Documentation Verification Report

Lemmas

πŸ“ Source: Batteries/Data/RBMap/Lemmas.lean

Statistics

MetricCount
DefinitionsIsCut, IsStrictCut, AllL, AllR, listL, listR, withList, delRoot, instDecidableOrderedOfTransCmp, setRoot, instDecidableMemOfTransCmp
11
Theoremscontains_iff_find?, contains_iff_findEntry?, default_eq, empty_eq, empty_toList, find?_congr, find?_insert, find?_insert_of_eq, find?_insert_of_ne, find?_some, find?_some_mem_toList, findEntry?_congr, findEntry?_insert, findEntry?_insert_of_eq, findEntry?_insert_of_ne, findEntry?_some, findEntry?_some_eq_eq, findEntry?_some_mem_toList, foldlM_eq_foldlM_toList, foldl_eq_foldl_toList, foldr_eq_foldr_toList, forIn_eq_forIn_toList, forM_eq_forM_toList, instIsStrictCut, instIsStrictCutByKeyOfTransCmp, mem_toList, mem_toList_insert, mem_toList_insert_of_mem, mem_toList_insert_self, mem_toList_unique, mkRBSet_eq, single_toList, size_eq, toList_sorted, toStream_eq, toStream_toList, val_toList, lowerBound?, lowerBound?_lb, upperBound?, upperBound?_ub, All_def, Any_def, Any_reverse, gt_trans, le_gt_trans, le_lt_trans, lt_trans, exact, toIsCut, Mem_reverse, find?_some, le_max?, lowerBound?_exists, lowerBound?_greatest, lowerBound?_greatest_lb, lowerBound?_lt, lt_upperBound?, memP_iff_find?, memP_iff_lowerBound?, memP_iff_upperBound?, min?_le, toList_sorted, unique, upperBound?_exists, upperBound?_least, upperBound?_least_ub, insert, erase, insert, fill_toList, ins_eq_fill, ins_toList, insertNew_eq_insert, insertNew_toList, insert_toList, ordered_iff, rootOrdered_iff, zoom_del, zoom_ins, zoom_insert, zoom_zoomed₁, foldl_eq_foldl_toList, foldr_cons, foldr_eq_foldr_toList, forIn_eq_forIn_toList, next?_toList, toList_cons, toList_nil, balLeft_toList, balRight_toList, balance1_toList, balance2_toList, exists_find?_insert_self, exists_insert_toList_zoom_nil, exists_insert_toList_zoom_node, find?_insert_self, find?_reverse, find?_some_eq_eq, find?_some_mem, find?_some_memP, foldlM_eq_foldlM_toList, foldl_eq_foldl_toList, foldl_reverse, foldr_cons, foldr_eq_foldr_toList, foldr_reverse, forIn_eq_forIn_toList, forIn_visit_eq_bindList, forM_eq_forM_toList, insert_toList_zoom, insert_toList_zoom_nil, insert_toList_zoom_node, instIsCutFlipOrderingSwap, instIsStrictCut, instIsStrictCutFlipOrderingSwap, isOrdered_iff, isOrdered_iff', lowerBound?_eq_find?, lowerBound?_le, lowerBound?_le', lowerBound?_mem, lowerBound?_mem_lb, lowerBound?_of_some, lowerBound?_reverse, max?_eq_toList_getLast?, max?_mem, max?_reverse, memP_def, memP_reverse, mem_congr, mem_def, mem_insert, mem_insert_of_mem, mem_insert_self, mem_nil, mem_node, mem_reverse, mem_toList, min?_eq_toList_head?, min?_mem, min?_reverse, ordered_iff, reverse_size, setBlack_toList, setRed_toList, size_eq, toList_nil, toList_node, toList_reverse, toStream_toList, toStream_toList', upperBound?_eq_find?, upperBound?_ge, upperBound?_ge', upperBound?_mem, upperBound?_mem_ub, upperBound?_of_some, upperBound?_reverse, zoom_toList, contains_iff, default_eq, empty_eq, empty_toList, find?_congr, find?_insert, find?_insert_of_eq, find?_insert_of_ne, find?_some, find?_some_eq_eq, find?_some_mem, find?_some_mem_toList, findP?_insert, findP?_insert_of_eq, findP?_insert_of_ne, findP?_some, findP?_some_eq_eq, findP?_some_memP, findP?_some_mem_toList, foldlM_eq_foldlM_toList, foldl_eq_foldl_toList, foldr_eq_foldr_toList, forIn_eq_forIn_toList, forM_eq_forM_toList, isEmpty_iff_toList_eq_nil, lowerBound?_eq_find?, lowerBound?_exists, lowerBound?_le, lowerBound?_lt, lowerBound?_mem, lowerBound?_mem_toList, lowerBoundP?_eq_findP?, lowerBoundP?_exists, lowerBoundP?_greatest, lowerBoundP?_le, lowerBoundP?_lt, lowerBoundP?_mem, lowerBoundP?_mem_toList, lt_upperBound?, lt_upperBoundP?, memP_iff_findP?, memP_iff_lowerBoundP?, memP_iff_upperBoundP?, mem_congr, mem_iff_find?, mem_iff_lowerBound?, mem_iff_mem_toList, mem_iff_upperBound?, mem_insert, mem_insert_of_eq, mem_insert_of_mem, mem_insert_of_mem_toList, mem_insert_self, mem_of_mem_toList, mem_toList, mem_toList_insert, mem_toList_insert_of_mem, mem_toList_insert_self, mem_toList_unique, mkRBSet_eq, single_toList, size_eq, toList_sorted, toStream_eq, toStream_toList, upperBound?_eq_find?, upperBound?_exists, upperBound?_ge, upperBound?_mem, upperBound?_mem_toList, upperBoundP?_eq_findP?, upperBoundP?_exists, upperBoundP?_ge, upperBoundP?_least, upperBoundP?_mem, upperBoundP?_mem_toList, val_toList
237
Total248

