Documentation Verification Report

Perm

πŸ“ Source: Batteries/Data/List/Perm.lean

Statistics

MetricCount
DefinitionsidxBij, idxOrderInj, idxInj, decidableSubperm
4
Theoremsperm_iff_eq_of_sublist, coe_idxBij, countBefore_idxOfNth, diff, diff_left, diff_right, flatten_congr, getElem_idxBij_eq_getElem, getElem_idxBij_symm_eq_getElem, idxBij_idxBij_symm, idxBij_injective, idxBij_leftInverse_idxBij_symm, idxBij_rightInverse_idxBij_symm, idxBij_surjective, idxBij_symm_idxBij, idxBij_symm_leftInverse_idxBij, idxBij_symm_rightInverse_idxBij, insertP, inter, inter_left, inter_right, subperm, subperm_idxBij, subperm_left, subperm_right, union, union_left, union_right, coe_idxOrderInj, countBefore_idxOfNth, getElem_idxOrderInj_eq_getElem, idxOrderInj_inj, idxOrderInj_injective, subperm, subperm_idxOrderInj, antisymm, cons_left, cons_right, cons_self, countBefore_idxOfNth, countP_le, count_le, diff_right, erase, exists_of_length_lt, filter, getElem_idxInj_eq_getElem, idxInj_inj, idxInj_injective, length_le, perm_of_length_le, refl, subset, coe_idxInj, cons_subperm_of_not_mem_of_mem, erase_cons_subperm_cons_erase, erase_subperm, isSubperm_iff, nil_subperm, perm_ext_iff_of_nodup, perm_insertP, singleton_subperm_iff, subperm_append_diff_self_of_count_le, subperm_append_left, subperm_append_right, subperm_cons, subperm_cons_diff, subperm_cons_erase, subperm_ext_iff, subperm_nil, subperm_of_subset, subset_cons_diff
72
Total76

List

Definitions

NameCategoryTheorems
decidableSubperm πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_idxInj πŸ“–mathematicalSubpermSubperm.idxInj
idxOfNth
countBefore
β€”β€”
cons_subperm_of_not_mem_of_mem πŸ“–β€”Subpermβ€”β€”β€”
erase_cons_subperm_cons_erase πŸ“–mathematicalβ€”Subpermβ€”subperm_cons_erase
Subperm.refl
erase_subperm πŸ“–mathematicalβ€”Subpermβ€”Sublist.subperm
isSubperm_iff πŸ“–bridging (iff)β€”isSubperm
Subperm
isSubpermβ€”
nil_subperm πŸ“–mathematicalβ€”Subpermβ€”β€”
perm_ext_iff_of_nodup πŸ“–β€”β€”β€”β€”Subperm.antisymm
subperm_of_subset
perm_insertP πŸ“–mathematicalβ€”insertPβ€”insertP_loop
singleton_subperm_iff πŸ“–mathematicalβ€”Subpermβ€”β€”
subperm_append_diff_self_of_count_le πŸ“–mathematicalβ€”diffβ€”diff_cons
subperm_append_left πŸ“–mathematicalβ€”Subpermβ€”subperm_cons
subperm_append_right πŸ“–mathematicalβ€”Subpermβ€”Perm.subperm_left
Perm.subperm_right
subperm_append_left
subperm_cons πŸ“–mathematicalβ€”Subpermβ€”Subperm.trans
Perm.subperm_left
Sublist.subperm
subperm_cons_diff πŸ“–mathematicalβ€”Subperm
diff
β€”diff_cons
diff_erase
Subperm.trans
Subperm.erase
erase_cons_subperm_cons_erase
subperm_cons_erase πŸ“–mathematicalβ€”Subpermβ€”Perm.subperm
Sublist.subperm
subperm_ext_iff πŸ“–mathematicalβ€”Subpermβ€”Subperm.count_le
subperm_append_right
nil_subperm
Subperm.trans
Perm.subperm
subperm_append_diff_self_of_count_le
subperm_nil πŸ“–mathematicalβ€”Subpermβ€”Subperm.length_le
Subperm.refl
subperm_of_subset πŸ“–mathematicalβ€”Subpermβ€”cons_subperm_of_not_mem_of_mem
subset_cons_diff πŸ“–mathematicalβ€”diffβ€”Subperm.subset
subperm_cons_diff

