Documentation Verification Report

Basic

๐Ÿ“ Source: Cslib/Logics/LinearLogic/CLL/PhaseSemantics/Basic.lean

Statistics

MetricCount
DefinitionsPhaseSpace, Fact, IsValid, bang, carrier, linImpl, mk_dual, mk_subset, neg, oplus, parr, quest, tensor, term!_, term_โ…‹_, withh, ยซterm_&_ยป, ยซterm_แ—ฎยป, ยซterm_โŠ•_ยป, ยซterm_โŠ—_ยป, ยซterm_โŠธ_ยป, ยซtermส”_ยป, I, biorthogonalClosure, bot, carriersInf, dualFact, idempotentsIn, imp, instBotFact, instCoeFactSet, instHasSubsetFact, instInfSetFact, instMinFact, instOneFact, instPartialOrderFact, instSetLikeFact, instTopFact, instZeroFact, interpProp, isFact, orthogonal, toCommMonoid, ยซterm_โซ ยป, ยซtermโŸฆ_โŸง_ยป
45
Theoremsbot_par, coe_neg, coe_tensor_assoc, entails_top, entails_with, eq, le_plus_left, le_plus_right, linImpl_bot, linImpl_iff_implies, linImpl_of_par, linImpl_of_tensor, linImpl_par, linImpl_par', mk_dual_coe, mk_subset_coe, mul_subset_tensor, neg_bot, neg_eq_iff, neg_inj, neg_injective, neg_involutive, neg_le_neg_iff, neg_linImpl_neg, neg_neg, neg_one, neg_par, neg_plus, neg_surjective, neg_tensor, neg_top, neg_with, neg_zero, one_linImpl, one_tensor, par_assoc, par_bot, par_comm, par_distrib_with, par_le_par, par_of_linImpl, par_of_tensor, par_semi_distrib_plus, par_top, plus_assoc, plus_comm, plus_entails, plus_eq_with_dual, plus_tensor_distrib, plus_zero, property, tensor_assoc, tensor_assoc_aux, tensor_comm, tensor_distrib_plus, tensor_le_tensor, tensor_linImpl, tensor_of_linImpl, tensor_of_par, tensor_one, tensor_rotate, tensor_semi_distrib_with, tensor_zero, top_par, top_with, valid_with, with_assoc, with_comm, with_eq_plus_dual, with_par_distrib, with_tensor_semi_distrib, with_top, zero_entails, zero_plus, zero_tensor, biorth_least_fact, closed, coe_min, coe_mk, coe_one, coe_top, coe_zero, dualFact_coe, dualFact_empty, dual_dual_subset_Fact_iff, dual_dual_subset_dual_iff, dual_empty, dual_subset_dual, iInter_biorth_eq_orth_iUnion_orth, iInter_eq_sInf_image, inter_eq_orth_union_orth, inter_isFact_of_isFact, isFact_iff_closed, mem_carrier, mem_dual, mem_one, mem_top, mem_zero, mul_mem_one, of_Fact, one_mem_one, orth_antitone, orth_extensive, orth_iUnion, orth_one_eq_bot, orthogonal_def, sInf_isFact, subset_dual_dual, triple_dual, triple_orth, zero_least_fact
111
Total156

Cslib.CLL

Definitions

NameCategoryTheorems
PhaseSpace ๐Ÿ“–CompDataโ€”