Batteries.RBMap

Theorems

NameKindAssumesProvesValidatesDepends On
contains_iff_find? πŸ“–bridging (iff)β€”contains
find?
containsβ€”
contains_iff_findEntry? πŸ“–bridging (iff)β€”contains
findEntry?
containsβ€”
default_eq πŸ“–mathematicalβ€”Batteries.RBMap
Batteries.instInhabitedRBMap
Batteries.instEmptyCollectionRBMap
β€”β€”
empty_eq πŸ“–mathematicalβ€”empty
Batteries.RBMap
Batteries.instEmptyCollectionRBMap
β€”β€”
empty_toList πŸ“–mathematicalβ€”toList
Batteries.RBMap
Batteries.instEmptyCollectionRBMap
β€”β€”
find?_congr πŸ“–mathematicalβ€”find?β€”findEntry?_congr
find?_insert πŸ“–mathematicalβ€”find?
insert
β€”find?_insert_of_ne
find?_insert_of_eq
find?_insert_of_eq πŸ“–mathematicalβ€”find?
insert
β€”find?.eq_1
findEntry?_insert_of_eq
find?_insert_of_ne πŸ“–mathematicalβ€”find?
insert
β€”findEntry?_insert_of_ne
find?_some πŸ“–mathematicalβ€”find?
toList
β€”β€”
find?_some_mem_toList πŸ“–mathematicalfind?toListβ€”findEntry?_some_mem_toList
findEntry?_some_eq_eq
findEntry?_congr πŸ“–mathematicalβ€”findEntry?β€”β€”
findEntry?_insert πŸ“–mathematicalβ€”findEntry?
insert
β€”Batteries.RBSet.findP?_insert
Std.instTransCmpByKey
instIsStrictCutByKeyOfTransCmp
findEntry?_insert_of_eq πŸ“–mathematicalβ€”findEntry?
insert
β€”Batteries.RBSet.findP?_insert_of_eq
Std.instTransCmpByKey
instIsStrictCutByKeyOfTransCmp
findEntry?_insert_of_ne πŸ“–mathematicalβ€”findEntry?
insert
β€”Batteries.RBSet.findP?_insert_of_ne
Std.instTransCmpByKey
instIsStrictCutByKeyOfTransCmp
findEntry?_some πŸ“–mathematicalβ€”findEntry?
toList
β€”Batteries.RBSet.findP?_some
Std.instTransCmpByKey
instIsStrictCutByKeyOfTransCmp
findEntry?_some_eq_eq πŸ“–β€”findEntry?β€”β€”Batteries.RBSet.findP?_some_eq_eq
findEntry?_some_mem_toList πŸ“–mathematicalfindEntry?toListβ€”Batteries.RBSet.findP?_some_mem_toList
foldlM_eq_foldlM_toList πŸ“–mathematicalβ€”foldlM
toList
β€”Batteries.RBNode.foldlM_eq_foldlM_toList
foldl_eq_foldl_toList πŸ“–mathematicalβ€”foldl
toList
β€”Batteries.RBNode.foldl_eq_foldl_toList
foldr_eq_foldr_toList πŸ“–mathematicalβ€”foldr
toList
β€”Batteries.RBNode.foldr_eq_foldr_toList
forIn_eq_forIn_toList πŸ“–mathematicalβ€”Batteries.RBMap
instForInProdOfMonad
toList
β€”Batteries.RBNode.forIn_eq_forIn_toList
forM_eq_forM_toList πŸ“–mathematicalβ€”forM
toList
β€”Batteries.RBNode.forM_eq_forM_toList
instIsStrictCut πŸ“–mathematicalβ€”Batteries.RBNode.IsStrictCutβ€”Std.TransCmp.lt_of_lt_of_le
Std.TransCmp.le_trans
instIsStrictCutByKeyOfTransCmp πŸ“–mathematicalβ€”Batteries.RBNode.IsStrictCut
Ordering.byKey
β€”Std.TransCmp.lt_of_lt_of_le
Std.TransCmp.le_trans
mem_toList πŸ“–mathematicalβ€”toList
Batteries.RBNode
Batteries.RBNode.instMembership
Batteries.RBNode.WF
Ordering.byKey
β€”Batteries.RBNode.mem_toList
mem_toList_insert πŸ“–mathematicalβ€”toList
insert
β€”Batteries.RBSet.mem_toList_insert
Std.instTransCmpByKey
mem_toList_insert_of_mem πŸ“–mathematicaltoListinsertβ€”Batteries.RBSet.mem_toList_insert_of_mem
mem_toList_insert_self πŸ“–mathematicalβ€”toList
insert
β€”Batteries.RBSet.mem_toList_insert_self
mem_toList_unique πŸ“–β€”toListβ€”β€”Batteries.RBSet.mem_toList_unique
Std.instTransCmpByKey
mkRBSet_eq πŸ“–mathematicalβ€”Batteries.mkRBMap
Batteries.RBMap
Batteries.instEmptyCollectionRBMap
β€”β€”
single_toList πŸ“–mathematicalβ€”toList
single
β€”β€”
size_eq πŸ“–mathematicalβ€”size
toList
β€”Batteries.RBNode.size_eq
toList_sorted πŸ“–mathematicalβ€”Batteries.RBNode.cmpLT
toList
β€”Batteries.RBSet.toList_sorted
toStream_eq πŸ“–mathematicalβ€”Batteries.RBMap
Batteries.RBNode.Stream
instToStreamStreamProd
Batteries.RBNode.toStream
Batteries.RBNode
Batteries.RBNode.WF
Ordering.byKey
Batteries.RBNode.Stream.nil
β€”β€”
toStream_toList πŸ“–mathematicalβ€”Batteries.RBNode.Stream.toList
Batteries.RBMap
Batteries.RBNode.Stream
instToStreamStreamProd
toList
β€”Batteries.RBSet.toStream_toList
val_toList πŸ“–mathematicalβ€”Batteries.RBNode.toList
Batteries.RBNode
Batteries.RBNode.WF
Ordering.byKey
toList
β€”β€”

Batteries.RBNode

Definitions

NameCategoryTheorems
IsCut πŸ“–CompData
2 mathmath: IsStrictCut.toIsCut, instIsCutFlipOrderingSwap
IsStrictCut πŸ“–CompData
4 mathmath: instIsStrictCut, Batteries.RBMap.instIsStrictCutByKeyOfTransCmp, instIsStrictCutFlipOrderingSwap, Batteries.RBMap.instIsStrictCut
delRoot πŸ“–CompOp
1 mathmath: Path.zoom_del
instDecidableOrderedOfTransCmp πŸ“–CompOpβ€”
setRoot πŸ“–CompOp
3 mathmath: insert_toList_zoom, Path.zoom_ins, Path.insert_toList

