Documentation Verification Report

Basic

πŸ“ Source: Batteries/Data/RBMap/Basic.lean

Statistics

MetricCount
DefinitionsRBColor, Keys, next?, toArray, toList, toStream, Values, next?, toArray, toList, toStream, all, allβ‚‚, any, contains, empty, eqKeys, erase, filter, find!, find?, findD, findEntry?, foldl, foldlM, foldr, forM, insert, instBEq, instCoeHeadKeysArray, instCoeHeadKeysList, instCoeHeadValuesArray, instCoeHeadValuesList, instForInKeysOfMonad, instForInProdOfMonad, instForInValuesOfMonad, instForMKeysOfMonad, instForMValuesOfMonad, instRepr, instStreamStream, instStreamStream_1, instToStreamKeysStream, instToStreamStreamProd, instToStreamValuesStream, intersectWith, isEmpty, keys, keysArray, keysList, lowerBound?, max!, max?, mergeWith, min!, min?, ofArray, ofList, sdiff, single, size, toList, values, valuesArray, valuesList, RBNode, All, Any, Balanced, EMem, Mem, MemP, Ordered, Path, del, erase, fill, ins, insert, insertNew, instDecidableEMem, instDecidableMem, instDecidableMemP, instDecidableOrdered, foldl, foldr, next?, toList, all, allβ‚‚, alter, any, append, balLeft, balRight, balance1, balance2, cmpEq, cmpLT, del, erase, find?, fold, foldl, foldlM, foldr, forIn, visit, forM, ins, insert, instBEq, instDecidableAllOfDecidablePred, instDecidableAnyOfDecidablePred, instDecidableCmpEqOfTransCmp, instDecidableCmpLTOfTransCmp, instEmptyCollection, instForInOfMonad, instMembership, instStreamStream, instToStreamStream, isBlack, isOrdered, isRed, lowerBound?, map, max?, min?, modify, reverse, root?, setBlack, setRed, size, toArray, toList, toStream, upperBound?, zoom, RBSet, AlterWF, EMem, Mem, MemP, ModifyWF, instDecidableEMem, instDecidableMem, instDecidableMemP, all, allβ‚‚, alterP, any, contains, containsP, empty, erase, filter, find!, find?, findP!, findP?, findPD, foldl, foldlM, foldr, forM, insert, insertMany, instBEq, instEmptyCollection, instForInOfMonad, instInhabited, instMembership, instRepr, instSDiff, instToStreamStream, instUnion, intersectWith, isEmpty, lowerBound?, lowerBoundP?, map, max!, max?, mergeWith, min!, min?, modifyP, ofArray, ofList, sdiff, single, size, toList, union, upperBound?, upperBoundP?, instEmptyCollectionRBMap, instInhabitedRBMap, instReprRBColor, repr, instReprRBNode, repr, mkRBMap, mkRBSet, toRBMap
205
Theoremsimp, all_iff, any_iff, cmpEq_iff, cmpLT_iff, wf, wf
7
Total212

