Documentation Verification Report

Basic

πŸ“ Source: Cslib/Languages/CombinatoryLogic/Basic.lean

Statistics

MetricCount
DefinitionsAnd, AndPoly, B, BPoly, C, CPoly, CoeTermPolynomial, Cond, Del, DelPoly, FF, Fst, H, HPoly, IsBool, MkPair, Neg, Or, OrPoly, PairPoly, Polynomial, elimVar, eval, toSKI, varFreeToSKI, R, RPoly, RotL, RotLPoly, RotR, RotRPoly, Snd, TT, Th, ThAux, ThAuxPoly, Unpaired, UnpairedPoly, Y, YPoly, fixedPoint, «term&_», «term_⬝'_»
43
TheoremsB_def, C_def, FF_correct, H_def, elimVar_correct, toSKI_correct, R_def, TT_correct, ThAux_def, Th_correct, Y_correct, Y_def, and_correct, and_def, cond_correct, del_def, fixedPoint_correct, fst_correct, isBool_trans, neg_correct, or_correct, or_def, pair_def, rotL_def, rotR_def, snd_correct, unpaired_correct, unpaired_def
28
Total71

Cslib.SKI

Definitions

NameCategoryTheorems
And πŸ“–CompOp
2 mathmath: and_def, and_correct
AndPoly πŸ“–CompOpβ€”
B πŸ“–CompOp
1 mathmath: B_def
BPoly πŸ“–CompOpβ€”
C πŸ“–CompOp
1 mathmath: C_def
CPoly πŸ“–CompOpβ€”
CoeTermPolynomial πŸ“–CompOpβ€”
Cond πŸ“–CompOp
6 mathmath: or_def, cond_correct, and_def, rec_def, rfindAboveAux_def, recAux_def
Del πŸ“–CompOp
1 mathmath: del_def
DelPoly πŸ“–CompOpβ€”
FF πŸ“–CompOp
5 mathmath: isZero_def, or_def, and_def, FF_correct, TF_nequiv
Fst πŸ“–CompOp
3 mathmath: pred_def, unpaired_def, fst_correct
H πŸ“–CompOp
2 mathmath: H_def, Y_def
HPoly πŸ“–CompOpβ€”
IsBool πŸ“–MathDef
4 mathmath: isZero_correct, le_correct, FF_correct, TT_correct
MkPair πŸ“–CompOp
7 mathmath: pred_def, pair_def, predAux_def, snd_correct, fst_correct, unpaired_correct, predAux_correct'
Neg πŸ“–CompOp
1 mathmath: neg_correct
Or πŸ“–CompOp
2 mathmath: or_def, or_correct
OrPoly πŸ“–CompOpβ€”
PairPoly πŸ“–CompOpβ€”
Polynomial πŸ“–CompDataβ€”
R πŸ“–CompOp
1 mathmath: R_def
RPoly πŸ“–CompOpβ€”
RotL πŸ“–CompOp
1 mathmath: rotL_def
RotLPoly πŸ“–CompOpβ€”
RotR πŸ“–CompOp
1 mathmath: rotR_def
RotRPoly πŸ“–CompOpβ€”
Snd πŸ“–CompOp
3 mathmath: predAux_def, unpaired_def, snd_correct
TT πŸ“–CompOp
5 mathmath: isZero_def, or_def, and_def, TF_nequiv, TT_correct
Th πŸ“–CompOp
1 mathmath: Th_correct
ThAux πŸ“–CompOp
1 mathmath: ThAux_def
ThAuxPoly πŸ“–CompOpβ€”
Unpaired πŸ“–CompOp
2 mathmath: unpaired_def, unpaired_correct
UnpairedPoly πŸ“–CompOpβ€”
Y πŸ“–CompOp
2 mathmath: Y_correct, Y_def
YPoly πŸ“–CompOpβ€”
fixedPoint πŸ“–CompOp
1 mathmath: fixedPoint_correct
Β«term&_Β» πŸ“–CompOpβ€”
Β«term_⬝'_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
B_def πŸ“–mathematicalβ€”Cslib.SKI
Red
app
B
β€”Polynomial.toSKI_correct
