Documentation Verification Report

Basic

📁 Source: Cslib/Foundations/Semantics/LTS/Basic.lean

Statistics

MetricCount
DefinitionsHasTau, τ, Acyclic, CanReach, Deterministic, DivergenceFree, Divergent, DivergentTrace, FiniteLTS, FinitelyBranching, HasOutLabel, ImageFinite, IsExecution, MTr, toRelation, MayTerminate, STr, STrN, Stuck, Tr, toRelation, chooseFLTS, chooseωTr, deterministic_imageFinite, finiteState_finitelyBranching, finiteState_imageFinite, generatedBy, image, imageMultistep, inl, inr, outgoingLabels, saturate, setImage, setImageMultistep, totalize, union, unionSubtype, unionSum, τClosure, ωTr, toLTS, commandCreate_lts__, command_Lts_transition_notation__, instTransToRelationHAppendList, instTransToRelationToRelationCons, instTransToRelationToRelationConsNil, instTransToRelationToRelationHAppendListConsNil, lts_attr
49
Theoremsacyclic, refl, deterministic, divergence_free, toAcyclic, flatten, refl, split, stepL, comp, nil_eq, single, single_invert, split, stepR, comp, single, trans_τ, append, comp, trans_τ, mTr_ωTr, total, ωTr_exists, total, deterministic_image_char, deterministic_not_lto, deterministic_tr_image_singleton, divergentTrace_drop, isExecution_cons_invert, isExecution_mTr, isExecution_nonEmpty_states, mTr_isExecution, mTr_isExecution_iff, mTr_setImage, mem_foldl_setImage, mem_saturate_image_τ, mem_setImage, mem_setImageMultistep, sTr_sTrN, saturate_sTr_tr, saturate_tr_sTr, setImageMultistep_foldl_setImage, setImageMultistep_setImage_head, setImage_empty, mtr_left_iff, not_right_left, tr_left_iff, tr_setImage, append, cons, flatten, ωTr_mTr, instFiniteElemImageOfDeterministic, instTotalSumUnitTotalize
55
Total104

Cslib

Definitions

NameCategoryTheorems
HasTau 📖CompData
commandCreate_lts__ 📖CompOp
command_Lts_transition_notation__ 📖CompOp
instTransToRelationHAppendList 📖CompOp
instTransToRelationToRelationCons 📖CompOp
instTransToRelationToRelationConsNil 📖CompOp
instTransToRelationToRelationHAppendListConsNil 📖CompOp
lts_attr 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instFiniteElemImageOfDeterministic 📖mathematicalLTS.imageLTS.deterministic_image_char
instTotalSumUnitTotalize 📖mathematicalLTS.Total
LTS.totalize