Batteries

Definitions

NameCategoryTheorems
RBColor πŸ“–CompData
5 mathmath: RBNode.DelProp.redred, RBNode.Balanced.balLeft, RBNode.Balanced.ins, RBNode.Path.zoom_del, RBNode.Balanced.balRight
RBNode πŸ“–CompData
30 mathmath: RBNode.mem_reverse, RBNode.mem_insert, RBSet.AlterWF.wf, RBNode.find?_eq_zoom, RBNode.mem_toList, RBNode.Ordered.upperBound?_exists, RBNode.memP_def, RBSet.toStream_eq, RBNode.max?_mem, RBNode.mem_def, RBNode.Any_def, RBNode.forIn_eq_forIn_toList, RBMap.toStream_eq, RBNode.mem_node, RBSet.mem_toList, RBSet.val_toList, RBNode.min?_mem, RBNode.mem_nil, RBSet.ModifyWF.wf, RBNode.find?_some_mem, RBNode.lowerBound?_mem_lb, RBNode.lowerBound?_mem, RBNode.upperBound?_mem, RBNode.Ordered.lowerBound?_exists, RBNode.mem_insert_self, RBNode.Stream.forIn_eq_forIn_toList, RBNode.upperBound?_mem_ub, RBMap.mem_toList, RBNode.Ordered.find?_some, RBMap.val_toList
RBSet πŸ“–CompOp
26 math, 1 bridgemath: RBSet.mem_congr, RBSet.lowerBoundP?_exists, RBSet.empty_toList, RBSet.default_eq, RBSet.lowerBound?_mem, RBSet.toStream_eq, RBSet.mem_iff_find?, RBSet.lowerBound?_exists, RBSet.mkRBSet_eq, RBSet.toStream_toList, RBSet.mem_insert_of_mem_toList, RBSet.mem_insert_of_eq, RBSet.empty_eq, RBSet.mem_iff_upperBound?, RBSet.mem_iff_lowerBound?, RBSet.mem_of_mem_toList, RBSet.find?_some_mem, RBSet.lowerBoundP?_mem, RBSet.upperBoundP?_exists, RBSet.upperBound?_exists, RBSet.upperBoundP?_mem, RBSet.mem_insert_self, RBSet.forIn_eq_forIn_toList, RBSet.mem_insert, RBSet.upperBound?_mem, RBSet.mem_iff_mem_toList
bridge: RBSet.contains_iff
instEmptyCollectionRBMap πŸ“–CompOp
4 mathmath: RBMap.empty_eq, RBMap.default_eq, RBMap.empty_toList, RBMap.mkRBSet_eq
instInhabitedRBMap πŸ“–CompOp
1 mathmath: RBMap.default_eq
instReprRBColor πŸ“–CompOpβ€”
instReprRBNode πŸ“–CompOpβ€”
mkRBMap πŸ“–CompOp
1 mathmath: RBMap.mkRBSet_eq
mkRBSet πŸ“–CompOp
1 mathmath: RBSet.mkRBSet_eq

Batteries.RBMap

Definitions

NameCategoryTheorems
Keys πŸ“–CompOpβ€”
Values πŸ“–CompOpβ€”
all πŸ“–CompOpβ€”
allβ‚‚ πŸ“–CompOpβ€”
any πŸ“–CompOpβ€”
contains πŸ“–CompOp
2 bridgebridge: contains_iff_findEntry?, contains_iff_find?
empty πŸ“–CompOp
1 mathmath: empty_eq
eqKeys πŸ“–CompOpβ€”
erase πŸ“–CompOpβ€”
filter πŸ“–CompOpβ€”
