm_complex_log_ofNat, norm_zeta_product_ge_one, one_div_cpow_eq_cpow_neg, riemannZeta0_apply, riemannZeta0_zero_aux, riemannZetaLogDerivResidue, riemannZetaLogDerivResidueBigO, riemannZetaResidue, riemannZeta_isBigO_near_one_horizontal, sum_eq_int_deriv, sum_eq_int_deriv_aux2, summable_complex_then_summable_real_part, triv_bound_zeta, tsum_eq_partial_add_tail, xpos_of_uIcc
165
Total167

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
cpow_inv_tendsto πŸ“–β€”β€”β€”β€”β€”
cpow_tendsto πŸ“–β€”β€”β€”β€”β€”
one_div_cpow_eq πŸ“–β€”β€”β€”β€”β€”

ContDiffOn

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn_deriv πŸ“–β€”β€”β€”β€”β€”
hasDeriv_deriv πŸ“–β€”β€”β€”β€”β€”

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
Icc0_eq πŸ“–β€”β€”β€”β€”β€”
Icc_eq_Ico πŸ“–β€”β€”β€”β€”β€”
Ioc_eq_Icc πŸ“–β€”β€”β€”β€”β€”
Ioc_eq_Ico πŸ“–β€”β€”β€”β€”β€”

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
self_div_floor_bound πŸ“–β€”β€”β€”β€”β€”

Real

Theorems

NameKindAssumesProvesValidatesDepends On
differentiableAt_cpow_const_of_ne πŸ“–β€”β€”β€”β€”DifferentiableAt.comp_ofReal
log_natCast_monotone πŸ“–β€”β€”β€”β€”β€”

(root)

Definitions

NameCategoryTheorems
riemannZeta0 πŸ“–CompOp
5 mathmath: DerivZeta0EqDerivZeta, HasDerivAtZeta0, Zeta0EqZeta, HolomorphicOn_riemannZeta0, riemannZeta0_apply
ΞΆβ‚€' πŸ“–CompOp
1 mathmath: HasDerivAtZeta0

