Documentation Verification Report

GeometricUtils

📁 Source: BanachTarski/GeometricUtils.lean

Statistics

MetricCount
DefinitionsB3, B3min, Bad, BadAt, BadAtN, BadAtN_rot, BadAtN_rot_iso, BadEl, G3, IccT, MAT1, S2_sub, SO3_embed_G3, SO3_in_G3, SO3_into_G3, SO3_to_G3_iso_forward_equiv, ToEquivSO3, cone, hmo, instMulActionG3R3, is_s2, orbit, origin_in_s, skew_rot, to_s2, to_s2_r3, trunc_cone, v2m, x_axis, x_axis_vec
30
TheoremsBadAtN_rot_iso_countable, BadAtN_rot_iso_equiv, BadAtN_skew_rot, BadAtN_skew_rot_countable, SO3_G3_action_equiv, b3min_is_trunc_cone_s2, bad_as_union, bad_as_union_rot, bad_as_union_skew_rot, collapse_iter, cone_lemma, conj_bad_el, countable_bad_rots, countable_bad_skew_rot, cover_lemma, disj_lemma, dot_as_matmul, dp_nonneg, f_triv_g3, hmo_is_bijective, hmo_is_injective, hmo_is_surjective, ih, instSMulCommClassRealSubtypeMatrixFinOfNatNatMemSubmonoidSO3R3, interval_uncountable, isometry_of_so3, lb_card_s2, map_lemma, origin_cont, rot_containment_S2, rot_containment_general, rot_iso_comp_add, rot_iso_fixed, rot_iso_fixed_gen, rot_iso_power_lemma, s2_uncountable, same_bad, skew_rot_comp_add, skew_rot_power_lemma, so3_cancel_lem, so3_diff_lin, so3_fixes_norm, so3_fixes_s2, srot_containment, triv_so3, trunc_cone_lemma, trunc_cone_sub_ball, v2m_equiv, x_axis_on_sphere
49
Total79

(root)

Definitions

NameCategoryTheorems
B3 📖CompOp
2 mathmath: srot_containment, banach_tarski_paradox_B3
B3min 📖CompOp
3 mathmath: b3min_is_trunc_cone_s2, banach_tarski_paradox_B3_minus_origin, trunc_cone_sub_ball
Bad 📖CompOp
5 mathmath: countable_bad_skew_rot, countable_bad_rots, bad_as_union_rot, bad_as_union_skew_rot, bad_as_union
BadAt 📖CompOp
1 mathmath: bad_as_union
BadAtN 📖CompOp
4 mathmath: BadAtN_skew_rot_countable, bad_as_union_rot, BadAtN_skew_rot, bad_as_union_skew_rot
BadAtN_rot 📖CompOp
1 mathmath: same_bad
BadAtN_rot_iso 📖CompOp
3 mathmath: BadAtN_rot_iso_equiv, same_bad, BadAtN_rot_iso_countable
BadEl 📖MathDef
1 mathmath: conj_bad_el
G3 📖CompOp
14 mathmath: countable_bad_skew_rot, hmo_is_surjective, BadAtN_skew_rot_countable, srot_containment, banach_tarski_paradox_B3, skew_rot_comp_add, BadAtN_skew_rot, origin_cont, f_triv_g3, SO3_G3_action_equiv, bad_as_union_skew_rot, hmo_is_bijective, hmo_is_injective, skew_rot_power_lemma
IccT 📖CompOp
2 mathmath: ih, interval_uncountable
MAT1 📖CompOp
2 mathmath: v2m_equiv, dot_as_matmul
S2_sub 📖CompOp
SO3_embed_G3 📖CompOp
SO3_in_G3 📖CompOp
3 mathmath: hmo_is_surjective, hmo_is_bijective, hmo_is_injective
SO3_into_G3 📖CompOp
1 mathmath: SO3_G3_action_equiv
SO3_to_G3_iso_forward_equiv 📖CompOp
ToEquivSO3 📖CompOp
cone 📖CompOp
1 mathmath: cone_lemma
hmo 📖CompOp
3 mathmath: hmo_is_surjective, hmo_is_bijective, hmo_is_injective
instMulActionG3R3 📖CompOp
8 mathmath: countable_bad_skew_rot, BadAtN_skew_rot_countable, srot_containment, banach_tarski_paradox_B3, BadAtN_skew_rot, f_triv_g3, SO3_G3_action_equiv, bad_as_union_skew_rot
is_s2 📖CompOp
orbit 📖CompOp
2 mathmath: srot_containment, rot_containment_general
origin_in_s 📖CompOp
3 mathmath: BadAtN_skew_rot_countable, BadAtN_skew_rot, bad_as_union_skew_rot
skew_rot 📖CompOp
9 mathmath: countable_bad_skew_rot, BadAtN_skew_rot_countable, srot_containment, skew_rot_comp_add, BadAtN_skew_rot, origin_cont, f_triv_g3, bad_as_union_skew_rot, skew_rot_power_lemma
to_s2 📖CompOp
1 mathmath: ih
to_s2_r3 📖CompOp
trunc_cone 📖CompOp
5 mathmath: cover_lemma, map_lemma, disj_lemma, b3min_is_trunc_cone_s2, trunc_cone_sub_ball
v2m 📖CompOp
2 mathmath: v2m_equiv, dot_as_matmul
x_axis 📖CompOp
x_axis_vec 📖CompOp
1 mathmath: x_axis_on_sphere

