Documentation Verification Report

AssocList

πŸ“ Source: Batteries/Data/AssocList.lean

Statistics

MetricCount
DefinitionsAssocList, All, all, any, beq, contains, erase, eraseP, find?, findEntry?, findEntryP?, foldl, foldlM, forIn, forM, instBEq, instEmptyCollection, instForInProdOfMonad, instStreamProd, instToStream, isEmpty, length, mapKey, mapVal, modify, pop?, replace, toList, toListTR, instInhabitedAssocList, default, toAssocList
32
Theoremsall_eq, any_eq, beq_cons_nil, beq_consβ‚‚, beq_eq, beq_nil_cons, beq_nilβ‚‚, contains_eq, empty_eq, find?_eq, find?_eq_findEntry?, findEntry?_eq, findEntryP?_eq, foldlM_eq, foldl_eq, forIn_eq, forM_eq, instLawfulBEq, isEmpty_eq, length_cons, length_mapKey, length_mapVal, length_modify, length_nil, length_replace, length_toList, toList_eq_toListTR, toList_erase, toList_eraseP, toList_mapKey, toList_mapVal, toList_modify, toList_replace, toList_toAssocList, length_toAssocList, toList_toAssocList
36
Total68

Batteries

Definitions

NameCategoryTheorems
AssocList πŸ“–CompData
8 mathmath: AssocList.beq_nil_cons, AssocList.beq_consβ‚‚, AssocList.beq_cons_nil, AssocList.beq_nilβ‚‚, AssocList.beq_eq, AssocList.instLawfulBEq, AssocList.forIn_eq, AssocList.empty_eq
instInhabitedAssocList πŸ“–CompOpβ€”

Batteries.AssocList

Definitions

NameCategoryTheorems
All πŸ“–MathDefβ€”
all πŸ“–CompOp
1 mathmath: all_eq
any πŸ“–CompOp
1 mathmath: any_eq
beq πŸ“–CompOpβ€”
contains πŸ“–CompOp
1 mathmath: contains_eq
erase πŸ“–CompOp
1 mathmath: toList_erase
eraseP πŸ“–CompOp
1 mathmath: toList_eraseP
find? πŸ“–CompOp
2 mathmath: find?_eq_findEntry?, find?_eq
findEntry? πŸ“–CompOp
2 mathmath: find?_eq_findEntry?, findEntry?_eq
findEntryP? πŸ“–CompOp
1 mathmath: findEntryP?_eq
foldl πŸ“–CompOp
1 mathmath: foldl_eq
foldlM πŸ“–CompOp
1 mathmath: foldlM_eq
forIn πŸ“–CompOpβ€”
forM πŸ“–CompOp
1 mathmath: forM_eq
instBEq πŸ“–CompOp
6 mathmath: beq_nil_cons, beq_consβ‚‚, beq_cons_nil, beq_nilβ‚‚, beq_eq, instLawfulBEq
instEmptyCollection πŸ“–CompOp
1 mathmath: empty_eq
instForInProdOfMonad πŸ“–CompOp
1 mathmath: forIn_eq
instStreamProd πŸ“–CompOpβ€”
instToStream πŸ“–CompOpβ€”
isEmpty πŸ“–CompOp
1 mathmath: isEmpty_eq
length πŸ“–CompOp
8 mathmath: length_modify, length_toList, length_mapVal, length_replace, length_nil, List.length_toAssocList, length_mapKey, length_cons
mapKey πŸ“–CompOp
2 mathmath: length_mapKey, toList_mapKey
mapVal πŸ“–CompOp
2 mathmath: length_mapVal, toList_mapVal
modify πŸ“–CompOp
2 mathmath: length_modify, toList_modify
pop? πŸ“–CompOpβ€”
replace πŸ“–CompOp
2 mathmath: length_replace, toList_replace
toList πŸ“–CompOp
22 mathmath: contains_eq, length_toList, any_eq, List.toList_toAssocList, isEmpty_eq, foldl_eq, toList_erase, all_eq, toList_mapVal, toList_eq_toListTR, beq_eq, forIn_eq, toList_toAssocList, foldlM_eq, find?_eq, toList_modify, findEntry?_eq, findEntryP?_eq, toList_replace, toList_eraseP, forM_eq, toList_mapKey
toListTR πŸ“–CompOp
1 mathmath: toList_eq_toListTR