Theorems

NameKindAssumesProvesValidatesDepends On
BddAbove_to_IsBigO πŸ“–β€”β€”β€”β€”β€”
DerivUpperBnd_aux1 πŸ“–β€”β€”β€”β€”UpperBnd_aux
logt_gt_one
ZetaBnd_aux2
norm_complex_log_ofNat
Finset.Icc_eq_Ico
harmonic_eq_sum_Icc0
DerivUpperBnd_aux2 πŸ“–β€”β€”β€”β€”UpperBnd_aux6
UpperBnd_aux2
DerivUpperBnd_aux3 πŸ“–β€”β€”β€”β€”UpperBnd_aux6
UpperBnd_aux2
norm_complex_log_ofNat
DerivUpperBnd_aux4 πŸ“–β€”β€”β€”β€”UpperBnd_aux6
UpperBnd_aux2
norm_complex_log_ofNat
DerivUpperBnd_aux5 πŸ“–β€”β€”β€”β€”ZetaBnd_aux1
div_cpow_eq_cpow_neg
DerivUpperBnd_aux6 πŸ“–β€”β€”β€”β€”UpperBnd_aux6
UpperBnd_aux2
DerivUpperBnd_aux7 πŸ“–β€”β€”β€”β€”DerivUpperBnd_aux7_1
DerivUpperBnd_aux7_5
DerivUpperBnd_aux7_4
DerivUpperBnd_aux7_2
DerivUpperBnd_aux7_integral_eq
logt_gt_one
DerivUpperBnd_aux7_1 πŸ“–β€”β€”β€”β€”β€”
DerivUpperBnd_aux7_2 πŸ“–β€”β€”β€”β€”ZetaSum_aux1_3
DerivUpperBnd_aux7_3 πŸ“–β€”β€”β€”β€”β€”
DerivUpperBnd_aux7_3' πŸ“–β€”β€”β€”β€”DerivUpperBnd_aux7_3
DerivUpperBnd_aux7_4 πŸ“–β€”β€”β€”β€”DerivUpperBnd_aux7_3'
DerivUpperBnd_aux7_nonneg
DerivUpperBnd_aux7_tendsto
DerivUpperBnd_aux7_5 πŸ“–β€”β€”β€”β€”DerivUpperBnd_aux7_4
measurable_floor_add_half_sub
ZetaSum_aux1_3
DerivUpperBnd_aux7_integral_eq πŸ“–β€”β€”β€”β€”DerivUpperBnd_aux7_3'
DerivUpperBnd_aux7_nonneg
DerivUpperBnd_aux7_tendsto
DerivUpperBnd_aux7_nonneg πŸ“–β€”β€”β€”β€”β€”
DerivUpperBnd_aux7_tendsto πŸ“–β€”β€”β€”β€”Real.tendsto_pow_log_div_pow_atTop
div_rpow_eq_rpow_neg
DerivZeta0EqDerivZeta πŸ“–mathematicalβ€”riemannZeta0β€”Zeta0EqZeta
isOpen_aux
HolomophicOn_riemannZeta
Finset_coe_Nat_Int πŸ“–β€”β€”β€”β€”β€”
HasDerivAtZeta0 πŸ“–mathematicalβ€”riemannZeta0
ΞΆβ‚€'
β€”HasDerivAt_cpow_over_var
HasDerivAt_neg_cpow_over2
div_cpow_eq_cpow_neg
hasDerivAt_Zeta0Integral
HasDerivAt_cpow_over_var πŸ“–β€”β€”β€”β€”β€”
HasDerivAt_neg_cpow_over2 πŸ“–β€”β€”β€”β€”β€”
HolomophicOn_riemannZeta πŸ“–mathematicalβ€”HolomorphicOnβ€”β€”
HolomorphicOn_riemannZeta0 πŸ“–mathematicalβ€”HolomorphicOn
riemannZeta0
β€”HasDerivAtZeta0
Ioi_union_Iio_mem_cocompact πŸ“–β€”β€”β€”β€”β€”
LinearDerivative_ofReal πŸ“–β€”β€”β€”β€”β€”
LogDerivZetaBnd πŸ“–β€”β€”β€”β€”ZetaInvBnd
ZetaDerivUpperBnd
logt_gt_one
LogDerivZetaBndUnif πŸ“–β€”β€”β€”β€”LogDerivZetaBnd
triv_bound_zeta
logt_gt_one
ZetaInvBnd_aux
LogDerivZetaHolcLargeT πŸ“–mathematicalβ€”HolomorphicOnβ€”ZetaZeroFree
ZetaNoZerosInBox
LogDerivZetaHoloOn
LogDerivZetaHolcSmallT πŸ“–mathematicalβ€”HolomorphicOnβ€”ZetaNoZerosInBox
LogDerivZetaHoloOn
LogDerivZetaHoloOn πŸ“–mathematicalβ€”HolomorphicOnβ€”differentiableAt_deriv_riemannZeta
ResidueMult πŸ“–β€”HolomorphicOnβ€”β€”β€”
ResidueOfTendsTo πŸ“–β€”HolomorphicOnβ€”β€”existsDifferentiableOn_of_bddAbove