find! πŸ“–CompOpβ€”
find? πŸ“–CompOp
5 math, 1 bridgemath: find?_congr, find?_some, find?_insert, find?_insert_of_eq, find?_insert_of_ne
bridge: contains_iff_find?
findD πŸ“–CompOpβ€”
findEntry? πŸ“–CompOp
5 math, 1 bridgemath: findEntry?_insert, findEntry?_some, findEntry?_insert_of_eq, findEntry?_insert_of_ne, findEntry?_congr
bridge: contains_iff_findEntry?
foldl πŸ“–CompOp
1 mathmath: foldl_eq_foldl_toList
foldlM πŸ“–CompOp
1 mathmath: foldlM_eq_foldlM_toList
foldr πŸ“–CompOp
1 mathmath: foldr_eq_foldr_toList
forM πŸ“–CompOp
1 mathmath: forM_eq_forM_toList
insert πŸ“–CompOp
9 mathmath: mem_toList_insert_of_mem, findEntry?_insert, mem_toList_insert_self, mem_toList_insert, find?_insert, findEntry?_insert_of_eq, findEntry?_insert_of_ne, find?_insert_of_eq, find?_insert_of_ne
instBEq πŸ“–CompOpβ€”
instCoeHeadKeysArray πŸ“–CompOpβ€”
instCoeHeadKeysList πŸ“–CompOpβ€”
instCoeHeadValuesArray πŸ“–CompOpβ€”
instCoeHeadValuesList πŸ“–CompOpβ€”
instForInKeysOfMonad πŸ“–CompOpβ€”
instForInProdOfMonad πŸ“–CompOp
1 mathmath: forIn_eq_forIn_toList
instForInValuesOfMonad πŸ“–CompOpβ€”
instForMKeysOfMonad πŸ“–CompOpβ€”
instForMValuesOfMonad πŸ“–CompOpβ€”
instRepr πŸ“–CompOpβ€”
instStreamStream πŸ“–CompOpβ€”
instStreamStream_1 πŸ“–CompOpβ€”
instToStreamKeysStream πŸ“–CompOpβ€”
instToStreamStreamProd πŸ“–CompOp
2 mathmath: toStream_toList, toStream_eq
instToStreamValuesStream πŸ“–CompOpβ€”
intersectWith πŸ“–CompOpβ€”
isEmpty πŸ“–CompOpβ€”
keys πŸ“–CompOpβ€”
keysArray πŸ“–CompOpβ€”
keysList πŸ“–CompOpβ€”
lowerBound? πŸ“–CompOpβ€”
max! πŸ“–CompOpβ€”
max? πŸ“–CompOpβ€”
mergeWith πŸ“–CompOpβ€”
min! πŸ“–CompOpβ€”
min? πŸ“–CompOpβ€”
ofArray πŸ“–CompOpβ€”
ofList πŸ“–CompOpβ€”
sdiff πŸ“–CompOpβ€”
single πŸ“–CompOp
1 mathmath: single_toList
size πŸ“–CompOp
1 mathmath: size_eq
toList πŸ“–CompOp
18 mathmath: forIn_eq_forIn_toList, toList_sorted, single_toList, toStream_toList, findEntry?_some_mem_toList, findEntry?_some, find?_some, foldr_eq_foldr_toList, find?_some_mem_toList, foldlM_eq_foldlM_toList, mem_toList_insert_self, foldl_eq_foldl_toList, mem_toList_insert, empty_toList, forM_eq_forM_toList, mem_toList, size_eq, val_toList
values πŸ“–CompOpβ€”
valuesArray πŸ“–CompOpβ€”
valuesList πŸ“–CompOpβ€”

