| Name | Category | Theorems |
All π | MathDef | β |
all π | CompOp | 1 mathmath: all_eq
|
any π | CompOp | 1 mathmath: any_eq
|
beq π | CompOp | β |
contains π | CompOp | 1 mathmath: contains_eq
|
erase π | CompOp | 1 mathmath: toList_erase
|
eraseP π | CompOp | 1 mathmath: toList_eraseP
|
find? π | CompOp | 2 mathmath: find?_eq_findEntry?, find?_eq
|
findEntry? π | CompOp | 2 mathmath: find?_eq_findEntry?, findEntry?_eq
|
findEntryP? π | CompOp | 1 mathmath: findEntryP?_eq
|
foldl π | CompOp | 1 mathmath: foldl_eq
|
foldlM π | CompOp | 1 mathmath: foldlM_eq
|
forIn π | CompOp | β |
forM π | CompOp | 1 mathmath: forM_eq
|
instBEq π | CompOp | 6 mathmath: beq_nil_cons, beq_consβ, beq_cons_nil, beq_nilβ, beq_eq, instLawfulBEq
|
instEmptyCollection π | CompOp | 1 mathmath: empty_eq
|
instForInProdOfMonad π | CompOp | 1 mathmath: forIn_eq
|
instStreamProd π | CompOp | β |
instToStream π | CompOp | β |
isEmpty π | CompOp | 1 mathmath: isEmpty_eq
|
length π | CompOp | 8 mathmath: length_modify, length_toList, length_mapVal, length_replace, length_nil, List.length_toAssocList, length_mapKey, length_cons
|
mapKey π | CompOp | 2 mathmath: length_mapKey, toList_mapKey
|
mapVal π | CompOp | 2 mathmath: length_mapVal, toList_mapVal
|
modify π | CompOp | 2 mathmath: length_modify, toList_modify
|
pop? π | CompOp | β |
replace π | CompOp | 2 mathmath: length_replace, toList_replace
|
toList π | CompOp | 22 mathmath: contains_eq, length_toList, any_eq, List.toList_toAssocList, isEmpty_eq, foldl_eq, toList_erase, all_eq, toList_mapVal, toList_eq_toListTR, beq_eq, forIn_eq, toList_toAssocList, foldlM_eq, find?_eq, toList_modify, findEntry?_eq, findEntryP?_eq, toList_replace, toList_eraseP, forM_eq, toList_mapKey
|
toListTR π | CompOp | 1 mathmath: toList_eq_toListTR
|