Cslib.HasTau

Definitions

NameCategoryTheorems
τ 📖CompOp
1 mathmath: Cslib.LTS.mem_saturate_image_τ

Cslib.LTS

Definitions

NameCategoryTheorems
Acyclic 📖CompData
1 mathmath: FiniteLTS.toAcyclic
CanReach 📖MathDef
1 mathmath: CanReach.refl
Deterministic 📖CompData
1 mathmath: Cslib.FLTS.toLTS_deterministic
DivergenceFree 📖CompData
Divergent 📖MathDef
1 mathmath: DivergenceFree.divergence_free
DivergentTrace 📖MathDef
FiniteLTS 📖CompData
FinitelyBranching 📖CompData
HasOutLabel 📖MathDef
ImageFinite 📖CompData
IsExecution 📖MathDef
3 mathmath: mTr_isExecution, mTr_isExecution_iff, IsExecution.refl
MTr 📖CompData
17 mathmath: noε_saturate_mTr, Cslib.Automata.NA.loop_run_left_right, Cslib.Automata.NA.loop_fin_run_mtr, Cslib.Automata.NA.concat_run_left, mem_pairLang, ωTr_mTr, Cslib.FLTS.toLTS_mtr, MTr.single, mTr_isExecution_iff, totalize.not_right_left, mem_setImageMultistep, Cslib.Automata.NA.totalize_run_mtr, toFLTS_mem_mtr, isExecution_mTr, mem_foldl_setImage, mem_pairViaLang, totalize.mtr_left_iff
MayTerminate 📖MathDef
STr 📖CompData
6 mathmath: Cslib.SWBisimulation.follow_internal_snd_n, STr.single, Cslib.SWBisimulation.follow_internal_fst_n, sTr_sTrN, saturate_sTr_tr, saturate_tr_sTr
STrN 📖CompData
1 mathmath: sTr_sTrN
Stuck 📖MathDef
Tr 📖MathDef
11 mathmath: chooseFLTS.total, MTr.single_invert, totalize.tr_left_iff, Cslib.FLTS.toLTS_tr, toFLTS_mem_tr, saturate_sTr_tr, saturate_tr_sTr, Total.total, mem_setImage, Cslib.Automata.NA.loop_fin_run_exists, deterministic_tr_image_singleton
chooseFLTS 📖CompOp
1 mathmath: chooseFLTS.total
chooseωTr 📖CompOp
deterministic_imageFinite 📖CompOp
finiteState_finitelyBranching 📖CompOp
finiteState_imageFinite 📖CompOp
generatedBy 📖CompOp
image 📖CompOp
4 mathmath: mem_saturate_image_τ, deterministic_image_char, Cslib.instFiniteElemImageOfDeterministic, deterministic_tr_image_singleton
imageMultistep 📖CompOp
inl 📖CompOp
inr 📖CompOp
outgoingLabels 📖CompOp
saturate 📖CompOp
4 mathmath: noε_saturate_mTr, mem_saturate_image_τ, saturate_sTr_tr, saturate_tr_sTr
setImage 📖CompOp
6 mathmath: setImageMultistep_foldl_setImage, setImage_empty, tr_setImage, setImageMultistep_setImage_head, mem_setImage, mem_foldl_setImage
setImageMultistep 📖CompOp
5 mathmath: setImageMultistep_foldl_setImage, mTr_setImage, setImageMultistep_setImage_head, mem_setImageMultistep, toFLTS_mtr_setImageMultistep
totalize 📖CompOp
4 mathmath: totalize.tr_left_iff, totalize.not_right_left, Cslib.instTotalSumUnitTotalize, totalize.mtr_left_iff
union 📖CompOp
unionSubtype 📖CompOp
unionSum 📖CompOp
τClosure 📖CompOp
ωTr 📖MathDef
5 mathmath: Cslib.Automata.NA.Run.trans, IsExecution.flatten, ωTr.flatten, Total.mTr_ωTr, Total.ωTr_exists

Theorems

NameKindAssumesProvesValidatesDepends On
deterministic_image_char 📖mathematicalimage
deterministic_not_lto 📖Tr
deterministic_tr_image_singleton 📖mathematicalimage
Tr
divergentTrace_drop 📖mathematicalDivergentTraceCslib.ωSequence.drop
isExecution_cons_invert 📖IsExecution
isExecution_mTr 📖mathematicalIsExecutionMTrisExecution_cons_invert
isExecution_nonEmpty_states 📖IsExecution
mTr_isExecution 📖mathematicalMTrIsExecution
mTr_isExecution_iff 📖mathematicalMTr
IsExecution
mTr_setImage 📖mathematicalMTrsetImageMultistep
mem_foldl_setImage 📖mathematicalsetImage
MTr
setImageMultistep_foldl_setImage
mem_setImageMultistep
mem_saturate_image_τ 📖mathematicalimage
saturate
Cslib.HasTau.τ
mem_setImage 📖mathematicalsetImage
Tr
mem_setImageMultistep 📖mathematicalsetImageMultistep
MTr
sTr_sTrN 📖mathematicalSTr
STrN
saturate_sTr_tr 📖mathematicalCslib.HasTau.τTr
saturate
STr
saturate_tr_sTr
STr.single
saturate_tr_sTr 📖mathematicalTr
saturate
STr
setImageMultistep_foldl_setImage 📖mathematicalsetImageMultistep
setImage
setImageMultistep_setImage_head 📖mathematicalsetImageMultistep
setImage
setImage_empty 📖mathematicalsetImage
tr_setImage 📖mathematicalTrsetImage
ωTr_mTr 📖mathematicalωTrMTr
Cslib.ωSequence
Cslib.instFunLikeωSequenceNat
Cslib.ωSequence.extract

Cslib.LTS.Acyclic

Theorems

NameKindAssumesProvesValidatesDepends On
acyclic 📖

Cslib.LTS.CanReach

Theorems

NameKindAssumesProvesValidatesDepends On
refl 📖mathematicalCslib.LTS.CanReach

Cslib.LTS.Deterministic

Theorems

NameKindAssumesProvesValidatesDepends On
deterministic 📖Cslib.LTS.Tr

Cslib.LTS.DivergenceFree

Theorems

NameKindAssumesProvesValidatesDepends On
divergence_free 📖mathematicalCslib.LTS.Divergent

Cslib.LTS.FiniteLTS

Theorems

NameKindAssumesProvesValidatesDepends On
toAcyclic 📖mathematicalCslib.LTS.Acyclic