C_def πŸ“–mathematicalβ€”Cslib.SKI
Red
app
C
β€”Polynomial.toSKI_correct
FF_correct πŸ“–mathematicalβ€”IsBool
FF
β€”β€”
H_def πŸ“–mathematicalβ€”Cslib.SKI
Red
app
H
β€”Polynomial.toSKI_correct
R_def πŸ“–mathematicalβ€”Cslib.SKI
Red
app
R
β€”Polynomial.toSKI_correct
TT_correct πŸ“–mathematicalβ€”IsBool
TT
β€”MRed.K
ThAux_def πŸ“–mathematicalβ€”Cslib.SKI
Red
app
ThAux
β€”Polynomial.toSKI_correct
Th_correct πŸ“–mathematicalβ€”Cslib.SKI
Red
app
Th
β€”ThAux_def
Y_correct πŸ“–mathematicalβ€”CommonReduct
app
Y
β€”Y_def
H_def
MRed.tail
Y_def πŸ“–mathematicalβ€”Cslib.SKI
Red
app
Y
H
β€”Polynomial.toSKI_correct
and_correct πŸ“–mathematicalIsBoolapp
And
β€”isBool_trans
and_def
cond_correct
FF_correct
and_def πŸ“–mathematicalβ€”Cslib.SKI
Red
app
And
Cond
TT
FF
β€”Polynomial.toSKI_correct
cond_correct πŸ“–mathematicalIsBoolCslib.SKI
Red
app
Cond
β€”rotR_def
del_def πŸ“–mathematicalβ€”Cslib.SKI
Red
app
Del
β€”Polynomial.toSKI_correct
fixedPoint_correct πŸ“–mathematicalβ€”Cslib.SKI
Red
fixedPoint
app
β€”H_def
fst_correct πŸ“–mathematicalβ€”Cslib.SKI
Red
app
Fst
MkPair
β€”R_def
cond_correct
TT_correct
isBool_trans πŸ“–β€”Cslib.SKI
Red
IsBool
β€”β€”MRed.head
neg_correct πŸ“–mathematicalIsBoolapp
Neg
β€”isBool_trans
cond_correct
or_correct πŸ“–mathematicalIsBoolapp
Or
β€”isBool_trans
or_def
cond_correct
or_def πŸ“–mathematicalβ€”Cslib.SKI
Red
app
Or
Cond
TT
FF
β€”Polynomial.toSKI_correct
pair_def πŸ“–mathematicalβ€”Cslib.SKI
Red
app
Pair
MkPair
β€”Polynomial.toSKI_correct
rotL_def πŸ“–mathematicalβ€”Cslib.SKI
Red
app
RotL
β€”Polynomial.toSKI_correct
rotR_def πŸ“–mathematicalβ€”Cslib.SKI
Red
app
RotR
β€”Polynomial.toSKI_correct
snd_correct πŸ“–mathematicalβ€”Cslib.SKI
Red
app
Snd
MkPair
β€”R_def
cond_correct
FF_correct
unpaired_correct πŸ“–mathematicalβ€”Cslib.SKI
Red
app
Unpaired
MkPair
β€”unpaired_def
parallel_mRed
MRed.tail
fst_correct
snd_correct
unpaired_def πŸ“–mathematicalβ€”Cslib.SKI
Red
app
Unpaired
Fst
Snd
β€”Polynomial.toSKI_correct

Cslib.SKI.Polynomial

Definitions

NameCategoryTheorems
elimVar πŸ“–CompOp
1 mathmath: elimVar_correct
eval πŸ“–CompOp
2 mathmath: toSKI_correct, elimVar_correct
toSKI πŸ“–CompOp
1 mathmath: toSKI_correct
varFreeToSKI πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
elimVar_correct πŸ“–mathematicalCslib.SKICslib.SKI.Red
Cslib.SKI.app
eval
elimVar
β€”β€”
toSKI_correct πŸ“–mathematicalCslib.SKICslib.SKI.Red
Cslib.SKI.applyList
toSKI
eval
β€”toSKI.eq_def
eval.congr_simp
Cslib.SKI.applyList_concat
Cslib.SKI.MRed.head
elimVar_correct

---

← Back to Index