Theorems

NameKindAssumesProvesValidatesDepends On
All_def πŸ“–mathematicalβ€”Allβ€”β€”
Any_def πŸ“–mathematicalβ€”Any
Batteries.RBNode
instMembership
β€”β€”
Any_reverse πŸ“–mathematicalβ€”Any
reverse
β€”β€”
Mem_reverse πŸ“–mathematicalβ€”Mem
reverse
β€”β€”
balLeft_toList πŸ“–mathematicalβ€”toList
balLeft
β€”toList_node
balance2_toList
setRed_toList
balRight_toList πŸ“–mathematicalβ€”toList
balRight
β€”toList_node
balance1_toList
setRed_toList
balance1_toList πŸ“–mathematicalβ€”toList
balance1
β€”toList_node
balance2_toList πŸ“–mathematicalβ€”toList
balance2
β€”toList_node
exists_find?_insert_self πŸ“–mathematicalBalanced
Ordered
find?
insert
β€”Ordered.memP_iff_find?
Ordered.insert
memP_def
mem_insert_self
exists_insert_toList_zoom_nil πŸ“–mathematicalBalanced
zoom
Path.root
Batteries.RBNode
Path
nil
toList
insert
β€”zoom_toList
insert_toList_zoom_nil
exists_insert_toList_zoom_node πŸ“–mathematicalBalanced
zoom
Path.root
Batteries.RBNode
Path
node
toList
insert
β€”zoom_toList
toList_node
insert_toList_zoom_node
find?_insert_self πŸ“–mathematicalBalanced
Ordered
find?
insert
β€”Ordered.find?_some
Ordered.insert
mem_insert_self
find?_reverse πŸ“–mathematicalβ€”find?
reverse
β€”β€”
find?_some_eq_eq πŸ“–β€”find?β€”β€”β€”
find?_some_mem πŸ“–mathematicalfind?Batteries.RBNode
instMembership
β€”β€”
find?_some_memP πŸ“–mathematicalfind?MemPβ€”memP_def
find?_some_mem
find?_some_eq_eq
foldlM_eq_foldlM_toList πŸ“–mathematicalβ€”foldlM
toList
β€”toList_node
foldl_eq_foldl_toList πŸ“–mathematicalβ€”foldl
toList
β€”toList_node
foldl_reverse πŸ“–mathematicalβ€”foldl
reverse
foldr
β€”foldl_eq_foldl_toList
toList_reverse
foldr_eq_foldr_toList
foldr_cons πŸ“–mathematicalβ€”foldr
toList
β€”foldr.eq_2
foldr_eq_foldr_toList πŸ“–mathematicalβ€”foldr
toList
β€”toList_node
foldr_reverse πŸ“–mathematicalβ€”foldr
reverse
foldl
β€”foldl_reverse
reverse_reverse
forIn_eq_forIn_toList πŸ“–mathematicalβ€”Batteries.RBNode
instForInOfMonad
toList
β€”List.forIn_eq_bindList
forIn_visit_eq_bindList
forIn_visit_eq_bindList πŸ“–mathematicalβ€”forIn.visit
ForInStep.bindList
toList
β€”ForInStep.bind_yield_bindList
toList_node
ForInStep.bindList_append
forM_eq_forM_toList πŸ“–mathematicalβ€”forM
toList
β€”toList_node
insert_toList_zoom πŸ“–mathematicalBalanced
zoom
Path.root
Batteries.RBNode
Path
toList
insert
Path.withList
setRoot
β€”setBlack_toList
Path.zoom_insert
Path.insert_toList
insert_toList_zoom_nil πŸ“–mathematicalBalanced
zoom
Path.root
Batteries.RBNode
Path
nil
toList
insert
Path.withList
β€”insert_toList_zoom
insert_toList_zoom_node πŸ“–mathematicalBalanced
zoom
Path.root
Batteries.RBNode
Path
node
toList
insert
Path.withList
β€”insert_toList_zoom
instIsCutFlipOrderingSwap πŸ“–mathematicalβ€”IsCutβ€”Std.instTransCmpFlipOrdering_batteries
IsCut.le_gt_trans
IsCut.le_lt_trans
instIsStrictCut πŸ“–mathematicalβ€”IsStrictCutβ€”Std.TransCmp.lt_of_lt_of_le
Std.TransCmp.le_trans
instIsStrictCutFlipOrderingSwap πŸ“–mathematicalβ€”IsStrictCutβ€”instIsCutFlipOrderingSwap
IsStrictCut.toIsCut
Std.instTransCmpFlipOrdering_batteries
IsStrictCut.exact
isOrdered_iff πŸ“–bridging (iff)β€”isOrdered
Ordered
isOrderedβ€”
isOrdered_iff' πŸ“–bridging (iff)β€”isOrdered
All
cmpLT
Ordered
isOrderedcmpLT.trans_l
cmpLT.trans_r
cmpLT.trans
lowerBound?_eq_find? πŸ“–mathematicalfind?lowerBound?β€”reverse_reverse
lowerBound?_reverse
upperBound?_eq_find?
find?_reverse
lowerBound?_le πŸ“–β€”lowerBound?β€”β€”lowerBound?_le'
lowerBound?_le' πŸ“–β€”lowerBound?β€”β€”reverse_reverse
lowerBound?_reverse
upperBound?_ge'
lowerBound?_mem πŸ“–mathematicallowerBound?Batteries.RBNode
instMembership
β€”lowerBound?_mem_lb
lowerBound?_mem_lb πŸ“–mathematicallowerBound?Batteries.RBNode
instMembership
β€”All.lowerBound?_lb
All_def
lowerBound?_of_some πŸ“–mathematicalβ€”lowerBound?β€”reverse_reverse
lowerBound?_reverse
upperBound?_of_some
lowerBound?_reverse πŸ“–mathematicalβ€”lowerBound?
reverse
upperBound?
β€”reverse_reverse
upperBound?_reverse
max?_eq_toList_getLast? πŸ“–mathematicalβ€”max?
toList
β€”min?_reverse
min?_eq_toList_head?
toList_reverse
max?_mem πŸ“–mathematicalmax?Batteries.RBNode
instMembership
β€”min?_mem
min?_reverse
max?_reverse πŸ“–mathematicalβ€”max?
reverse
min?
β€”min?_reverse
reverse_reverse
memP_def πŸ“–mathematicalβ€”MemP
Batteries.RBNode
instMembership
β€”Any_def
memP_reverse πŸ“–mathematicalβ€”MemP
reverse
β€”β€”
mem_congr πŸ“–mathematicalβ€”Memβ€”Mem.eq_1
mem_def πŸ“–mathematicalβ€”Mem
Batteries.RBNode
instMembership
β€”Any_def
mem_insert πŸ“–mathematicalBalanced
Ordered
Batteries.RBNode
instMembership
insert
β€”exists_insert_toList_zoom_nil
find?_eq_zoom
exists_insert_toList_zoom_node
Ordered.toList_sorted
mem_insert_of_mem
Ordered.find?_some
instIsStrictCut
mem_insert_self
mem_insert_of_mem πŸ“–mathematicalBalanced
Batteries.RBNode
instMembership
insertβ€”exists_insert_toList_zoom_nil
exists_insert_toList_zoom_node
Path.zoom_zoomed₁
mem_insert_self πŸ“–mathematicalBalancedBatteries.RBNode
instMembership
insert
β€”mem_toList
exists_insert_toList_zoom_nil
exists_insert_toList_zoom_node
mem_nil πŸ“–mathematicalβ€”Batteries.RBNode
instMembership
nil
β€”β€”
mem_node πŸ“–mathematicalβ€”Batteries.RBNode
instMembership
node
β€”β€”
mem_reverse πŸ“–mathematicalβ€”Batteries.RBNode
instMembership
reverse
β€”mem_toList
toList_reverse
mem_toList πŸ“–mathematicalβ€”toList
Batteries.RBNode
instMembership
β€”toList_node
min?_eq_toList_head? πŸ“–mathematicalβ€”min?
toList
β€”toList_node
min?_mem πŸ“–mathematicalmin?Batteries.RBNode
instMembership
β€”mem_toList
min?_eq_toList_head?
min?_reverse πŸ“–mathematicalβ€”min?
reverse
max?
β€”max?.eq_def
min?.eq_def
ordered_iff πŸ“–mathematicalβ€”Ordered
cmpLT
toList
β€”toList_node
cmpLT.trans
reverse_size πŸ“–mathematicalβ€”size
reverse
β€”size_eq
toList_reverse
setBlack_toList πŸ“–mathematicalβ€”toList
setBlack
β€”toList_node
setRed_toList πŸ“–mathematicalβ€”toList
setRed
β€”toList_node
size_eq πŸ“–mathematicalβ€”size
toList
β€”toList_node
toList_nil πŸ“–mathematicalβ€”toList
nil
β€”β€”
toList_node πŸ“–mathematicalβ€”toList
node
β€”toList.eq_1
foldr.eq_2
foldr_cons
toList_reverse πŸ“–mathematicalβ€”toList
reverse
β€”toList_node
toStream_toList πŸ“–mathematicalβ€”Stream.toList
toStream
Stream.nil
toList
β€”toStream_toList'
toStream_toList' πŸ“–mathematicalβ€”Stream.toList
toStream
toList
β€”Stream.toList_cons
toList_node
upperBound?_eq_find? πŸ“–mathematicalfind?upperBound?β€”β€”
upperBound?_ge πŸ“–β€”upperBound?β€”β€”upperBound?_ge'
upperBound?_ge' πŸ“–β€”upperBound?β€”β€”β€”
upperBound?_mem πŸ“–mathematicalupperBound?Batteries.RBNode
instMembership
β€”upperBound?_mem_ub
upperBound?_mem_ub πŸ“–mathematicalupperBound?Batteries.RBNode
instMembership
β€”All.upperBound?_ub
All_def
upperBound?_of_some πŸ“–mathematicalβ€”upperBound?β€”β€”
upperBound?_reverse πŸ“–mathematicalβ€”upperBound?
reverse
lowerBound?
β€”β€”
zoom_toList πŸ“–mathematicalzoom
Path.root
Batteries.RBNode
Path
Path.withList
toList
β€”Path.fill_toList
Path.zoom_fill