Cslib.LTS.IsExecution

Theorems

NameKindAssumesProvesValidatesDepends On
flatten 📖mathematicalCslib.LTS.IsExecution
Cslib.ωSequence
Cslib.instFunLikeωSequenceNat
Cslib.LTS.ωTr
Cslib.ωSequence.flatten
Cslib.ωSequence.extract
Cslib.ωSequence.cumLen
Cslib.ωSequence.cumLen_strictMono
Cslib.ωSequence.cumLen_zero
Nat.segment_lower_bound
Nat.segment_range_val
Nat.segment_idem
Cslib.ωSequence.extract_flatten
refl 📖mathematicalCslib.LTS.IsExecution
split 📖Cslib.LTS.IsExecution
stepL 📖Cslib.LTS.Tr
Cslib.LTS.IsExecution

Cslib.LTS.MTr

Definitions

NameCategoryTheorems
toRelation 📖MathDef

Theorems

NameKindAssumesProvesValidatesDepends On
comp 📖Cslib.LTS.MTr
nil_eq 📖Cslib.LTS.MTr
single 📖mathematicalCslib.LTS.TrCslib.LTS.MTr
single_invert 📖mathematicalCslib.LTS.MTrCslib.LTS.Tr
split 📖Cslib.LTS.MTrCslib.LTS.mTr_isExecution
Cslib.LTS.IsExecution.split
stepR 📖Cslib.LTS.MTr
Cslib.LTS.Tr
single

Cslib.LTS.STr

Theorems

NameKindAssumesProvesValidatesDepends On
comp 📖Cslib.LTS.STr
Cslib.HasTau.τ
Cslib.LTS.sTr_sTrN
Cslib.LTS.STrN.comp
single 📖mathematicalCslib.LTS.TrCslib.LTS.STr
trans_τ 📖Cslib.LTS.STr
Cslib.HasTau.τ
Cslib.LTS.sTr_sTrN
Cslib.LTS.STrN.trans_τ

Cslib.LTS.STrN

Theorems

NameKindAssumesProvesValidatesDepends On
append 📖Cslib.LTS.STrN
Cslib.HasTau.τ
trans_τ
comp 📖Cslib.LTS.STrN
Cslib.HasTau.τ
trans_τ
append
trans_τ 📖Cslib.LTS.STrN
Cslib.HasTau.τ

Cslib.LTS.Total

Theorems

NameKindAssumesProvesValidatesDepends On
mTr_ωTr 📖mathematicalCslib.LTS.MTrCslib.LTS.ωTr
Cslib.ωSequence.appendωSequence
Cslib.ωSequence
Cslib.instFunLikeωSequenceNat
ωTr_exists
total 📖mathematicalCslib.LTS.Tr
ωTr_exists 📖mathematicalCslib.LTS.ωTr
Cslib.ωSequence
Cslib.instFunLikeωSequenceNat

Cslib.LTS.Tr

Definitions

NameCategoryTheorems
toRelation 📖MathDef

Cslib.LTS.chooseFLTS

Theorems

NameKindAssumesProvesValidatesDepends On
total 📖mathematicalCslib.LTS.Tr
Cslib.FLTS.tr
Cslib.LTS.chooseFLTS
Cslib.LTS.Total.total

Cslib.LTS.totalize

Theorems

NameKindAssumesProvesValidatesDepends On
mtr_left_iff 📖mathematicalCslib.LTS.MTr
Cslib.LTS.totalize
not_right_left 📖mathematicalCslib.LTS.MTr
Cslib.LTS.totalize
tr_left_iff 📖mathematicalCslib.LTS.Tr
Cslib.LTS.totalize

Cslib.LTS.ωTr

Theorems

NameKindAssumesProvesValidatesDepends On
append 📖mathematicalCslib.LTS.MTr
Cslib.LTS.ωTr
Cslib.ωSequence
Cslib.instFunLikeωSequenceNat
Cslib.ωSequence.appendωSequence
Cslib.ωSequence.drop
Cslib.LTS.mTr_isExecution
cons 📖mathematicalCslib.LTS.Tr
Cslib.LTS.ωTr
Cslib.ωSequence
Cslib.instFunLikeωSequenceNat
Cslib.ωSequence.cons
flatten 📖mathematicalCslib.LTS.MTr
Cslib.ωSequence
Cslib.instFunLikeωSequenceNat
Cslib.LTS.ωTr
Cslib.ωSequence.flatten
Cslib.ωSequence.cumLen
Cslib.LTS.IsExecution.flatten
Cslib.LTS.mTr_isExecution

Cslib.Relation

Definitions

NameCategoryTheorems
toLTS 📖CompOp

---

← Back to Index