Batteries.RBMap.Keys

Definitions

NameCategoryTheorems
toArray πŸ“–CompOpβ€”
toList πŸ“–CompOpβ€”
toStream πŸ“–CompOpβ€”

Batteries.RBMap.Keys.Stream

Definitions

NameCategoryTheorems
next? πŸ“–CompOpβ€”

Batteries.RBMap.Values

Definitions

NameCategoryTheorems
toArray πŸ“–CompOpβ€”
toList πŸ“–CompOpβ€”
toStream πŸ“–CompOpβ€”

Batteries.RBMap.Values.Stream

Definitions

NameCategoryTheorems
next? πŸ“–CompOpβ€”

Batteries.RBNode

Definitions

NameCategoryTheorems
All πŸ“–MathDef
8 math, 2 bridgemath: Path.Ordered.fill, All_and, balance2_All, balance1_All, All.trivial, Ordered.zoom, All.reverse, All_def
bridge: isOrdered_iff', all_iff
Any πŸ“–MathDef
2 math, 1 bridgemath: Any_reverse, Any_def
bridge: any_iff
Balanced πŸ“–CompData
8 mathmath: WF.out, Path.Balanced.ins, RedRed.setBlack, Path.Balanced.del, RedRed.of_false, WF_iff, RedRed.of_red, Path.Balanced.insertNew
EMem πŸ“–MathDefβ€”
Mem πŸ“–MathDef
3 mathmath: mem_def, Mem_reverse, mem_congr
MemP πŸ“–MathDef
6 mathmath: Ordered.memP_iff_lowerBound?, Ordered.memP_iff_find?, memP_def, Ordered.memP_iff_upperBound?, find?_some_memP, memP_reverse
Ordered πŸ“–MathDef
7 math, 2 bridgemath: WF.out, Path.Ordered.fill, ordered_iff, WF_iff, Path.Ordered.insertNew, Ordered.setRed, Ordered.setBlack
bridge: isOrdered_iff', isOrdered_iff
Path πŸ“–CompData
1 mathmath: find?_eq_zoom
all πŸ“–CompOp
1 bridgebridge: all_iff
allβ‚‚ πŸ“–CompOpβ€”
alter πŸ“–CompOp
5 mathmath: WF.alter, Batteries.RBSet.AlterWF.wf, modify_eq_alter, Ordered.alter, Balanced.alter
any πŸ“–CompOp
1 bridgebridge: any_iff
append πŸ“–CompOp
3 mathmath: Ordered.append, Balanced.append, All.append
balLeft πŸ“–CompOp
6 mathmath: Ordered.balLeft, reverse_balLeft, Balanced.balLeft, All.balLeft, reverse_balRight, balLeft_toList
balRight πŸ“–CompOp
6 mathmath: reverse_balLeft, reverse_balRight, balRight_toList, Ordered.balRight, Balanced.balRight, All.balRight
balance1 πŸ“–CompOp
7 mathmath: balance1_eq, reverse_balance1, balance1_All, RedRed.balance1, reverse_balance2, balance1_toList, Ordered.balance1
balance2 πŸ“–CompOp
7 mathmath: balance2_All, Ordered.balance2, reverse_balance1, balance2_eq, balance2_toList, reverse_balance2, RedRed.balance2
cmpEq πŸ“–MathDef
1 mathmath: cmpEq_iff
cmpLT πŸ“–MathDef
12 math, 1 bridgemath: Batteries.RBMap.toList_sorted, cmpEq.lt_congr_right, ordered_iff, cmpEq.lt_congr_left, Batteries.RBSet.toList_sorted, cmpLT.trans, Path.rootOrdered_iff, cmpLT.flip, Path.ordered_iff, IsMonotone.lt_mono, cmpLT_iff, Ordered.toList_sorted
bridge: isOrdered_iff'
del πŸ“–CompOp
4 mathmath: All.del, Balanced.del, Path.zoom_del, Ordered.del
erase πŸ“–CompOp
2 mathmath: Balanced.erase, Ordered.erase
find? πŸ“–CompOp
6 mathmath: exists_find?_insert_self, find?_eq_zoom, Ordered.memP_iff_find?, find?_insert_self, find?_reverse, Ordered.find?_some
fold πŸ“–CompOpβ€”
foldl πŸ“–CompOp
3 mathmath: foldr_reverse, foldl_reverse, foldl_eq_foldl_toList
foldlM πŸ“–CompOp
1 mathmath: foldlM_eq_foldlM_toList
foldr πŸ“–CompOp
4 mathmath: foldr_eq_foldr_toList, foldr_reverse, foldl_reverse, foldr_cons
forIn πŸ“–CompOpβ€”
forM πŸ“–CompOp
1 mathmath: forM_eq_forM_toList
ins πŸ“–CompOp
6 mathmath: Path.zoom_ins, All.ins, Ordered.ins, Balanced.ins, reverse_ins, insert_setBlack
insert πŸ“–CompOp
16 mathmath: mem_insert, exists_find?_insert_self, exists_insert_toList_zoom_node, Ordered.insert, find?_insert_self, insert_toList_zoom, Path.zoom_insert, insert_toList_zoom_nil, Path.insertNew_eq_insert, reverse_insert, Balanced.insert, mem_insert_of_mem, mem_insert_self, insert_toList_zoom_node, exists_insert_toList_zoom_nil, insert_setBlack
