| Name | Category | Theorems |
B3 📖 | CompOp | 2 mathmath: srot_containment, banach_tarski_paradox_B3
|
B3min 📖 | CompOp | 3 mathmath: b3min_is_trunc_cone_s2, banach_tarski_paradox_B3_minus_origin, trunc_cone_sub_ball
|
Bad 📖 | CompOp | 5 mathmath: countable_bad_skew_rot, countable_bad_rots, bad_as_union_rot, bad_as_union_skew_rot, bad_as_union
|
BadAt 📖 | CompOp | 1 mathmath: bad_as_union
|
BadAtN 📖 | CompOp | 4 mathmath: BadAtN_skew_rot_countable, bad_as_union_rot, BadAtN_skew_rot, bad_as_union_skew_rot
|
BadAtN_rot 📖 | CompOp | 1 mathmath: same_bad
|
BadAtN_rot_iso 📖 | CompOp | 3 mathmath: BadAtN_rot_iso_equiv, same_bad, BadAtN_rot_iso_countable
|
BadEl 📖 | MathDef | 1 mathmath: conj_bad_el
|
G3 📖 | CompOp | 14 mathmath: countable_bad_skew_rot, hmo_is_surjective, BadAtN_skew_rot_countable, srot_containment, banach_tarski_paradox_B3, skew_rot_comp_add, BadAtN_skew_rot, origin_cont, f_triv_g3, SO3_G3_action_equiv, bad_as_union_skew_rot, hmo_is_bijective, hmo_is_injective, skew_rot_power_lemma
|
IccT 📖 | CompOp | 2 mathmath: ih, interval_uncountable
|
MAT1 📖 | CompOp | 2 mathmath: v2m_equiv, dot_as_matmul
|
S2_sub 📖 | CompOp | — |
SO3_embed_G3 📖 | CompOp | — |
SO3_in_G3 📖 | CompOp | 3 mathmath: hmo_is_surjective, hmo_is_bijective, hmo_is_injective
|
SO3_into_G3 📖 | CompOp | 1 mathmath: SO3_G3_action_equiv
|
SO3_to_G3_iso_forward_equiv 📖 | CompOp | — |
ToEquivSO3 📖 | CompOp | — |
cone 📖 | CompOp | 1 mathmath: cone_lemma
|
hmo 📖 | CompOp | 3 mathmath: hmo_is_surjective, hmo_is_bijective, hmo_is_injective
|
instMulActionG3R3 📖 | CompOp | 8 mathmath: countable_bad_skew_rot, BadAtN_skew_rot_countable, srot_containment, banach_tarski_paradox_B3, BadAtN_skew_rot, f_triv_g3, SO3_G3_action_equiv, bad_as_union_skew_rot
|
is_s2 📖 | CompOp | — |
orbit 📖 | CompOp | 2 mathmath: srot_containment, rot_containment_general
|
origin_in_s 📖 | CompOp | 3 mathmath: BadAtN_skew_rot_countable, BadAtN_skew_rot, bad_as_union_skew_rot
|
skew_rot 📖 | CompOp | 9 mathmath: countable_bad_skew_rot, BadAtN_skew_rot_countable, srot_containment, skew_rot_comp_add, BadAtN_skew_rot, origin_cont, f_triv_g3, bad_as_union_skew_rot, skew_rot_power_lemma
|
to_s2 📖 | CompOp | 1 mathmath: ih
|
to_s2_r3 📖 | CompOp | — |
trunc_cone 📖 | CompOp | 5 mathmath: cover_lemma, map_lemma, disj_lemma, b3min_is_trunc_cone_s2, trunc_cone_sub_ball
|
v2m 📖 | CompOp | 2 mathmath: v2m_equiv, dot_as_matmul
|
x_axis 📖 | CompOp | — |
x_axis_vec 📖 | CompOp | 1 mathmath: x_axis_on_sphere
|