Batteries.RBNode.All

Theorems

NameKindAssumesProvesValidatesDepends On
lowerBound? πŸ“–β€”Batteries.RBNode.All
Batteries.RBNode.lowerBound?
β€”β€”lowerBound?_lb
lowerBound?_lb πŸ“–β€”Batteries.RBNode.All
Batteries.RBNode.lowerBound?
β€”β€”Batteries.RBNode.reverse_reverse
Batteries.RBNode.lowerBound?_reverse
upperBound?_ub
reverse
upperBound? πŸ“–β€”Batteries.RBNode.All
Batteries.RBNode.upperBound?
β€”β€”upperBound?_ub
upperBound?_ub πŸ“–β€”Batteries.RBNode.All
Batteries.RBNode.upperBound?
β€”β€”β€”

Batteries.RBNode.IsCut

Theorems

NameKindAssumesProvesValidatesDepends On
gt_trans πŸ“–β€”β€”β€”β€”le_gt_trans
le_gt_trans πŸ“–β€”β€”β€”β€”β€”
le_lt_trans πŸ“–β€”β€”β€”β€”β€”
lt_trans πŸ“–β€”β€”β€”β€”le_lt_trans

Batteries.RBNode.IsStrictCut

Theorems

NameKindAssumesProvesValidatesDepends On
exact πŸ“–β€”β€”β€”β€”β€”
toIsCut πŸ“–mathematicalβ€”Batteries.RBNode.IsCutβ€”β€”

