| Name | Category | Theorems |
OmegaLim 📖 | CompData | — |
OmegaPow 📖 | CompData | — |
instCompleteAtomicBooleanAlgebra 📖 | CompOp | 39 mathmath: iSup_def, iInf_def, omegaPow_le_kstar_omegaPow, zero_hmul, IsRegular.iSup, sup_def, compl_def, omegaLim_zero, iSup_hmul, mem_top, mem_compl, IsRegular.inf, zero_omegaPow, kstar_omegaPow_le_omegaPow, hmul_sup, one_omegaPow, le_omegaPow_congr, mem_inf, IsRegular.iInf, hmul_omegaPow_le_omegaPow, Cslib.Automata.NA.Buchi.language_eq_fin_iSup_hmul_omegaPow, mem_iSup, omegaPow_of_le_one, hmul_bot, mem_iInf, omegaPow_le_hmul_omegaPow', bot_def, IsRegular.top, hmul_iSup, IsRegular.eq_fin_iSup_hmul_omegaPow, notMem_bot, IsRegular.sup, add_hmul, omegaPow_le_hmul_omegaPow, mem_sup, top_def, inf_def, IsRegular.bot, le_def
|
instHMulLanguage 📖 | CompOp | 22 mathmath: zero_hmul, append_mem_hmul, iSup_hmul, hmul_sup, hmul_seq_prop, le_hmul_congr, hmul_def, hmul_omegaPow_le_omegaPow, Cslib.Automata.NA.Buchi.language_eq_fin_iSup_hmul_omegaPow, one_hmul, hmul_omegaPow_eq_omegaPow, hmul_bot, omegaPow_le_hmul_omegaPow', hmul_iSup, IsRegular.eq_fin_iSup_hmul_omegaPow, mem_hmul, add_hmul, omegaPow_le_hmul_omegaPow, IsRegular.hmul, mul_hmul, kstar_hmul_omegaPow_eq_omegaPow, Cslib.Automata.NA.Buchi.concat_language_eq
|
instHasSubset 📖 | CompOp | 1 mathmath: le_def
|
instInhabited 📖 | CompOp | — |
instInsertωSequence 📖 | CompOp | — |
instMembershipωSequence 📖 | CompOp | 14 mathmath: flatten_mem_omegaPow, mem_top, ext_iff, mem_compl, hmul_seq_prop, mem_omegaPow, Cslib.Automata.ωAcceptor.mem_language, mem_inf, mem_iSup, mem_iInf, mem_omegaLim, mem_hmul, notMem_bot, mem_sup
|
instOmegaLim 📖 | CompOp | 6 mathmath: IsRegular.regular_omegaLim, omegaLim_zero, Example.eventually_zero_not_omegaLim, mem_omegaLim, omegaLim_def, Cslib.Automata.DA.buchi_eq_finAcc_omegaLim
|
instOmegaPowLanguageOfInhabited 📖 | CompOp | 23 mathmath: omegaPow_coind', omegaPow_seq_prop, omegaPow_le_kstar_omegaPow, flatten_mem_omegaPow, zero_omegaPow, kstar_omegaPow_le_omegaPow, mem_omegaPow, IsRegular.omegaPow, omegaPow_def, one_omegaPow, le_omegaPow_congr, omegaPow_coind, hmul_omegaPow_le_omegaPow, Cslib.Automata.NA.Buchi.language_eq_fin_iSup_hmul_omegaPow, hmul_omegaPow_eq_omegaPow, omegaPow_of_le_one, kstar_omegaPow_eq_omegaPow, omegaPow_le_hmul_omegaPow', omegaPow_of_sub_one, IsRegular.eq_fin_iSup_hmul_omegaPow, omegaPow_le_hmul_omegaPow, Cslib.Automata.NA.Buchi.loop_language_eq, kstar_hmul_omegaPow_eq_omegaPow
|
instSingletonωSequence 📖 | CompOp | — |
map 📖 | CompOp | 3 mathmath: map_id, map_def, map_map
|
omegaLim 📖 | CompOp | — |
omegaPow 📖 | CompOp | — |
«term_^ω» 📖 | CompOp | — |
«term_↗ω» 📖 | CompOp | — |