instBEq πŸ“–CompOpβ€”
instDecidableAllOfDecidablePred πŸ“–CompOpβ€”
instDecidableAnyOfDecidablePred πŸ“–CompOpβ€”
instDecidableCmpEqOfTransCmp πŸ“–CompOpβ€”
instDecidableCmpLTOfTransCmp πŸ“–CompOpβ€”
instEmptyCollection πŸ“–CompOpβ€”
instForInOfMonad πŸ“–CompOp
2 mathmath: forIn_eq_forIn_toList, Stream.forIn_eq_forIn_toList
instMembership πŸ“–CompOp
21 mathmath: mem_reverse, mem_insert, mem_toList, Ordered.upperBound?_exists, memP_def, max?_mem, mem_def, Any_def, mem_node, Batteries.RBSet.mem_toList, min?_mem, mem_nil, find?_some_mem, lowerBound?_mem_lb, lowerBound?_mem, upperBound?_mem, Ordered.lowerBound?_exists, mem_insert_self, upperBound?_mem_ub, Batteries.RBMap.mem_toList, Ordered.find?_some
instStreamStream πŸ“–CompOpβ€”
instToStreamStream πŸ“–CompOpβ€”
isBlack πŸ“–CompOp
1 mathmath: Balanced.del
isOrdered πŸ“–CompOp
2 bridgebridge: isOrdered_iff', isOrdered_iff
isRed πŸ“–CompOp
2 mathmath: isRed_reverse, Balanced.ins
lowerBound? πŸ“–CompOp
6 mathmath: Ordered.memP_iff_lowerBound?, lowerBound?_of_some, lowerBound?_reverse, lowerBound?_eq_find?, Ordered.lowerBound?_exists, upperBound?_reverse
map πŸ“–CompOp
3 mathmath: Ordered.map, All.map, Balanced.map
max? πŸ“–CompOp
3 mathmath: max?_reverse, max?_eq_toList_getLast?, min?_reverse
min? πŸ“–CompOp
3 mathmath: min?_eq_toList_head?, max?_reverse, min?_reverse
modify πŸ“–CompOp
5 mathmath: modify_eq_alter, WF.modify, Batteries.RBSet.ModifyWF.wf, Balanced.modify, Ordered.modify
reverse πŸ“–CompOp
28 mathmath: mem_reverse, reverse_balLeft, Ordered.reverse, RedRed.reverse, Balanced.reverse, reverse_setRed, reverse_balance1, Any_reverse, lowerBound?_reverse, foldr_reverse, toList_reverse, reverse_eq_iff, reverse_balRight, Mem_reverse, reverse_size, max?_reverse, reverse_setBlack, foldl_reverse, reverse_reverse, memP_reverse, reverse_insert, isRed_reverse, reverse_balance2, All.reverse, find?_reverse, upperBound?_reverse, reverse_ins, min?_reverse
root? πŸ“–CompOp
1 mathmath: find?_eq_zoom
setBlack πŸ“–CompOp
10 mathmath: RedRed.setBlack, Balanced.setBlack, setBlack_idem, Path.zoom_insert, reverse_setBlack, setBlack_toList, Path.insertNew_eq_insert, Path.ins_eq_fill, Ordered.setBlack, insert_setBlack
setRed πŸ“–CompOp
4 mathmath: reverse_setRed, Ordered.setRed, setRed_toList, All.setRed
size πŸ“–CompOp
6 mathmath: WF.depth_bound, size_eq, reverse_size, Balanced.le_size, size_lt_depth, Balanced.depth_bound
toArray πŸ“–CompOpβ€”
toList πŸ“–CompOp
38 mathmath: exists_insert_toList_zoom_node, toStream_toList', mem_toList, ordered_iff, Path.fill_toList, Path.insertNew_toList, zoom_toList, foldr_eq_foldr_toList, forM_eq_forM_toList, size_eq, toList_nil, toList_reverse, toList_node, min?_eq_toList_head?, insert_toList_zoom, forIn_eq_forIn_toList, balance2_toList, setBlack_toList, Batteries.RBSet.val_toList, setRed_toList, toStream_toList, max?_eq_toList_getLast?, foldr_cons, Path.ins_toList, balRight_toList, insert_toList_zoom_nil, forIn_visit_eq_bindList, balLeft_toList, foldl_eq_foldl_toList, Stream.toList_cons, Path.insert_toList, Stream.forIn_eq_forIn_toList, insert_toList_zoom_node, foldlM_eq_foldlM_toList, balance1_toList, exists_insert_toList_zoom_nil, Ordered.toList_sorted, Batteries.RBMap.val_toList
toStream πŸ“–CompOp
4 mathmath: toStream_toList', Batteries.RBSet.toStream_eq, Batteries.RBMap.toStream_eq, toStream_toList
upperBound? πŸ“–CompOp
6 mathmath: upperBound?_eq_find?, Ordered.upperBound?_exists, Ordered.memP_iff_upperBound?, lowerBound?_reverse, upperBound?_of_some, upperBound?_reverse
zoom πŸ“–CompOp
2 mathmath: find?_eq_zoom, Path.zoom_fill'

