Documentation Verification Report

Basic

📁 Source: Cslib/Computability/Automata/DA/Basic.lean

Statistics

MetricCount
DefinitionsDA, accept, instωAcceptor, toDA, FinAcc, accept, instAcceptor, toDA, Muller, accept, instωAcceptor, toDA, run, run', start, toFLTS
16
Theoremsmtr_extract_eq_run, run_succ, run_zero
3
Total19

Cslib.Automata

Definitions

NameCategoryTheorems
DA 📖CompData

Cslib.Automata.DA

Definitions

NameCategoryTheorems
FinAcc 📖CompData
5 mathmath: Cslib.Language.IsRegular.iff_dfa, FinAcc.congr_language_eq, FinAcc.toNAFinAcc_language_eq, Cslib.Automata.NA.FinAcc.toDAFinAcc_language_eq, buchi_eq_finAcc_omegaLim
Muller 📖CompData
run 📖CompOp
4 mathmath: run_succ, run_zero, toNA_run, mtr_extract_eq_run
run' 📖CompOp
start 📖CompOp
3 mathmath: run_zero, congr_mtr_eq, mtr_extract_eq_run
toFLTS 📖CompOp
4 mathmath: prod_mtr_eq, run_succ, congr_mtr_eq, mtr_extract_eq_run

Theorems

NameKindAssumesProvesValidatesDepends On
mtr_extract_eq_run 📖mathematicalCslib.FLTS.mtr
toFLTS
start
Cslib.ωSequence.extract
Cslib.ωSequence
Cslib.instFunLikeωSequenceNat
run
run_succ 📖mathematicalCslib.ωSequence
Cslib.instFunLikeωSequenceNat
run
Cslib.FLTS.tr
toFLTS
run_zero 📖mathematicalCslib.ωSequence
Cslib.instFunLikeωSequenceNat
run
start

Cslib.Automata.DA.Buchi

Definitions

NameCategoryTheorems
accept 📖CompOp
instωAcceptor 📖CompOp
4 mathmath: Cslib.ωLanguage.IsRegular.of_da_buchi, Cslib.ωLanguage.IsRegular.not_da_buchi, toNABuchi_language_eq, Cslib.Automata.DA.buchi_eq_finAcc_omegaLim
toDA 📖CompOp

Cslib.Automata.DA.FinAcc

Definitions

NameCategoryTheorems
accept 📖CompOp
instAcceptor 📖CompOp
5 mathmath: Cslib.Language.IsRegular.iff_dfa, congr_language_eq, toNAFinAcc_language_eq, Cslib.Automata.NA.FinAcc.toDAFinAcc_language_eq, Cslib.Automata.DA.buchi_eq_finAcc_omegaLim
toDA 📖CompOp

Cslib.Automata.DA.Muller

Definitions

NameCategoryTheorems
accept 📖CompOp
instωAcceptor 📖CompOp
toDA 📖CompOp

---

← Back to Index