Documentation Verification Report

Basic

📁 Source: Cslib/Logics/LinearLogic/CLL/Basic.lean

Statistics

MetricCount
DefinitionsProof, ax', bot_inversion, cut', parr_inversion, rwConclusion, with_inversion₁, with_inversion₂, Proposition, Equiv, bang_top_eqv_one, chooseEquiv, dual, equiv, refl, symm, trans, linImpl, negative, negative_decidable, oplus_idem, parr_top_eqv_top, positive, positive_decidable, propositionSetoid, quest_zero_eqv_bot, subst_eqv, subst_eqv_head, tensor_assoc, tensor_distrib_oplus, tensor_symm, tensor_zero_eqv_zero, with_idem, Sequent, Provable, toProof, allQuest, instBEqProposition, beq, instBotProposition, instCoeEquivEquiv, instCoeProofProvable, instDecidableEqProposition, decEq, instOneProposition, instTopProposition, instZeroProposition, term!_, term_⅋_, «term_&_», «term_≡_», «term_≡⇓_», «term_⊕_», «term_⊗_», «term_⊸_», «term_⫠», «termʔ_», «term⇓_»
58
Theoremsrefl, symm, trans, add_middle_eq_cons, dual_inj, dual_involution, dual_neq, dual_sizeOf, toProp, instSymmProvableConsTensor, top_eq_zero_dual, fromProof
12
Total70

Cslib.CLL

Definitions

NameCategoryTheorems
Proof 📖CompData
Proposition 📖CompData
4 math, 1 bridgemath: Proposition.add_middle_eq_cons, Proposition.dual_sizeOf, Proposition.top_eq_zero_dual, Proposition.instSymmProvableConsTensor
bridge: Proof.expand_onlyAtomicAxioms
Sequent 📖CompOp
1 bridgebridge: Proof.expand_onlyAtomicAxioms
instBEqProposition 📖CompOp
instBotProposition 📖CompOp
instCoeEquivEquiv 📖CompOp
instCoeProofProvable 📖CompOp
instDecidableEqProposition 📖CompOp
instOneProposition 📖CompOp
instTopProposition 📖CompOp
1 mathmath: Proposition.top_eq_zero_dual
instZeroProposition 📖CompOp
1 mathmath: Proposition.top_eq_zero_dual
term!_ 📖CompOp
term_⅋_ 📖CompOp
«term_&_» 📖CompOp
«term_≡_» 📖CompOp
«term_≡⇓_» 📖CompOp
«term_⊕_» 📖CompOp
«term_⊗_» 📖CompOp
«term_⊸_» 📖CompOp
«term_⫠» 📖CompOp
«termʔ_» 📖CompOp
«term⇓_» 📖CompOp

Cslib.CLL.Proof

Definitions

NameCategoryTheorems
ax' 📖CompOp
bot_inversion 📖CompOp
cut' 📖CompOp
parr_inversion 📖CompOp
rwConclusion 📖CompOp
1 bridgebridge: onlyAtomicAxioms_rwConclusion
with_inversion₁ 📖CompOp
with_inversion₂ 📖CompOp

Cslib.CLL.Proposition

Definitions

NameCategoryTheorems
Equiv 📖MathDef
2 mathmath: Equiv.refl, equiv.toProp
bang_top_eqv_one 📖CompOp
chooseEquiv 📖CompOp
dual 📖CompOp
4 math, 1 bridgemath: dual_involution, dual_inj, dual_sizeOf, top_eq_zero_dual
bridge: Cslib.CLL.Proof.expand_onlyAtomicAxioms
equiv 📖CompOp
linImpl 📖CompOp
negative 📖CompOp
negative_decidable 📖CompOp
oplus_idem 📖CompOp
parr_top_eqv_top 📖CompOp
positive 📖CompOp
positive_decidable 📖CompOp
propositionSetoid 📖CompOp
quest_zero_eqv_bot 📖CompOp
subst_eqv 📖CompOp
subst_eqv_head 📖CompOp
tensor_assoc 📖CompOp
tensor_distrib_oplus 📖CompOp
tensor_symm 📖CompOp
tensor_zero_eqv_zero 📖CompOp
with_idem 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
add_middle_eq_cons 📖mathematicalCslib.CLL.Proposition
dual_inj 📖mathematicaldual
dual_involution 📖mathematicaldual
dual_neq 📖
dual_sizeOf 📖mathematicalCslib.CLL.Proposition
dual
instSymmProvableConsTensor 📖mathematicalCslib.CLL.Proposition
Cslib.CLL.Sequent.Provable
tensor
Cslib.CLL.Sequent.Provable.fromProof
top_eq_zero_dual 📖mathematicalCslib.CLL.Proposition
Cslib.CLL.instTopProposition
dual
Cslib.CLL.instZeroProposition

Cslib.CLL.Proposition.Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
refl 📖mathematicalCslib.CLL.Proposition.EquivCslib.CLL.Proposition.equiv.toProp
symm 📖Cslib.CLL.Proposition.Equiv
trans 📖Cslib.CLL.Proposition.EquivCslib.CLL.Sequent.Provable.fromProof

Cslib.CLL.Proposition.equiv

Definitions

NameCategoryTheorems
refl 📖CompOp
symm 📖CompOp
trans 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
toProp 📖mathematicalCslib.CLL.Proposition.EquivCslib.CLL.Sequent.Provable.fromProof

Cslib.CLL.Sequent

Definitions

NameCategoryTheorems
Provable 📖MathDef
2 mathmath: Provable.fromProof, Cslib.CLL.Proposition.instSymmProvableConsTensor
allQuest 📖CompOp

Cslib.CLL.Sequent.Provable

Definitions

NameCategoryTheorems
toProof 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
fromProof 📖mathematicalCslib.CLL.Sequent.Provable

Cslib.CLL.instBEqProposition

Definitions

NameCategoryTheorems
beq 📖CompOp

Cslib.CLL.instDecidableEqProposition

Definitions

NameCategoryTheorems
decEq 📖CompOp

---

← Back to Index