Documentation Verification Report

Execution

πŸ“ Source: Cslib/Computability/URM/Execution.lean

Statistics

MetricCount
DefinitionsDiverges, Halts, HaltsWithResult, ProgramEquiv, Step, Steps, eval, evalState, instSetoidProgram, Β«term_↑_Β», Β«term_↓_Β», Β«term_↓_≫_Β»
12
TheoremstoHaltsWithResult, toHalts, equivalence, deterministic, no_step_of_halted, preserves_register, eq_of_halts, preserves_register, evalState_spec, haltsWithResult_iff_eval, halts_iff_normalizable, isHalted_iff_normal, step_confluent
13
Total25

Cslib.URM

Definitions

NameCategoryTheorems
Diverges πŸ“–MathDefβ€”
Halts πŸ“–MathDef
4 mathmath: straight_line_halts, Halts.toStandardForm_iff, HaltsWithResult.toHalts, halts_iff_normalizable
HaltsWithResult πŸ“–MathDef
2 mathmath: Halts.toHaltsWithResult, haltsWithResult_iff_eval
ProgramEquiv πŸ“–MathDef
1 mathmath: ProgramEquiv.equivalence
Step πŸ“–CompData
5 mathmath: step_confluent, halts_iff_normalizable, Step.no_step_of_halted, isHalted_iff_normal, Step.of_nonJump
Steps πŸ“–MathDef
4 mathmath: evalState_spec, straight_line_halts_from_regs, straight_line_state_at_pc, straightLine_finalState_spec
eval πŸ“–CompOp
2 mathmath: haltsWithResult_iff_eval, eval_toStandardForm
evalState πŸ“–CompOp
1 mathmath: Halts.toHaltsWithResult
instSetoidProgram πŸ“–CompOp
1 mathmath: toStandardForm_equiv
Β«term_↑_Β» πŸ“–CompOpβ€”
Β«term_↓_Β» πŸ“–CompOpβ€”
Β«term_↓_≫_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
evalState_spec πŸ“–mathematicalState
evalState
Steps
State.init
State.isHalted
β€”β€”
haltsWithResult_iff_eval πŸ“–mathematicalβ€”HaltsWithResult
eval
β€”eval.eq_1
Steps.eq_of_halts
evalState_spec
halts_iff_normalizable πŸ“–mathematicalβ€”Halts
Relation.Normalizable
State
Step
State.init
β€”β€”
isHalted_iff_normal πŸ“–mathematicalβ€”State.isHalted
Relation.Normal
State
Step
β€”Step.no_step_of_halted
step_confluent πŸ“–mathematicalβ€”Relation.Confluent
State
Step
β€”Step.deterministic

Cslib.URM.Halts

Theorems

NameKindAssumesProvesValidatesDepends On
toHaltsWithResult πŸ“–mathematicalCslib.URM.HaltsCslib.URM.HaltsWithResult
Cslib.URM.Regs.output
Cslib.URM.State.regs
Cslib.URM.State
Cslib.URM.evalState
β€”Cslib.URM.evalState_spec

Cslib.URM.HaltsWithResult

Theorems

NameKindAssumesProvesValidatesDepends On
toHalts πŸ“–mathematicalCslib.URM.HaltsWithResultCslib.URM.Haltsβ€”β€”

Cslib.URM.ProgramEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
equivalence πŸ“–mathematicalβ€”Cslib.URM.Program
Cslib.URM.ProgramEquiv
β€”β€”

Cslib.URM.Step

Theorems

NameKindAssumesProvesValidatesDepends On
deterministic πŸ“–β€”Cslib.URM.Stepβ€”β€”β€”
no_step_of_halted πŸ“–mathematicalCslib.URM.State.isHaltedCslib.URM.Stepβ€”β€”
preserves_register πŸ“–mathematicalCslib.URM.StepCslib.URM.Regs.read
Cslib.URM.State.regs
β€”β€”

Cslib.URM.Steps

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_halts πŸ“–β€”Cslib.URM.Steps
Cslib.URM.State.isHalted
β€”β€”Cslib.URM.step_confluent
Cslib.URM.isHalted_iff_normal
preserves_register πŸ“–mathematicalCslib.URM.StepsCslib.URM.Regs.read
Cslib.URM.State.regs
β€”β€”

---

← Back to Index