List.Nodup

Theorems

NameKindAssumesProvesValidatesDepends On
perm_iff_eq_of_sublist πŸ“–β€”β€”β€”β€”List.Subperm.subset

List.Perm

Definitions

NameCategoryTheorems
idxBij πŸ“–CompOp
12 mathmath: idxBij_surjective, idxBij_rightInverse_idxBij_symm, idxBij_idxBij_symm, getElem_idxBij_symm_eq_getElem, idxBij_symm_leftInverse_idxBij, idxBij_injective, coe_idxBij, getElem_idxBij_eq_getElem, idxBij_symm_idxBij, idxBij_symm_rightInverse_idxBij, idxBij_leftInverse_idxBij_symm, subperm_idxBij

Theorems

NameKindAssumesProvesValidatesDepends On
coe_idxBij πŸ“–mathematicalβ€”idxBij
List.idxOfNth
List.countBefore
β€”β€”
countBefore_idxOfNth πŸ“–mathematicalβ€”List.countBefore
List.idxOfNth
β€”List.countBefore_idxOfNth_of_lt_count
diff πŸ“–mathematicalβ€”List.diffβ€”diff_right
diff_left
diff_left πŸ“–mathematicalβ€”List.diffβ€”β€”
diff_right πŸ“–mathematicalβ€”List.diffβ€”β€”
flatten_congr πŸ“–β€”List.Forallβ‚‚β€”β€”β€”
getElem_idxBij_eq_getElem πŸ“–mathematicalβ€”idxBijβ€”List.getElem_idxOfNth_eq
subperm
getElem_idxBij_symm_eq_getElem πŸ“–mathematicalβ€”idxBijβ€”List.getElem_idxOfNth_eq
subperm
idxBij_idxBij_symm πŸ“–mathematicalβ€”idxBijβ€”idxBij_leftInverse_idxBij_symm
idxBij_injective πŸ“–mathematicalβ€”idxBijβ€”idxBij_rightInverse_idxBij_symm
idxBij_leftInverse_idxBij_symm πŸ“–mathematicalβ€”idxBijβ€”List.getElem_idxOfNth_eq
countBefore_idxOfNth
List.idxOfNth_countBefore_getElem
idxBij_rightInverse_idxBij_symm πŸ“–mathematicalβ€”idxBijβ€”List.getElem_idxOfNth_eq
countBefore_idxOfNth
List.idxOfNth_countBefore_getElem
idxBij_surjective πŸ“–mathematicalβ€”idxBijβ€”idxBij_symm_rightInverse_idxBij
idxBij_symm_idxBij πŸ“–mathematicalβ€”idxBijβ€”idxBij_rightInverse_idxBij_symm
idxBij_symm_leftInverse_idxBij πŸ“–mathematicalβ€”idxBijβ€”idxBij_rightInverse_idxBij_symm
idxBij_symm_rightInverse_idxBij πŸ“–mathematicalβ€”idxBijβ€”idxBij_leftInverse_idxBij_symm
insertP πŸ“–mathematicalβ€”List.insertPβ€”List.perm_insertP
inter πŸ“–mathematicalβ€”List.instInterOfBEq_batteriesβ€”inter_right
inter_left
inter_left πŸ“–mathematicalβ€”List.instInterOfBEq_batteriesβ€”β€”
inter_right πŸ“–mathematicalβ€”List.instInterOfBEq_batteriesβ€”β€”
subperm πŸ“–mathematicalβ€”List.Subpermβ€”β€”
subperm_idxBij πŸ“–mathematicalβ€”List.Subperm.idxInj
subperm
idxBij
β€”subperm
subperm_left πŸ“–mathematicalβ€”List.Subpermβ€”β€”
subperm_right πŸ“–mathematicalβ€”List.Subpermβ€”β€”
union πŸ“–mathematicalβ€”List.instUnionOfBEq_batteriesβ€”union_right
union_left
union_left πŸ“–mathematicalβ€”List.instUnionOfBEq_batteriesβ€”List.nil_union
List.cons_union
union_right πŸ“–mathematicalβ€”List.instUnionOfBEq_batteriesβ€”β€”