Theorems

NameKindAssumesProvesValidatesDepends On
all_eq πŸ“–mathematicalβ€”all
toList
β€”β€”
any_eq πŸ“–mathematicalβ€”any
toList
β€”β€”
beq_cons_nil πŸ“–mathematicalβ€”Batteries.AssocList
instBEq
cons
nil
β€”β€”
beq_consβ‚‚ πŸ“–mathematicalβ€”Batteries.AssocList
instBEq
cons
β€”β€”
beq_eq πŸ“–mathematicalβ€”Batteries.AssocList
instBEq
toList
β€”β€”
beq_nil_cons πŸ“–mathematicalβ€”Batteries.AssocList
instBEq
nil
cons
β€”β€”
beq_nilβ‚‚ πŸ“–mathematicalβ€”Batteries.AssocList
instBEq
nil
β€”β€”
contains_eq πŸ“–mathematicalβ€”contains
toList
β€”any_eq
empty_eq πŸ“–mathematicalβ€”Batteries.AssocList
instEmptyCollection
nil
β€”β€”
find?_eq πŸ“–mathematicalβ€”find?
toList
β€”find?_eq_findEntry?
findEntry?_eq
find?_eq_findEntry? πŸ“–mathematicalβ€”find?
findEntry?
β€”findEntry?_eq
findEntry?_eq πŸ“–mathematicalβ€”findEntry?
toList
β€”findEntryP?_eq
findEntryP?_eq πŸ“–mathematicalβ€”findEntryP?
toList
β€”β€”
foldlM_eq πŸ“–mathematicalβ€”foldlM
toList
β€”β€”
foldl_eq πŸ“–mathematicalβ€”foldl
toList
β€”foldlM_eq
forIn_eq πŸ“–mathematicalβ€”Batteries.AssocList
instForInProdOfMonad
toList
β€”β€”
forM_eq πŸ“–mathematicalβ€”forM
toList
β€”β€”
instLawfulBEq πŸ“–mathematicalβ€”Batteries.AssocList
instBEq
β€”β€”
isEmpty_eq πŸ“–mathematicalβ€”isEmpty
toList
β€”β€”
length_cons πŸ“–mathematicalβ€”length
cons
β€”β€”
length_mapKey πŸ“–mathematicalβ€”length
mapKey
β€”β€”
length_mapVal πŸ“–mathematicalβ€”length
mapVal
β€”β€”
length_modify πŸ“–mathematicalβ€”length
modify
β€”β€”
length_nil πŸ“–mathematicalβ€”length
nil
β€”β€”
length_replace πŸ“–mathematicalβ€”length
replace
β€”β€”
length_toList πŸ“–mathematicalβ€”toList
length
β€”β€”
toList_eq_toListTR πŸ“–mathematicalβ€”toList
toListTR
β€”foldl_eq
toList_erase πŸ“–mathematicalβ€”toList
erase
β€”toList_eraseP
toList_eraseP πŸ“–mathematicalβ€”toList
eraseP
β€”β€”
toList_mapKey πŸ“–mathematicalβ€”toList
mapKey
β€”β€”
toList_mapVal πŸ“–mathematicalβ€”toList
mapVal
β€”β€”
toList_modify πŸ“–mathematicalβ€”toList
modify
List.replaceF
β€”β€”
toList_replace πŸ“–mathematicalβ€”toList
replace
List.replaceF
β€”β€”
toList_toAssocList πŸ“–mathematicalβ€”List.toAssocList
toList
β€”β€”

Batteries.instInhabitedAssocList

Definitions

NameCategoryTheorems
default πŸ“–CompOpβ€”

List

Definitions

NameCategoryTheorems
toAssocList πŸ“–CompOp
3 mathmath: toList_toAssocList, length_toAssocList, Batteries.AssocList.toList_toAssocList

Theorems

NameKindAssumesProvesValidatesDepends On
length_toAssocList πŸ“–mathematicalβ€”Batteries.AssocList.length
toAssocList
β€”β€”
toList_toAssocList πŸ“–mathematicalβ€”Batteries.AssocList.toList
toAssocList
β€”β€”

---

← Back to Index