Theorems

NameKindAssumesProvesValidatesDepends On
BadAtN_rot_iso_countable 📖mathematicalR3
S2
BadAtN_rot_isoBadAtN_rot_iso_equiv
BadAtN_rot_iso_equiv 📖mathematicalR3
S2
BadAtN_rot_iso
ang_diff
rot_iso_power_lemma
rot_iso_fixed_gen
BadAtN_skew_rot 📖mathematicalBadAtN
R3
G3
instMulActionG3R3
skew_rot
origin
origin_in_s
f_triv_g3
skew_rot_power_lemma
operp.eq_1
origin.eq_1
rot_iso_fixed
rot_iso_fixed_back
BadAtN_skew_rot_countable 📖mathematicalBadAtN
R3
G3
instMulActionG3R3
skew_rot
origin
origin_in_s
BadAtN_skew_rot
SO3_G3_action_equiv 📖mathematicalG3
R3
instMulActionG3R3
SO3_into_G3
SO3
b3min_is_trunc_cone_s2 📖mathematicalB3min
trunc_cone
R3
S2
bad_as_union 📖mathematicalBad
BadAt
bad_as_union_rot 📖mathematicalR3
S2
Bad
SO3
SO3_action_on_R3
rot
BadAtN
bad_as_union
bad_as_union_skew_rot 📖mathematicalBad
R3
G3
instMulActionG3R3
skew_rot
origin
BadAtN
origin_in_s
bad_as_union
collapse_iter 📖mathematicalf
cone_lemma 📖mathematicalR3
cone
S2
normed
conj_bad_el 📖mathematicalBadEl
f
collapse_iter
countable_bad_rots 📖mathematicalR3
S2
Bad
SO3
SO3_action_on_R3
rot
bad_as_union_rot
same_bad
BadAtN_rot_iso_countable
countable_bad_skew_rot 📖mathematicalBad
R3
G3
instMulActionG3R3
skew_rot
origin
bad_as_union_skew_rot
BadAtN_skew_rot_countable
cover_lemma 📖mathematicalR3
S2
trunc_conetrunc_cone_lemma
cone_lemma
disj_lemma 📖mathematicalR3
S2
trunc_conetrunc_cone_lemma
dot_as_matmul 📖mathematicalMAT1
v2m
dp_nonneg 📖
f_triv_g3 📖mathematicalf
R3
G3
instMulActionG3R3
skew_rot
hmo_is_bijective 📖mathematicalSO3
G3
R3
SO3_in_G3
hmo
hmo_is_injective
hmo_is_surjective
hmo_is_injective 📖mathematicalSO3
G3
R3
SO3_in_G3
hmo
isometry_of_so3
hmo_is_surjective 📖mathematicalSO3
G3
R3
SO3_in_G3
hmo
ih 📖mathematicalIccT
R3
S2
to_s2
instSMulCommClassRealSubtypeMatrixFinOfNatNatMemSubmonoidSO3R3 📖mathematicalSO3
R3
interval_uncountable 📖mathematicalIccT
isometry_of_so3 📖mathematicalR3
f
SO3
SO3_action_on_R3
so3_diff_lin
so3_fixes_norm
lb_card_s2 📖mathematicalR3
S2
s2_uncountable
map_lemma 📖mathematicalR3
f
SO3
SO3_action_on_R3
S2
trunc_coneinstSMulCommClassRealSubtypeMatrixFinOfNatNatMemSubmonoidSO3R3
so3_fixes_norm
origin_cont 📖mathematicalR3
G3
skew_rot
origin
rot_containment_S2 📖mathematicalR3
f
SO3
SO3_action_on_R3
rot
S2
so3_fixes_s2
rot_containment_general 📖mathematicalR3
S2
orbit
SO3
SO3_action_on_R3
rot
rot_containment_S2
rot_iso_comp_add 📖mathematicalR3
rot_iso
rot_by_parts_comp
rot_iso_fixed 📖R3
rot_iso
rot_iso_fixed_gen
orth_dim_2
rot_iso_fixed_gen 📖mathematicalR3
rot_iso
ang_difforth_dim_2
operp_spar
operp_up
operp_add
rot_iso_power_lemma 📖mathematicalR3
rot_iso
triv_rot_iso
rot_iso_comp_add
s2_uncountable 📖mathematicalR3
S2
interval_uncountable
ih
same_bad 📖mathematicalBadAtN_rot
BadAtN_rot_iso
rot_pow_lemma
rot_iso_pow_lemma
same_action
skew_rot_comp_add 📖mathematicalR3
G3
skew_rot
rot_iso_comp_add
skew_rot_power_lemma 📖mathematicalR3
G3
skew_rot
triv_rot_iso
skew_rot_comp_add
so3_cancel_lem 📖mathematicalSO3
so3_diff_lin 📖mathematicalR3
SO3
so3_fixes_norm 📖mathematicalR3
SO3
dot_as_matmul
v2m_equiv
so3_cancel_lem
dp_nonneg
so3_fixes_s2 📖mathematicalR3
f
SO3
SO3_action_on_R3
S2
so3_fixes_norm
srot_containment 📖mathematicalR3
orbit
G3
instMulActionG3R3
skew_rot
origin
B3
skew_rot_power_lemma
f_triv_g3
origin_cont
triv_so3 📖mathematicalf
R3
SO3
SO3_action_on_R3
trunc_cone_lemma 📖mathematicalR3
trunc_cone
S2
normed
cone_lemma
trunc_cone_sub_ball 📖mathematicalR3
trunc_cone
B3min
v2m_equiv 📖mathematicalv2m
MAT
MAT1
x_axis_on_sphere 📖mathematicalR3
S2
x_axis_vec

---

← Back to Index