Cslib.CLL.PhaseSpace

Definitions

NameCategoryTheorems
Fact ๐Ÿ“–CompData
55 mathmath: Fact.neg_involutive, Fact.neg_bot, Fact.entails_top, dualFact_empty, Fact.neg_le_neg_iff, inter_eq_orth_union_orth, Fact.bot_par, mem_top, mem_carrier, Fact.linImpl_iff_implies, mem_one, Fact.zero_tensor, Fact.par_semi_distrib_plus, Fact.coe_tensor_assoc, coe_mk, Fact.tensor_zero, Fact.eq, zero_least_fact, Fact.top_par, Fact.neg_surjective, Fact.tensor_one, Fact.neg_injective, dualFact_coe, Fact.plus_zero, of_Fact, coe_min, Fact.top_with, Fact.mk_dual_coe, mem_dual, Fact.neg_top, Fact.mk_subset_coe, closed, Fact.zero_entails, Fact.par_bot, one_mem_one, Fact.neg_one, Fact.one_tensor, Fact.coe_neg, Fact.with_top, coe_one, Fact.tensor_semi_distrib_with, Fact.le_plus_left, Fact.linImpl_bot, coe_top, Fact.le_plus_right, Fact.with_tensor_semi_distrib, Fact.one_linImpl, mem_zero, Fact.mul_subset_tensor, dual_dual_subset_Fact_iff, Fact.par_top, Fact.neg_zero, sInf_isFact, coe_zero, Fact.zero_plus
I ๐Ÿ“–CompOpโ€”
biorthogonalClosure ๐Ÿ“–CompOp
1 mathmath: isFact_iff_closed
bot ๐Ÿ“–CompOp
5 mathmath: mem_one, mem_dual, orth_one_eq_bot, coe_one, mem_zero
carriersInf ๐Ÿ“–CompOpโ€”
dualFact ๐Ÿ“–CompOp
2 mathmath: dualFact_empty, dualFact_coe
idempotentsIn ๐Ÿ“–CompOpโ€”
imp ๐Ÿ“–CompOp
1 mathmath: Fact.linImpl_iff_implies
instBotFact ๐Ÿ“–CompOp
5 mathmath: Fact.neg_bot, Fact.bot_par, Fact.par_bot, Fact.neg_one, Fact.linImpl_bot
instCoeFactSet ๐Ÿ“–CompOpโ€”
instHasSubsetFact ๐Ÿ“–CompOpโ€”
instInfSetFact ๐Ÿ“–CompOpโ€”
instMinFact ๐Ÿ“–CompOp
1 mathmath: coe_min
instOneFact ๐Ÿ“–CompOp
8 mathmath: Fact.neg_bot, mem_one, Fact.tensor_one, one_mem_one, Fact.neg_one, Fact.one_tensor, coe_one, Fact.one_linImpl
instPartialOrderFact ๐Ÿ“–CompOp
6 mathmath: Fact.neg_le_neg_iff, Fact.par_semi_distrib_plus, Fact.tensor_semi_distrib_with, Fact.le_plus_left, Fact.le_plus_right, Fact.with_tensor_semi_distrib
instSetLikeFact ๐Ÿ“–CompOp
24 mathmath: inter_eq_orth_union_orth, mem_top, mem_carrier, Fact.linImpl_iff_implies, mem_one, Fact.coe_tensor_assoc, coe_mk, Fact.eq, dualFact_coe, of_Fact, coe_min, Fact.mk_dual_coe, mem_dual, Fact.mk_subset_coe, closed, one_mem_one, Fact.coe_neg, coe_one, coe_top, mem_zero, Fact.mul_subset_tensor, dual_dual_subset_Fact_iff, sInf_isFact, coe_zero
instTopFact ๐Ÿ“–CompOp
11 mathmath: Fact.entails_top, dualFact_empty, mem_top, Fact.top_par, Fact.top_with, Fact.neg_top, Fact.zero_entails, Fact.with_top, coe_top, Fact.par_top, Fact.neg_zero
instZeroFact ๐Ÿ“–CompOp
10 mathmath: Fact.zero_tensor, Fact.tensor_zero, zero_least_fact, Fact.plus_zero, Fact.neg_top, Fact.zero_entails, mem_zero, Fact.neg_zero, coe_zero, Fact.zero_plus
interpProp ๐Ÿ“–CompOpโ€”
isFact ๐Ÿ“–MathDef
4 mathmath: Fact.property, isFact_iff_closed, closed, sInf_isFact
orthogonal ๐Ÿ“–CompOp