IsBigO_to_BddAbove
Tendsto_nhdsWithin_punctured_add πŸ“–β€”β€”β€”β€”Tendsto_nhdsWithin_punctured_map_add
Tendsto_nhdsWithin_punctured_map_add πŸ“–β€”β€”β€”β€”β€”
UpperBnd_aux πŸ“–β€”β€”β€”β€”logt_gt_one
UpperBnd_aux2 πŸ“–β€”β€”β€”β€”β€”
UpperBnd_aux3 πŸ“–β€”β€”β€”β€”UpperBnd_aux
logt_gt_one
ZetaBnd_aux2
riemannZeta0_zero_aux
UpperBnd_aux5 πŸ“–β€”β€”β€”β€”Nat.self_div_floor_bound
UpperBnd_aux6 πŸ“–β€”β€”β€”β€”UpperBnd_aux5
div_rpow_eq_rpow_div_neg
le_transβ‚„
div_rpow_neg_eq_rpow_div
Zeta0EqZeta πŸ“–mathematicalβ€”riemannZeta0β€”HolomophicOn_riemannZeta
HolomorphicOn_riemannZeta0
isOpen_aux
isPathConnected_aux
riemannZeta0_apply
ZetaSum_aux2
ZetaBnd_aux1 πŸ“–β€”β€”β€”β€”ZetaBnd_aux1b
ZetaBnd_aux1a πŸ“–β€”β€”β€”β€”ZetaSum_aux1_4
ZetaSum_aux1_5
ZetaSum_aux1_2
ZetaSum_aux1_1
ZetaBnd_aux1b πŸ“–β€”β€”β€”β€”integrableOn_of_Zeta0_fun
ZetaBnd_aux1a
ZetaBnd_aux1p πŸ“–β€”β€”β€”β€”ZetaBnd_aux1b
ZetaBnd_aux2 πŸ“–β€”β€”β€”β€”β€”
ZetaCont πŸ“–β€”β€”β€”β€”β€”
ZetaDerivUpperBnd πŸ“–β€”β€”β€”β€”ZetaUpperBnd
UpperBnd_aux
DerivZeta0EqDerivZeta
HasDerivAtZeta0
norm_add₆_le
ZetaDerivUpperBnd'
ZetaDerivUpperBnd' πŸ“–β€”β€”β€”β€”UpperBnd_aux
DerivUpperBnd_aux1
DerivUpperBnd_aux2
DerivUpperBnd_aux3
DerivUpperBnd_aux4
DerivUpperBnd_aux5
DerivUpperBnd_aux6
DerivUpperBnd_aux7
ZetaInvBnd πŸ“–β€”β€”β€”β€”ZetaInvBound2
Zeta_diff_Bnd
ZetaInvBnd_aux2
logt_gt_one
ZetaInvBnd_aux
UpperBnd_aux
lt_transβ‚„
ZetaInvBnd_aux'
ZetaInvBnd_aux πŸ“–β€”β€”β€”β€”ZetaInvBnd_aux'
ZetaInvBnd_aux' πŸ“–β€”β€”β€”β€”β€”
ZetaInvBnd_aux2 πŸ“–β€”β€”β€”β€”β€”
ZetaInvBound1 πŸ“–β€”β€”β€”β€”norm_zeta_product_ge_one
ZetaInvBound2 πŸ“–β€”β€”β€”β€”ZetaUpperBnd
ZetaNear1BndExact
ZetaInvBound1
ZetaLowerBnd πŸ“–β€”β€”β€”β€”ZetaLowerBound3
Zeta_diff_Bnd
logt_gt_one
ZetaLowerBound1 πŸ“–β€”β€”β€”β€”norm_zeta_product_ge_one
ZetaLowerBound1_aux1
ZetaLowerBound1_aux1 πŸ“–β€”β€”β€”β€”β€”
ZetaLowerBound2 πŸ“–β€”β€”β€”β€”ZetaLowerBound1
ZetaLowerBound3 πŸ“–β€”β€”β€”β€”ZetaUpperBnd
ZetaNear1BndExact
ZetaLowerBound2
ZetaLowerBound3_aux1
ZetaLowerBound3_aux2
ZetaLowerBound3_aux3
ZetaLowerBound3_aux4
ZetaLowerBound3_aux5
ZetaLowerBound1
ZetaLowerBound3_aux1 πŸ“–β€”β€”β€”β€”β€”
ZetaLowerBound3_aux2 πŸ“–β€”β€”β€”β€”β€”
ZetaLowerBound3_aux3 πŸ“–β€”β€”β€”β€”β€”
ZetaLowerBound3_aux4 πŸ“–β€”β€”β€”β€”β€”
ZetaLowerBound3_aux5 πŸ“–β€”β€”β€”β€”β€”
ZetaNear1BndExact πŸ“–β€”β€”β€”β€”ZetaNear1BndFilter
ZetaNear1BndFilter πŸ“–β€”β€”β€”β€”Tendsto_nhdsWithin_punctured_add
riemannZeta_isBigO_near_one_horizontal
ZetaNoZerosInBox πŸ“–β€”β€”β€”β€”ZetaCont
ZetaNoZerosOn1Line πŸ“–β€”β€”β€”β€”β€”
ZetaSum_aux1 πŸ“–β€”β€”β€”β€”xpos_of_uIcc