Batteries.RBNode.Ordered

Theorems

NameKindAssumesProvesValidatesDepends On
find?_some πŸ“–mathematicalBatteries.RBNode.OrderedBatteries.RBNode.find?
Batteries.RBNode
Batteries.RBNode.instMembership
β€”Batteries.RBNode.find?_some_mem
Batteries.RBNode.find?_some_eq_eq
memP_iff_find?
Batteries.RBNode.IsStrictCut.toIsCut
Batteries.RBNode.memP_def
unique
Batteries.RBNode.IsStrictCut.exact
le_max? πŸ“–β€”Batteries.RBNode.Ordered
Batteries.RBNode.max?
Batteries.RBNode
Batteries.RBNode.instMembership
β€”β€”min?_le
Std.instTransCmpFlipOrdering_batteries
reverse
Batteries.RBNode.min?_reverse
lowerBound?_exists πŸ“–mathematicalBatteries.RBNode.OrderedBatteries.RBNode.lowerBound?
Batteries.RBNode
Batteries.RBNode.instMembership
β€”Batteries.RBNode.reverse_reverse
Batteries.RBNode.lowerBound?_reverse
Batteries.RBNode.upperBound?_reverse
upperBound?_exists
Std.instTransCmpFlipOrdering_batteries
Batteries.RBNode.instIsCutFlipOrderingSwap
reverse
lowerBound?_greatest πŸ“–β€”Batteries.RBNode.Ordered
Batteries.RBNode.lowerBound?
Batteries.RBNode
Batteries.RBNode.instMembership
β€”β€”lowerBound?_greatest_lb
lowerBound?_greatest_lb πŸ“–β€”Batteries.RBNode.Ordered
Batteries.RBNode.All
Batteries.RBNode.cmpLT
Batteries.RBNode.lowerBound?
Batteries.RBNode
Batteries.RBNode.instMembership
β€”β€”upperBound?_least_ub
Std.instTransCmpFlipOrdering_batteries
Batteries.RBNode.instIsCutFlipOrderingSwap
reverse
Batteries.RBNode.All.reverse
Batteries.RBNode.All.imp
Batteries.RBNode.cmpLT.flip
Batteries.RBNode.lowerBound?_reverse
Batteries.RBNode.reverse_reverse
lowerBound?_lt πŸ“–β€”Batteries.RBNode.Ordered
Batteries.RBNode.lowerBound?
Batteries.RBNode
Batteries.RBNode.instMembership
β€”β€”Batteries.RBNode.lowerBound?_le
Batteries.RBNode.IsStrictCut.exact
lowerBound?_greatest
Batteries.RBNode.IsStrictCut.toIsCut
Batteries.RBNode.IsCut.le_lt_trans
lt_upperBound? πŸ“–β€”Batteries.RBNode.Ordered
Batteries.RBNode.upperBound?
Batteries.RBNode
Batteries.RBNode.instMembership
β€”β€”lowerBound?_lt
Std.instTransCmpFlipOrdering_batteries
Batteries.RBNode.instIsStrictCutFlipOrderingSwap
reverse
Batteries.RBNode.upperBound?_reverse
Batteries.RBNode.reverse_reverse
memP_iff_find? πŸ“–mathematicalBatteries.RBNode.OrderedBatteries.RBNode.MemP
Batteries.RBNode.find?
β€”Batteries.RBNode.Any_def
Batteries.RBNode.IsCut.lt_trans
Batteries.RBNode.All_def
Batteries.RBNode.IsCut.gt_trans
Batteries.RBNode.find?_some_memP
memP_iff_lowerBound? πŸ“–mathematicalBatteries.RBNode.OrderedBatteries.RBNode.MemP
Batteries.RBNode.lowerBound?
β€”Batteries.RBNode.memP_def
lowerBound?_exists
Batteries.RBNode.lowerBound?_le
lowerBound?_greatest
Batteries.RBNode.IsCut.congr
Batteries.RBNode.IsCut.gt_trans
Batteries.RBNode.lowerBound?_mem
memP_iff_upperBound? πŸ“–mathematicalBatteries.RBNode.OrderedBatteries.RBNode.MemP
Batteries.RBNode.upperBound?
β€”Batteries.RBNode.memP_def
upperBound?_exists
Batteries.RBNode.IsCut.lt_trans
Batteries.RBNode.IsCut.congr
upperBound?_least
Batteries.RBNode.upperBound?_ge
Batteries.RBNode.upperBound?_mem
min?_le πŸ“–β€”Batteries.RBNode.Ordered
Batteries.RBNode.min?
Batteries.RBNode
Batteries.RBNode.instMembership
β€”β€”toList_sorted
Batteries.RBNode.min?_eq_toList_head?
Batteries.RBNode.mem_toList
toList_sorted πŸ“–mathematicalBatteries.RBNode.OrderedBatteries.RBNode.cmpLT
Batteries.RBNode.toList
β€”Batteries.RBNode.ordered_iff
unique πŸ“–β€”Batteries.RBNode.Ordered
Batteries.RBNode
Batteries.RBNode.instMembership
β€”β€”Batteries.RBNode.All_def
Batteries.RBNode.cmpLT.trans
upperBound?_exists πŸ“–mathematicalBatteries.RBNode.OrderedBatteries.RBNode.upperBound?
Batteries.RBNode
Batteries.RBNode.instMembership
β€”Batteries.RBNode.upperBound?_mem
Batteries.RBNode.upperBound?_ge
Batteries.RBNode.upperBound?_of_some
Batteries.RBNode.IsCut.gt_trans
Batteries.RBNode.All_def
upperBound?_least πŸ“–β€”Batteries.RBNode.Ordered
Batteries.RBNode.upperBound?
Batteries.RBNode
Batteries.RBNode.instMembership
β€”β€”upperBound?_least_ub
upperBound?_least_ub πŸ“–β€”Batteries.RBNode.Ordered
Batteries.RBNode.All
Batteries.RBNode.cmpLT
Batteries.RBNode.upperBound?
Batteries.RBNode
Batteries.RBNode.instMembership
β€”β€”Batteries.RBNode.upperBound?_mem_ub
Batteries.RBNode.All_def
Batteries.RBNode.IsCut.gt_trans

Batteries.RBNode.Path

Definitions

NameCategoryTheorems
AllL πŸ“–MathDefβ€”
AllR πŸ“–MathDefβ€”
listL πŸ“–CompOp
1 mathmath: ordered_iff
listR πŸ“–CompOp
1 mathmath: ordered_iff
withList πŸ“–CompOp
8 mathmath: fill_toList, insertNew_toList, Batteries.RBNode.zoom_toList, Batteries.RBNode.insert_toList_zoom, ins_toList, Batteries.RBNode.insert_toList_zoom_nil, insert_toList, Batteries.RBNode.insert_toList_zoom_node

