Documentation Verification Report

Recursion

📁 Source: Cslib/Languages/CombinatoryLogic/Recursion.lean

Statistics

MetricCount
DefinitionsAdd, AddPoly, Church, IsChurch, IsChurchPair, IsZero, IsZeroPoly, LE, LEPoly, Mul, MulPoly, One, Pred, PredAux, PredAuxPoly, PredPoly, RFind, RFindAbove, RFindAboveAux, RFindAboveAuxPoly, Rec, RecAux, RecAuxPoly, Sub, SubPoly, Succ, Zero
27
TheoremsRFindAbove_correct, RFind_correct, add_correct, add_def, church_red, isChurchPair_trans, isChurch_trans, isZero_correct, isZero_def, le_correct, le_def, mul_correct, mul_def, one_correct, predAux_correct, predAux_correct', predAux_def, pred_correct, pred_def, recAux_def, rec_def, rec_succ, rec_zero, rfindAboveAux_base, rfindAboveAux_def, rfindAboveAux_step, sub_correct, sub_def, succ_correct, zero_correct
30
Total57

Cslib.SKI

Definitions

NameCategoryTheorems
Add 📖CompOp
3 mathmath: add_correct, mul_def, add_def
AddPoly 📖CompOp
Church 📖CompOp
3 mathmath: church_red, churchK_church, predAux_correct'
IsChurch 📖MathDef
2 mathmath: zero_correct, one_correct
IsChurchPair 📖MathDef
1 mathmath: predAux_correct'
IsZero 📖CompOp
6 mathmath: isZero_def, isZero_correct, le_def, rec_def, rfindAboveAux_def, recAux_def
IsZeroPoly 📖CompOp
LE 📖CompOp
2 mathmath: le_correct, le_def
LEPoly 📖CompOp
Mul 📖CompOp
2 mathmath: mul_correct, mul_def
MulPoly 📖CompOp
One 📖CompOp
1 mathmath: one_correct
Pred 📖CompOp
6 mathmath: pred_def, pred_correct, rec_succ, rec_def, recAux_def, sub_def
PredAux 📖CompOp
4 mathmath: pred_def, predAux_def, predAux_correct, predAux_correct'
PredAuxPoly 📖CompOp
PredPoly 📖CompOp
RFind 📖CompOp
1 mathmath: RFind_correct
RFindAbove 📖CompOp
1 mathmath: RFindAbove_correct
RFindAboveAux 📖CompOp
3 mathmath: rfindAboveAux_def, rfindAboveAux_base, rfindAboveAux_step
RFindAboveAuxPoly 📖CompOp
Rec 📖CompOp
3 mathmath: rec_zero, rec_succ, rec_def
RecAux 📖CompOp
1 mathmath: recAux_def
RecAuxPoly 📖CompOp
Sub 📖CompOp
3 mathmath: sub_correct, le_def, sub_def
SubPoly 📖CompOp
Succ 📖CompOp
5 mathmath: predAux_def, rfindAboveAux_def, rfindAboveAux_step, add_def, succ_correct
Zero 📖CompOp
4 mathmath: pred_def, zero_correct, predAux_correct', mul_def

Theorems

NameKindAssumesProvesValidatesDepends On
RFindAbove_correct 📖mathematicalIsChurch
app
RFindAboveisChurch_trans
MRed.head
fixedPoint_correct
rfindAboveAux_base
rfindAboveAux_step
succ_correct
RFind_correct 📖mathematicalIsChurch
app
RFindRFindAbove_correct
zero_correct
add_correct 📖mathematicalIsChurchapp
Add
isChurch_trans
add_def
succ_correct
add_def 📖mathematicalCslib.SKI
Red
app
Add
Succ
Polynomial.toSKI_correct
church_red 📖mathematicalCslib.SKI
Red
Churchparallel_mRed
isChurchPair_trans 📖Cslib.SKI
Red
IsChurchPair
isChurch_trans
MRed.tail
isChurch_trans 📖Cslib.SKI
Red
IsChurch
MRed.head
isZero_correct 📖mathematicalIsChurchIsBool
app
IsZero
isBool_trans
isZero_def
TT_correct
FF_correct
isZero_def 📖mathematicalCslib.SKI
Red
app
IsZero
K
FF
TT
Polynomial.toSKI_correct
le_correct 📖mathematicalIsChurchIsBool
app
LE
isBool_trans
le_def
isZero_correct
sub_correct
le_def 📖mathematicalCslib.SKI
Red
app
LE
IsZero
Sub
Polynomial.toSKI_correct
mul_correct 📖mathematicalIsChurchapp
Mul
isChurch_trans
mul_def
zero_correct
add_correct
mul_def 📖mathematicalCslib.SKI
Red
app
Mul
Add
Zero
Polynomial.toSKI_correct
one_correct 📖mathematicalIsChurch
One
MRed.head
predAux_correct 📖mathematicalIsChurchPairapp
PredAux
isChurchPair_trans
predAux_def
isChurch_trans
fst_correct
snd_correct
succ_correct
predAux_correct' 📖mathematicalIsChurchPair
Church
PredAux
app
MkPair
Zero
isChurchPair_trans
isChurch_trans
fst_correct
zero_correct
snd_correct
predAux_correct
predAux_def 📖mathematicalCslib.SKI
Red
app
PredAux
MkPair
Snd
Succ
Polynomial.toSKI_correct
pred_correct 📖mathematicalIsChurchapp
Pred
isChurch_trans
pred_def
MRed.tail
predAux_correct'
pred_def 📖mathematicalCslib.SKI
Red
app
Pred
Fst
PredAux
MkPair
Zero
Polynomial.toSKI_correct
recAux_def 📖mathematicalCslib.SKI
Red
app
RecAux
Cond
Pred
IsZero
Polynomial.toSKI_correct
rec_def 📖mathematicalCslib.SKI
Red
app
Rec
Cond
Pred
IsZero
MRed.head
fixedPoint_correct
recAux_def
rec_succ 📖mathematicalIsChurchCslib.SKI
Red
app
Rec
Pred
rec_def
cond_correct
isZero_correct
rec_zero 📖mathematicalIsChurchCslib.SKI
Red
app
Rec
rec_def
cond_correct
isZero_correct
rfindAboveAux_base 📖mathematicalIsChurch
app
Cslib.SKI
Red
RFindAboveAux
rfindAboveAux_def
cond_correct
isZero_correct
rfindAboveAux_def 📖mathematicalCslib.SKI
Red
app
RFindAboveAux
Cond
Succ
IsZero
Polynomial.toSKI_correct
rfindAboveAux_step 📖mathematicalIsChurch
app
Cslib.SKI
Red
RFindAboveAux
Succ
rfindAboveAux_def
cond_correct
isZero_correct
sub_correct 📖mathematicalIsChurchapp
Sub
isChurch_trans
sub_def
pred_correct
sub_def 📖mathematicalCslib.SKI
Red
app
Sub
Pred
Polynomial.toSKI_correct
succ_correct 📖mathematicalIsChurchapp
Succ
B_def
MRed.tail
zero_correct 📖mathematicalIsChurch
Zero
Church.eq_def

---

← Back to Index