Theorems

NameKindAssumesProvesValidatesDepends On
all_iff πŸ“–bridging (iff)β€”all
All
allβ€”
any_iff πŸ“–bridging (iff)β€”any
Any
anyβ€”
cmpEq_iff πŸ“–mathematicalβ€”cmpEqβ€”β€”
cmpLT_iff πŸ“–mathematicalβ€”cmpLTβ€”β€”

Batteries.RBNode.All

Theorems

NameKindAssumesProvesValidatesDepends On
imp πŸ“–β€”Batteries.RBNode.Allβ€”β€”β€”

Batteries.RBNode.Path

Definitions

NameCategoryTheorems
del πŸ“–CompOp
3 mathmath: Balanced.del, Ordered.del, zoom_del
erase πŸ“–CompOp
1 mathmath: Ordered.erase
fill πŸ“–CompOp
6 mathmath: Ordered.fill, zoom_fill', fill_toList, Balanced.fill, ins_eq_fill, zoom_fill
ins πŸ“–CompOp
5 mathmath: Balanced.ins, zoom_ins, Ordered.ins, ins_toList, ins_eq_fill
insert πŸ“–CompOp
4 mathmath: zoom_insert, Ordered.insert, insert_toList, Balanced.insert
insertNew πŸ“–CompOp
4 mathmath: insertNew_toList, Ordered.insertNew, insertNew_eq_insert, Balanced.insertNew

Batteries.RBNode.Slow

Definitions

NameCategoryTheorems
instDecidableEMem πŸ“–CompOpβ€”
instDecidableMem πŸ“–CompOpβ€”
instDecidableMemP πŸ“–CompOpβ€”
instDecidableOrdered πŸ“–CompOpβ€”

Batteries.RBNode.Stream

Definitions

NameCategoryTheorems
foldl πŸ“–CompOp
1 mathmath: foldl_eq_foldl_toList
foldr πŸ“–CompOp
2 mathmath: foldr_cons, foldr_eq_foldr_toList
next? πŸ“–CompOp
1 mathmath: next?_toList
toList πŸ“–CompOp
10 mathmath: foldr_cons, Batteries.RBNode.toStream_toList', next?_toList, Batteries.RBMap.toStream_toList, foldr_eq_foldr_toList, toList_nil, Batteries.RBSet.toStream_toList, Batteries.RBNode.toStream_toList, foldl_eq_foldl_toList, toList_cons

Batteries.RBNode.forIn

Definitions

NameCategoryTheorems
visit πŸ“–CompOp
1 mathmath: Batteries.RBNode.forIn_visit_eq_bindList