Theorems

NameKindAssumesProvesValidatesDepends On
fill_toList πŸ“–mathematicalβ€”Batteries.RBNode.toList
fill
withList
β€”Batteries.RBNode.toList_node
ins_eq_fill πŸ“–mathematicalBalanced
Batteries.RBNode.Balanced
ins
Batteries.RBNode.setBlack
fill
β€”ins.eq_def
ins.eq_4
fill.eq_2
Batteries.RBNode.balance1_eq
ins.eq_5
fill.eq_3
Batteries.RBNode.balance2_eq
ins_toList πŸ“–mathematicalβ€”Batteries.RBNode.toList
ins
withList
β€”Batteries.RBNode.setBlack_toList
Batteries.RBNode.toList_node
Batteries.RBNode.balance1_toList
Batteries.RBNode.balance2_toList
insertNew_eq_insert πŸ“–mathematicalBatteries.RBNode.zoom
root
Batteries.RBNode
Batteries.RBNode.Path
Batteries.RBNode.nil
insertNew
Batteries.RBNode.setBlack
Batteries.RBNode.insert
β€”zoom_ins
Batteries.RBNode.insert_setBlack
insertNew_toList πŸ“–mathematicalβ€”Batteries.RBNode.toList
insertNew
withList
β€”ins_toList
Batteries.RBNode.toList_node
insert_toList πŸ“–mathematicalβ€”Batteries.RBNode.toList
insert
withList
Batteries.RBNode.setRoot
β€”insertNew_toList
Batteries.RBNode.toList_node
fill_toList
ordered_iff πŸ“–mathematicalβ€”Ordered
Batteries.RBNode.cmpLT
listL
listR
β€”Ordered.eq_2
rootOrdered_iff
Ordered.eq_3
rootOrdered_iff πŸ“–mathematicalOrderedRootOrdered
Batteries.RBNode.cmpLT
β€”Batteries.RBNode.cmpLT.trans
zoom_del πŸ“–mathematicalBatteries.RBNode.zoom
Batteries.RBNode
Batteries.RBNode.Path
del
Batteries.RBNode.del
Batteries.RBColor
Batteries.RBColor.red
Batteries.RBNode.delRoot
β€”β€”
zoom_ins πŸ“–mathematicalBatteries.RBNode.zoom
Batteries.RBNode
Batteries.RBNode.Path
ins
Batteries.RBNode.ins
Batteries.RBNode.setRoot
β€”β€”
zoom_insert πŸ“–mathematicalBatteries.RBNode.Balanced
Batteries.RBNode.zoom
root
Batteries.RBNode
Batteries.RBNode.Path
Batteries.RBNode.setBlack
insert
Batteries.RBNode.insert
β€”Batteries.RBNode.Balanced.zoom
insertNew_eq_insert
Batteries.RBNode.setBlack_idem
ins_eq_fill
Batteries.RBNode.insert_setBlack
zoom_ins
zoom_zoomed₁ πŸ“–mathematicalBatteries.RBNode.zoom
Batteries.RBNode
Batteries.RBNode.Path
Batteries.RBNode.OnRootβ€”Batteries.RBNode.zoom.eq_def

Batteries.RBNode.Path.Balanced

Theorems

NameKindAssumesProvesValidatesDepends On
insert πŸ“–mathematicalBatteries.RBNode.Path.Balanced
Batteries.RBNode.Balanced
Batteries.RBNode.Path.insertβ€”insertNew
fill

Batteries.RBNode.Path.Ordered

Theorems

NameKindAssumesProvesValidatesDepends On
erase πŸ“–mathematicalBatteries.RBNode.Path.Ordered
Batteries.RBNode.Ordered
Batteries.RBNode.All
Batteries.RBNode.Path.RootOrdered
Batteries.RBNode.Path.eraseβ€”fill
del
Batteries.RBNode.Ordered.append
Batteries.RBNode.All.append
insert πŸ“–mathematicalBatteries.RBNode.Path.Ordered
Batteries.RBNode.Ordered
Batteries.RBNode.All
Batteries.RBNode.Path.RootOrdered
Batteries.RBNode.OnRoot
Batteries.RBNode.cmpEq
Batteries.RBNode.Path.insertβ€”insertNew
fill
Batteries.RBNode.All.imp
Batteries.RBNode.cmpEq.lt_congr_right
Batteries.RBNode.cmpEq.lt_congr_left

Batteries.RBNode.Stream

Theorems

NameKindAssumesProvesValidatesDepends On
foldl_eq_foldl_toList πŸ“–mathematicalβ€”foldl
toList
β€”Batteries.RBNode.foldl_eq_foldl_toList
toList_cons
foldr_cons πŸ“–mathematicalβ€”foldr
toList
β€”Batteries.RBNode.foldr_cons
foldr_eq_foldr_toList πŸ“–mathematicalβ€”foldr
toList
β€”Batteries.RBNode.foldr_eq_foldr_toList
toList_cons
forIn_eq_forIn_toList πŸ“–mathematicalβ€”Batteries.RBNode
Batteries.RBNode.instForInOfMonad
Batteries.RBNode.toList
β€”List.forIn_eq_bindList
Batteries.RBNode.forIn_visit_eq_bindList
next?_toList πŸ“–mathematicalβ€”Batteries.RBNode.Stream
toList
next?
List.next?
β€”Batteries.RBNode.toStream_toList'
toList_cons
toList_cons πŸ“–mathematicalβ€”toList
cons
Batteries.RBNode.toList
β€”toList.eq_1
foldr.eq_2
Batteries.RBNode.foldr_cons
toList_nil πŸ“–mathematicalβ€”toList
nil
β€”β€”