List.Sublist

Definitions

NameCategoryTheorems
idxOrderInj πŸ“–CompOp
5 mathmath: idxOrderInj_injective, subperm_idxOrderInj, idxOrderInj_inj, coe_idxOrderInj, getElem_idxOrderInj_eq_getElem

Theorems

NameKindAssumesProvesValidatesDepends On
coe_idxOrderInj πŸ“–mathematicalβ€”idxOrderInj
List.idxOfNth
List.countBefore
β€”β€”
countBefore_idxOfNth πŸ“–mathematicalβ€”List.countBefore
List.idxOfNth
β€”List.countBefore_idxOfNth_of_lt_count
getElem_idxOrderInj_eq_getElem πŸ“–mathematicalβ€”idxOrderInjβ€”List.getElem_idxOfNth_eq
subperm
idxOrderInj_inj πŸ“–mathematicalβ€”idxOrderInjβ€”idxOrderInj_injective
idxOrderInj_injective πŸ“–mathematicalβ€”idxOrderInjβ€”List.Subperm.idxInj_injective
subperm
subperm πŸ“–mathematicalβ€”List.Subpermβ€”β€”
subperm_idxOrderInj πŸ“–mathematicalβ€”List.Subperm.idxInj
subperm
idxOrderInj
β€”subperm

List.Subperm

Definitions

NameCategoryTheorems
idxInj πŸ“–CompOp
6 mathmath: List.Sublist.subperm_idxOrderInj, idxInj_injective, idxInj_inj, getElem_idxInj_eq_getElem, List.Perm.subperm_idxBij, List.coe_idxInj

Theorems

NameKindAssumesProvesValidatesDepends On
antisymm πŸ“–β€”List.Subpermβ€”β€”perm_of_length_le
length_le
cons_left πŸ“–β€”List.Subpermβ€”β€”List.subperm_ext_iff
cons_right πŸ“–β€”List.Subpermβ€”β€”trans
List.Sublist.subperm
cons_self πŸ“–mathematicalβ€”List.Subpermβ€”β€”
countBefore_idxOfNth πŸ“–mathematicalList.SubpermList.countBefore
List.idxOfNth
β€”List.countBefore_idxOfNth_of_lt_count
count_le
countP_le πŸ“–β€”List.Subpermβ€”β€”β€”
count_le πŸ“–β€”List.Subpermβ€”β€”countP_le
diff_right πŸ“–mathematicalList.SubpermList.diffβ€”erase
subset
erase πŸ“–β€”List.Subpermβ€”β€”β€”
exists_of_length_lt πŸ“–β€”List.Subpermβ€”β€”trans
List.Sublist.subperm
refl
List.Perm.subperm_right
List.subperm_cons
filter πŸ“–β€”List.Subpermβ€”β€”β€”
getElem_idxInj_eq_getElem πŸ“–mathematicalList.SubpermidxInjβ€”List.getElem_idxOfNth_eq
idxInj_inj πŸ“–mathematicalList.SubpermidxInjβ€”idxInj_injective
idxInj_injective πŸ“–mathematicalList.SubpermidxInjβ€”List.getElem_idxOfNth_eq
countBefore_idxOfNth
List.idxOfNth_countBefore_getElem
length_le πŸ“–β€”List.Subpermβ€”β€”β€”
perm_of_length_le πŸ“–β€”List.Subpermβ€”β€”β€”
refl πŸ“–mathematicalβ€”List.Subpermβ€”List.Perm.subperm
subset πŸ“–β€”List.Subpermβ€”β€”β€”

---

← Back to Index