ZetaSum_aux1Ο†Diff
ZetaSum_aux1Ο†deriv
ZetaSum_aux1derivφCont
ZetaSum_aux1₁
sum_eq_int_deriv
ZetaSum_aux1_1 πŸ“–β€”β€”β€”β€”β€”
ZetaSum_aux1_1' πŸ“–β€”β€”β€”β€”β€”
ZetaSum_aux1_2 πŸ“–β€”β€”β€”β€”ZetaSum_aux1_1
div_rpow_eq_rpow_neg
ZetaSum_aux1_3 πŸ“–β€”β€”β€”β€”ZetaSum_aux1_3a
ZetaSum_aux1_3b
ZetaSum_aux1_3a πŸ“–β€”β€”β€”β€”β€”
ZetaSum_aux1_3b πŸ“–β€”β€”β€”β€”β€”
ZetaSum_aux1_4 πŸ“–β€”β€”β€”β€”ZetaSum_aux1_4'
ZetaSum_aux1_1
ZetaSum_aux1_4' πŸ“–β€”β€”β€”β€”β€”
ZetaSum_aux1_5 πŸ“–β€”β€”β€”β€”ZetaSum_aux1_5d
ZetaSum_aux1_5b
ZetaSum_aux1_5a
ZetaSum_aux1_5a πŸ“–β€”β€”β€”β€”ZetaSum_aux1_3
ZetaSum_aux1_1'
ZetaSum_aux1_5b πŸ“–β€”β€”β€”β€”ZetaSum_aux1_1'
ZetaSum_aux1_5c πŸ“–β€”β€”β€”β€”measurable_floor_add_half_sub
ZetaSum_aux1_5d πŸ“–β€”β€”β€”β€”ZetaSum_aux1_5b
ZetaSum_aux1_5c
ZetaSum_aux1_3
ZetaSum_aux1derivΟ†Cont πŸ“–β€”β€”β€”β€”ZetaSum_aux1Ο†deriv
xpos_of_uIcc
ZetaSum_aux1Ο†Diff πŸ“–β€”β€”β€”β€”Real.differentiableAt_cpow_const_of_ne
ZetaSum_aux1Ο†deriv πŸ“–β€”β€”β€”β€”β€”
ZetaSum_aux1₁ πŸ“–β€”β€”β€”β€”Complex.one_div_cpow_eq
xpos_of_uIcc
neg_s_ne_neg_one
ZetaSum_aux2 πŸ“–β€”β€”β€”β€”Finset_coe_Nat_Int
ZetaSum_aux1
ZetaSum_aux3
Complex.cpow_tendsto
Complex.cpow_inv_tendsto
integrableOn_of_Zeta0_fun
ZetaSum_aux2a πŸ“–β€”β€”β€”β€”ZetaSum_aux1_3
ZetaSum_aux3 πŸ“–β€”β€”β€”β€”Finset.Ioc_eq_Ico
finsetSum_tendsto_tsum
ZetaUpperBnd πŸ“–β€”β€”β€”β€”UpperBnd_aux
Zeta0EqZeta
norm_addβ‚„_le
ZetaUpperBnd'
ZetaUpperBnd' πŸ“–β€”β€”β€”β€”UpperBnd_aux
one_div_cpow_eq_cpow_neg
UpperBnd_aux3
ZetaBnd_aux1
UpperBnd_aux6
add_le_add_le_add_le_add
UpperBnd_aux2
ZetaZeroFree πŸ“–β€”β€”β€”β€”ZetaLowerBnd
Zeta_diff_Bnd πŸ“–β€”β€”β€”β€”ZetaDerivUpperBnd
Zeta_eq_int_derivZeta
Zeta_eq_int_derivZeta πŸ“–β€”β€”β€”β€”deriv_fun_re
Complex.differentiableAt_ofReal
differentiableAt_deriv_riemannZeta
add_le_add_le_add πŸ“–β€”β€”β€”β€”β€”
add_le_add_le_add_le_add πŸ“–β€”β€”β€”β€”add_le_add_le_add
analyticAt_riemannZeta πŸ“–β€”β€”β€”β€”β€”
analytic_deriv_bounded_near_point πŸ“–β€”HolomorphicOnβ€”β€”β€”
deriv_eqOn_of_eqOn_punctured πŸ“–β€”β€”β€”β€”β€”
deriv_f_minus_A_inv_sub_clean πŸ“–β€”β€”β€”β€”deriv_inv_sub
deriv_fun_re πŸ“–β€”β€”β€”β€”Complex.differentiableAt_ofReal
deriv_ofReal
deriv_inv_sub πŸ“–β€”β€”β€”β€”diff_translation
derivative_const_plus_product πŸ“–β€”β€”β€”β€”β€”
diff_translation πŸ“–β€”β€”β€”β€”β€”
differentiableAt_deriv_riemannZeta πŸ“–β€”β€”β€”β€”analyticAt_riemannZeta
div_cpow_eq_cpow_neg πŸ“–β€”β€”β€”β€”β€”
div_rpow_eq_rpow_div_neg πŸ“–β€”β€”β€”β€”div_rpow_neg_eq_rpow_div
div_rpow_eq_rpow_neg πŸ“–β€”β€”β€”β€”β€”
div_rpow_neg_eq_rpow_div πŸ“–β€”β€”β€”β€”β€”