Batteries.RBSet

Definitions

NameCategoryTheorems
instDecidableMemOfTransCmp πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
contains_iff πŸ“–bridging (iff)β€”contains
Batteries.RBSet
instMembership
containsmem_iff_find?
default_eq πŸ“–mathematicalβ€”Batteries.RBSet
instInhabited
instEmptyCollection
β€”β€”
empty_eq πŸ“–mathematicalβ€”empty
Batteries.RBSet
instEmptyCollection
β€”β€”
empty_toList πŸ“–mathematicalβ€”toList
Batteries.RBSet
instEmptyCollection
β€”β€”
find?_congr πŸ“–mathematicalβ€”find?β€”β€”
find?_insert πŸ“–mathematicalβ€”find?
insert
β€”findP?_insert
Batteries.RBNode.instIsStrictCut
find?_insert_of_eq πŸ“–mathematicalβ€”find?
insert
β€”findP?_insert_of_eq
Batteries.RBNode.instIsStrictCut
find?_insert_of_ne πŸ“–mathematicalβ€”find?
insert
β€”findP?_insert_of_ne
Batteries.RBNode.instIsStrictCut
find?_some πŸ“–mathematicalβ€”find?
toList
β€”findP?_some
Batteries.RBNode.instIsStrictCut
find?_some_eq_eq πŸ“–β€”find?β€”β€”findP?_some_eq_eq
find?_some_mem πŸ“–mathematicalfind?Batteries.RBSet
instMembership
β€”findP?_some_memP
find?_some_mem_toList πŸ“–mathematicalfind?toListβ€”findP?_some_mem_toList
findP?_insert πŸ“–mathematicalβ€”findP?
insert
β€”findP?_insert_of_ne
findP?_insert_of_eq
findP?_insert_of_eq πŸ“–mathematicalβ€”findP?
insert
β€”findP?_some
mem_toList_insert_self
findP?_insert_of_ne πŸ“–mathematicalβ€”findP?
insert
β€”findP?_some
mem_toList_insert
Batteries.RBNode.IsCut.congr
Batteries.RBNode.IsStrictCut.toIsCut
find?_some_eq_eq
findP?_some πŸ“–mathematicalβ€”findP?
toList
β€”Batteries.RBNode.Ordered.find?_some
Batteries.RBNode.WF.out
findP?_some_eq_eq πŸ“–β€”findP?β€”β€”Batteries.RBNode.find?_some_eq_eq
findP?_some_memP πŸ“–mathematicalfindP?MemPβ€”Batteries.RBNode.find?_some_memP
findP?_some_mem_toList πŸ“–mathematicalfindP?toListβ€”mem_toList
Batteries.RBNode.find?_some_mem
foldlM_eq_foldlM_toList πŸ“–mathematicalβ€”foldlM
toList
β€”Batteries.RBNode.foldlM_eq_foldlM_toList
foldl_eq_foldl_toList πŸ“–mathematicalβ€”foldl
toList
β€”Batteries.RBNode.foldl_eq_foldl_toList
foldr_eq_foldr_toList πŸ“–mathematicalβ€”foldr
toList
β€”Batteries.RBNode.foldr_eq_foldr_toList
forIn_eq_forIn_toList πŸ“–mathematicalβ€”Batteries.RBSet
instForInOfMonad
toList
β€”Batteries.RBNode.forIn_eq_forIn_toList
forM_eq_forM_toList πŸ“–mathematicalβ€”forM
toList
β€”Batteries.RBNode.forM_eq_forM_toList
isEmpty_iff_toList_eq_nil πŸ“–bridging (iff)β€”isEmpty
toList
isEmptyBatteries.RBNode.toList_node
lowerBound?_eq_find? πŸ“–mathematicalfind?lowerBound?β€”lowerBoundP?_eq_findP?
lowerBound?_exists πŸ“–mathematicalβ€”lowerBound?
Batteries.RBSet
instMembership
β€”lowerBoundP?_exists
Batteries.RBNode.IsStrictCut.toIsCut
Batteries.RBNode.instIsStrictCut
lowerBound?_le πŸ“–β€”lowerBound?β€”β€”lowerBoundP?_le
lowerBound?_lt πŸ“–β€”lowerBound?
Batteries.RBSet
instMembership
β€”β€”lowerBoundP?_lt
Batteries.RBNode.instIsStrictCut
lowerBound?_mem πŸ“–mathematicallowerBound?Batteries.RBSet
instMembership
β€”lowerBoundP?_mem
lowerBound?_mem_toList πŸ“–mathematicallowerBound?toListβ€”lowerBoundP?_mem_toList
lowerBoundP?_eq_findP? πŸ“–mathematicalfindP?lowerBoundP?β€”Batteries.RBNode.lowerBound?_eq_find?
lowerBoundP?_exists πŸ“–mathematicalβ€”lowerBoundP?
Batteries.RBSet
instMembership
β€”Batteries.RBNode.Ordered.lowerBound?_exists
Batteries.RBNode.WF.out
Batteries.RBNode.IsCut.congr
lowerBoundP?_greatest πŸ“–β€”lowerBoundP?
Batteries.RBSet
instMembership
β€”β€”mem_iff_mem_toList
Batteries.RBNode.Ordered.lowerBound?_greatest
Batteries.RBNode.WF.out
mem_toList
Batteries.RBNode.IsCut.congr
lowerBoundP?_le πŸ“–β€”lowerBoundP?β€”β€”Batteries.RBNode.lowerBound?_le
lowerBoundP?_lt πŸ“–β€”lowerBoundP?
Batteries.RBSet
instMembership
β€”β€”mem_iff_mem_toList
Batteries.RBNode.Ordered.lowerBound?_lt
Batteries.RBNode.WF.out
mem_toList
Batteries.RBNode.IsCut.congr
Batteries.RBNode.IsStrictCut.toIsCut
lowerBoundP?_mem πŸ“–mathematicallowerBoundP?Batteries.RBSet
instMembership
β€”mem_of_mem_toList
lowerBoundP?_mem_toList
lowerBoundP?_mem_toList πŸ“–mathematicallowerBoundP?toListβ€”mem_toList
Batteries.RBNode.lowerBound?_mem
lt_upperBound? πŸ“–β€”upperBound?
Batteries.RBSet
instMembership
β€”β€”lt_upperBoundP?
Batteries.RBNode.instIsStrictCut
lt_upperBoundP? πŸ“–β€”upperBoundP?
Batteries.RBSet
instMembership
β€”β€”mem_iff_mem_toList
Batteries.RBNode.Ordered.lt_upperBound?
Batteries.RBNode.WF.out
mem_toList
Batteries.RBNode.IsCut.congr
Batteries.RBNode.IsStrictCut.toIsCut
memP_iff_findP? πŸ“–mathematicalβ€”MemP
findP?