Batteries.RBSet

Definitions

NameCategoryTheorems
AlterWF πŸ“–CompDataβ€”
EMem πŸ“–MathDefβ€”
Mem πŸ“–MathDefβ€”
MemP πŸ“–MathDef
4 mathmath: findP?_some_memP, memP_iff_upperBoundP?, memP_iff_findP?, memP_iff_lowerBoundP?
ModifyWF πŸ“–CompData
1 mathmath: ModifyWF.of_eq
all πŸ“–CompOpβ€”
allβ‚‚ πŸ“–CompOpβ€”
alterP πŸ“–CompOpβ€”
any πŸ“–CompOpβ€”
contains πŸ“–CompOp
1 bridgebridge: contains_iff
containsP πŸ“–CompOpβ€”
empty πŸ“–CompOp
1 mathmath: empty_eq
erase πŸ“–CompOpβ€”
filter πŸ“–CompOpβ€”
find! πŸ“–CompOpβ€”
find? πŸ“–CompOp
6 mathmath: find?_insert, find?_congr, find?_some, mem_iff_find?, find?_insert_of_ne, find?_insert_of_eq
findP! πŸ“–CompOpβ€”
findP? πŸ“–CompOp
5 mathmath: findP?_some, findP?_insert_of_ne, findP?_insert, memP_iff_findP?, findP?_insert_of_eq
findPD πŸ“–CompOpβ€”
foldl πŸ“–CompOp
1 mathmath: foldl_eq_foldl_toList
foldlM πŸ“–CompOp
1 mathmath: foldlM_eq_foldlM_toList
foldr πŸ“–CompOp
1 mathmath: foldr_eq_foldr_toList
forM πŸ“–CompOp
1 mathmath: forM_eq_forM_toList
insert πŸ“–CompOp
14 mathmath: find?_insert, find?_insert_of_ne, mem_insert_of_mem_toList, mem_insert_of_eq, find?_insert_of_eq, mem_toList_insert_of_mem, findP?_insert_of_ne, mem_toList_insert, findP?_insert, mem_insert_of_mem, mem_toList_insert_self, findP?_insert_of_eq, mem_insert_self, mem_insert
insertMany πŸ“–CompOpβ€”
instBEq πŸ“–CompOpβ€”
instEmptyCollection πŸ“–CompOp
4 mathmath: empty_toList, default_eq, mkRBSet_eq, empty_eq
instForInOfMonad πŸ“–CompOp
1 mathmath: forIn_eq_forIn_toList
instInhabited πŸ“–CompOp
1 mathmath: default_eq
instMembership πŸ“–CompOp
19 math, 1 bridgemath: mem_congr, lowerBoundP?_exists, lowerBound?_mem, mem_iff_find?, lowerBound?_exists, mem_insert_of_mem_toList, mem_insert_of_eq, mem_iff_upperBound?, mem_iff_lowerBound?, mem_of_mem_toList, find?_some_mem, lowerBoundP?_mem, upperBoundP?_exists, upperBound?_exists, upperBoundP?_mem, mem_insert_self, mem_insert, upperBound?_mem, mem_iff_mem_toList
bridge: contains_iff
instRepr πŸ“–CompOpβ€”
instSDiff πŸ“–CompOpβ€”
instToStreamStream πŸ“–CompOp
2 mathmath: toStream_eq, toStream_toList
instUnion πŸ“–CompOpβ€”
intersectWith πŸ“–CompOpβ€”
isEmpty πŸ“–CompOp
1 bridgebridge: isEmpty_iff_toList_eq_nil
lowerBound? πŸ“–CompOp
3 mathmath: lowerBound?_exists, mem_iff_lowerBound?, lowerBound?_eq_find?
lowerBoundP? πŸ“–CompOp
3 mathmath: lowerBoundP?_exists, lowerBoundP?_eq_findP?, memP_iff_lowerBoundP?
map πŸ“–CompOpβ€”
max! πŸ“–CompOpβ€”
max? πŸ“–CompOpβ€”
mergeWith πŸ“–CompOpβ€”
min! πŸ“–CompOpβ€”
min? πŸ“–CompOpβ€”
modifyP πŸ“–CompOpβ€”
ofArray πŸ“–CompOpβ€”
ofList πŸ“–CompOpβ€”
sdiff πŸ“–CompOpβ€”
single πŸ“–CompOp
1 mathmath: single_toList
size πŸ“–CompOp
1 mathmath: size_eq
toList πŸ“–CompOp
23 math, 1 bridgemath: findP?_some_mem_toList, empty_toList, single_toList, find?_some, size_eq, find?_some_mem_toList, upperBound?_mem_toList, toList_sorted, lowerBound?_mem_toList, toStream_toList, mem_toList, val_toList, findP?_some, foldl_eq_foldl_toList, forM_eq_forM_toList, lowerBoundP?_mem_toList, mem_toList_insert, foldr_eq_foldr_toList, mem_toList_insert_self, foldlM_eq_foldlM_toList, forIn_eq_forIn_toList, upperBoundP?_mem_toList, mem_iff_mem_toList
bridge: isEmpty_iff_toList_eq_nil
union πŸ“–CompOpβ€”
upperBound? πŸ“–CompOp
3 mathmath: upperBound?_eq_find?, mem_iff_upperBound?, upperBound?_exists
upperBoundP? πŸ“–CompOp
3 mathmath: upperBoundP?_eq_findP?, memP_iff_upperBoundP?, upperBoundP?_exists

Batteries.RBSet.AlterWF

Theorems

NameKindAssumesProvesValidatesDepends On
wf πŸ“–mathematicalβ€”Batteries.RBNode.WF
Batteries.RBNode.alter
Batteries.RBNode
β€”β€”

Batteries.RBSet.ModifyWF

Theorems

NameKindAssumesProvesValidatesDepends On
wf πŸ“–mathematicalβ€”Batteries.RBNode.WF
Batteries.RBNode.modify
Batteries.RBNode
β€”β€”

Batteries.RBSet.Slow

Definitions

NameCategoryTheorems
instDecidableEMem πŸ“–CompOpβ€”
instDecidableMem πŸ“–CompOpβ€”
instDecidableMemP πŸ“–CompOpβ€”

Batteries.instReprRBColor

Definitions

NameCategoryTheorems
repr πŸ“–CompOpβ€”

Batteries.instReprRBNode

Definitions

NameCategoryTheorems
repr πŸ“–CompOpβ€”

List

Definitions

NameCategoryTheorems
toRBMap πŸ“–CompOpβ€”

---

← Back to Index