dlog_riemannZeta_bdd_on_vertical_lines_generalized πŸ“–β€”β€”β€”β€”summable_complex_then_summable_real_part
finsetSum_tendsto_tsum πŸ“–β€”β€”β€”β€”tsum_eq_partial_add_tail
harmonic_eq_sum_Icc0 πŸ“–β€”β€”β€”β€”harmonic_eq_sum_Icc0_aux
harmonic_eq_sum_Icc0_aux πŸ“–β€”β€”β€”β€”Finset.Icc0_eq
hasDerivAt_Zeta0Integral πŸ“–β€”β€”β€”β€”integrableOn_of_Zeta0_fun
integrableOn_of_Zeta0_fun_log
ZetaSum_aux1_3
integrable_log_over_pow
integrability_aux πŸ“–β€”β€”β€”β€”integrability_aux₁
integrability_auxβ‚‚
integrability_auxβ‚€ πŸ“–β€”β€”β€”β€”β€”
integrability_aux₁ πŸ“–β€”β€”β€”β€”integrability_auxβ‚€
integrability_auxβ‚‚ πŸ“–β€”β€”β€”β€”β€”
integrableOn_of_Zeta0_fun πŸ“–β€”β€”β€”β€”ZetaSum_aux2a
integrableOn_of_Zeta0_fun_log πŸ“–β€”β€”β€”β€”ZetaSum_aux2a
integrable_log_over_pow
integrable_log_over_pow πŸ“–β€”β€”β€”β€”β€”
isOpen_aux πŸ“–β€”β€”β€”β€”β€”
isPathConnected_aux πŸ“–β€”β€”β€”β€”β€”
le_transβ‚„ πŸ“–β€”β€”β€”β€”β€”
logDerivResidue πŸ“–β€”HolomorphicOnβ€”β€”logDerivResidue'
logDerivResidue' πŸ“–β€”HolomorphicOnβ€”β€”existsDifferentiableOn_of_bddAbove
derivative_const_plus_product
deriv_eqOn_of_eqOn_punctured
deriv_f_minus_A_inv_sub_clean
analytic_deriv_bounded_near_point
logDerivResidue'' πŸ“–β€”HolomorphicOnβ€”β€”IsBigO_to_BddAbove
logDerivResidue
logt_gt_one πŸ“–β€”β€”β€”β€”β€”
lt_abs_mem_cocompact πŸ“–β€”β€”β€”β€”Ioi_union_Iio_mem_cocompact
lt_transβ‚„ πŸ“–β€”β€”β€”β€”β€”
measurable_floor_add_half_sub πŸ“–β€”β€”β€”β€”β€”
mul_le_mul₃ πŸ“–β€”β€”β€”β€”β€”
neg_s_ne_neg_one πŸ“–β€”β€”β€”β€”β€”
nonZeroOfBddAbove πŸ“–β€”β€”β€”β€”β€”
norm_addβ‚„_le πŸ“–β€”β€”β€”β€”β€”
norm_addβ‚…_le πŸ“–β€”β€”β€”β€”norm_addβ‚„_le
norm_add₆_le πŸ“–β€”β€”β€”β€”norm_addβ‚…_le
norm_complex_log_ofNat πŸ“–β€”β€”β€”β€”β€”
norm_zeta_product_ge_one πŸ“–β€”β€”β€”β€”β€”
one_div_cpow_eq_cpow_neg πŸ“–β€”β€”β€”β€”div_cpow_eq_cpow_neg
riemannZeta0_apply πŸ“–mathematicalβ€”riemannZeta0β€”div_cpow_eq_cpow_neg
riemannZeta0_zero_aux πŸ“–β€”β€”β€”β€”β€”
riemannZetaLogDerivResidue πŸ“–β€”β€”β€”β€”riemannZetaResidue
nonZeroOfBddAbove
logDerivResidue''
riemannZetaLogDerivResidueBigO πŸ“–β€”β€”β€”β€”riemannZetaLogDerivResidue
BddAbove_to_IsBigO
riemannZetaResidue πŸ“–β€”β€”β€”β€”ResidueOfTendsTo
riemannZeta_isBigO_near_one_horizontal πŸ“–β€”β€”β€”β€”β€”
sum_eq_int_deriv πŸ“–β€”β€”β€”β€”Finset_coe_Nat_Int
integrability_aux
sum_eq_int_deriv_aux2
sum_eq_int_deriv_aux2 πŸ“–β€”β€”β€”β€”LinearDerivative_ofReal
summable_complex_then_summable_real_part πŸ“–β€”β€”β€”β€”β€”
triv_bound_zeta πŸ“–β€”β€”β€”β€”riemannZetaLogDerivResidue
dlog_riemannZeta_bdd_on_vertical_lines_generalized
tsum_eq_partial_add_tail πŸ“–β€”β€”β€”β€”β€”
xpos_of_uIcc πŸ“–β€”β€”β€”β€”β€”

---

← Back to Index