β€”Batteries.RBNode.Ordered.memP_iff_find?
Batteries.RBNode.WF.out
memP_iff_lowerBoundP? πŸ“–mathematicalβ€”MemP
lowerBoundP?
β€”Batteries.RBNode.Ordered.memP_iff_lowerBound?
Batteries.RBNode.WF.out
memP_iff_upperBoundP? πŸ“–mathematicalβ€”MemP
upperBoundP?
β€”Batteries.RBNode.Ordered.memP_iff_upperBound?
Batteries.RBNode.WF.out
mem_congr πŸ“–mathematicalβ€”Batteries.RBSet
instMembership
β€”Batteries.RBNode.mem_congr
mem_iff_find? πŸ“–mathematicalβ€”Batteries.RBSet
instMembership
find?
β€”memP_iff_findP?
Batteries.RBNode.IsStrictCut.toIsCut
Batteries.RBNode.instIsStrictCut
mem_iff_lowerBound? πŸ“–mathematicalβ€”Batteries.RBSet
instMembership
lowerBound?
β€”memP_iff_lowerBoundP?
Batteries.RBNode.IsStrictCut.toIsCut
Batteries.RBNode.instIsStrictCut
mem_iff_mem_toList πŸ“–mathematicalβ€”Batteries.RBSet
instMembership
toList
β€”Batteries.RBNode.mem_def
mem_iff_upperBound? πŸ“–mathematicalβ€”Batteries.RBSet
instMembership
upperBound?
β€”memP_iff_upperBoundP?
Batteries.RBNode.IsStrictCut.toIsCut
Batteries.RBNode.instIsStrictCut
mem_insert πŸ“–mathematicalβ€”Batteries.RBSet
instMembership
insert
β€”mem_iff_mem_toList
mem_toList_insert
mem_insert_of_mem
mem_insert_of_eq
mem_insert_of_eq πŸ“–mathematicalβ€”Batteries.RBSet
instMembership
insert
β€”mem_congr
mem_insert_self
mem_insert_of_mem πŸ“–mathematicalBatteries.RBSet
instMembership
insertβ€”mem_iff_mem_toList
mem_congr
mem_insert_of_mem_toList
mem_insert_of_mem_toList πŸ“–mathematicaltoListBatteries.RBSet
instMembership
insert
β€”mem_toList_insert_of_mem
mem_of_mem_toList
mem_iff_mem_toList
mem_toList_insert_self
mem_insert_self πŸ“–mathematicalβ€”Batteries.RBSet
instMembership
insert
β€”mem_of_mem_toList
mem_toList_insert_self
mem_of_mem_toList πŸ“–mathematicaltoListBatteries.RBSet
instMembership
β€”mem_iff_mem_toList
mem_toList πŸ“–mathematicalβ€”toList
Batteries.RBNode
Batteries.RBNode.instMembership
Batteries.RBNode.WF
β€”Batteries.RBNode.mem_toList
mem_toList_insert πŸ“–mathematicalβ€”toList
insert
β€”Batteries.RBNode.WF.out
Batteries.RBNode.mem_insert
mem_toList_insert_of_mem πŸ“–mathematicaltoListinsertβ€”Batteries.RBNode.WF.out
mem_toList
Batteries.RBNode.mem_insert_of_mem
mem_toList_insert_self πŸ“–mathematicalβ€”toList
insert
β€”Batteries.RBNode.WF.out
mem_toList
Batteries.RBNode.mem_insert_self
mem_toList_unique πŸ“–β€”toListβ€”β€”Batteries.RBNode.Ordered.unique
Batteries.RBNode.WF.out
mem_toList
mkRBSet_eq πŸ“–mathematicalβ€”Batteries.mkRBSet
Batteries.RBSet
instEmptyCollection
β€”β€”
single_toList πŸ“–mathematicalβ€”toList
single
β€”β€”
size_eq πŸ“–mathematicalβ€”size
toList
β€”Batteries.RBNode.size_eq
toList_sorted πŸ“–mathematicalβ€”Batteries.RBNode.cmpLT
toList
β€”Batteries.RBNode.Ordered.toList_sorted
Batteries.RBNode.WF.out
toStream_eq πŸ“–mathematicalβ€”Batteries.RBSet
Batteries.RBNode.Stream
instToStreamStream
Batteries.RBNode.toStream
Batteries.RBNode
Batteries.RBNode.WF
Batteries.RBNode.Stream.nil
β€”β€”
toStream_toList πŸ“–mathematicalβ€”Batteries.RBNode.Stream.toList
Batteries.RBSet
Batteries.RBNode.Stream
instToStreamStream
toList
β€”Batteries.RBNode.toStream_toList
upperBound?_eq_find? πŸ“–mathematicalfind?upperBound?β€”upperBoundP?_eq_findP?
upperBound?_exists πŸ“–mathematicalβ€”upperBound?
Batteries.RBSet
instMembership
β€”upperBoundP?_exists
Batteries.RBNode.IsStrictCut.toIsCut
Batteries.RBNode.instIsStrictCut
upperBound?_ge πŸ“–β€”upperBound?β€”β€”upperBoundP?_ge
upperBound?_mem πŸ“–mathematicalupperBound?Batteries.RBSet
instMembership
β€”upperBoundP?_mem
upperBound?_mem_toList πŸ“–mathematicalupperBound?toListβ€”upperBoundP?_mem_toList
upperBoundP?_eq_findP? πŸ“–mathematicalfindP?upperBoundP?β€”Batteries.RBNode.upperBound?_eq_find?
upperBoundP?_exists πŸ“–mathematicalβ€”upperBoundP?
Batteries.RBSet
instMembership
β€”Batteries.RBNode.Ordered.upperBound?_exists
Batteries.RBNode.WF.out
Batteries.RBNode.IsCut.congr
upperBoundP?_ge πŸ“–β€”upperBoundP?β€”β€”Batteries.RBNode.upperBound?_ge
upperBoundP?_least πŸ“–β€”upperBoundP?
Batteries.RBSet
instMembership
β€”β€”mem_iff_mem_toList
Batteries.RBNode.Ordered.upperBound?_least
Batteries.RBNode.WF.out
mem_toList
Batteries.RBNode.IsCut.congr
upperBoundP?_mem πŸ“–mathematicalupperBoundP?Batteries.RBSet
instMembership
β€”mem_of_mem_toList
upperBoundP?_mem_toList
upperBoundP?_mem_toList πŸ“–mathematicalupperBoundP?toListβ€”mem_toList
Batteries.RBNode.upperBound?_mem
val_toList πŸ“–mathematicalβ€”Batteries.RBNode.toList
Batteries.RBNode
Batteries.RBNode.WF
toList
β€”β€”

---

← Back to Index