22 mathmath: triple_dual, inter_eq_orth_union_orth, orth_iUnion, orth_antitone, dual_empty, Fact.coe_tensor_assoc, biorth_least_fact, dual_subset_dual, Fact.eq, Fact.tensor_assoc_aux, subset_dual_dual, orth_extensive, iInter_biorth_eq_orth_iUnion_orth, mem_dual, triple_orth, orth_one_eq_bot, Fact.coe_neg, coe_one, orthogonal_def, dual_dual_subset_dual_iff, dual_dual_subset_Fact_iff, coe_zero
toCommMonoid ๐Ÿ“–CompOp
9 mathmath: mem_one, Fact.coe_tensor_assoc, Fact.tensor_assoc_aux, mul_mem_one, mem_dual, one_mem_one, orth_one_eq_bot, mem_zero, Fact.mul_subset_tensor
ยซterm_โซ ยป ๐Ÿ“–CompOpโ€”
ยซtermโŸฆ_โŸง_ยป ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
biorth_least_fact ๐Ÿ“–mathematicalisFactorthogonalโ€”โ€”
closed ๐Ÿ“–mathematicalโ€”isFact
Fact
instSetLikeFact
โ€”Fact.property
coe_min ๐Ÿ“–mathematicalโ€”Fact
instSetLikeFact
instMinFact
โ€”โ€”
coe_mk ๐Ÿ“–mathematicalisFactFact
instSetLikeFact
โ€”โ€”
coe_one ๐Ÿ“–mathematicalโ€”Fact
instSetLikeFact
instOneFact
orthogonal
bot
โ€”โ€”
coe_top ๐Ÿ“–mathematicalโ€”Fact
instSetLikeFact
instTopFact
โ€”โ€”
coe_zero ๐Ÿ“–mathematicalโ€”Fact
instSetLikeFact
instZeroFact
orthogonal
โ€”โ€”
dualFact_coe ๐Ÿ“–mathematicalโ€”Fact
instSetLikeFact
dualFact
โ€”โ€”
dualFact_empty ๐Ÿ“–mathematicalโ€”dualFact
Fact
instTopFact
โ€”โ€”
dual_dual_subset_Fact_iff ๐Ÿ“–mathematicalโ€”orthogonal
Fact
instSetLikeFact
โ€”Fact.eq
dual_dual_subset_dual_iff ๐Ÿ“–mathematicalโ€”orthogonalโ€”dual_dual_subset_Fact_iff
dual_empty ๐Ÿ“–mathematicalโ€”orthogonalโ€”โ€”
dual_subset_dual ๐Ÿ“–mathematicalโ€”orthogonalโ€”โ€”
iInter_biorth_eq_orth_iUnion_orth ๐Ÿ“–mathematicalโ€”orthogonalโ€”orth_iUnion
iInter_eq_sInf_image ๐Ÿ“–โ€”โ€”โ€”โ€”โ€”
inter_eq_orth_union_orth ๐Ÿ“–mathematicalโ€”Fact
instSetLikeFact
orthogonal
โ€”โ€”
inter_isFact_of_isFact ๐Ÿ“–โ€”isFactโ€”โ€”sInf_isFact
isFact_iff_closed ๐Ÿ“–mathematicalโ€”isFact
biorthogonalClosure
โ€”โ€”
mem_carrier ๐Ÿ“–mathematicalโ€”Fact.carrier
Fact
instSetLikeFact
โ€”โ€”
mem_dual ๐Ÿ“–mathematicalโ€”orthogonal
Fact
instSetLikeFact
bot
toCommMonoid
โ€”โ€”
mem_one ๐Ÿ“–mathematicalโ€”Fact
instSetLikeFact
instOneFact
bot
toCommMonoid
โ€”โ€”
mem_top ๐Ÿ“–mathematicalโ€”Fact
instSetLikeFact
instTopFact
โ€”โ€”
mem_zero ๐Ÿ“–mathematicalโ€”Fact
instSetLikeFact
instZeroFact
bot
toCommMonoid
โ€”โ€”
mul_mem_one ๐Ÿ“–mathematicalFact
instSetLikeFact
instOneFact
toCommMonoidโ€”โ€”
of_Fact ๐Ÿ“–mathematicalbot
toCommMonoid
Fact
instSetLikeFact
โ€”Fact.eq
one_mem_one ๐Ÿ“–mathematicalโ€”Fact
instSetLikeFact
instOneFact
toCommMonoid
โ€”โ€”
orth_antitone ๐Ÿ“–mathematicalโ€”orthogonalโ€”โ€”
orth_extensive ๐Ÿ“–mathematicalโ€”orthogonalโ€”โ€”
orth_iUnion ๐Ÿ“–mathematicalโ€”orthogonalโ€”โ€”
orth_one_eq_bot ๐Ÿ“–mathematicalโ€”orthogonal
toCommMonoid
bot
โ€”โ€”
orthogonal_def ๐Ÿ“–mathematicalโ€”orthogonalโ€”โ€”
sInf_isFact ๐Ÿ“–mathematicalโ€”isFact
Fact
instSetLikeFact
โ€”isFact_iff_closed
Fact.property
subset_dual_dual ๐Ÿ“–mathematicalโ€”orthogonalโ€”โ€”
triple_dual ๐Ÿ“–mathematicalโ€”orthogonalโ€”โ€”
triple_orth ๐Ÿ“–mathematicalโ€”orthogonalโ€”โ€”
zero_least_fact ๐Ÿ“–mathematicalisFactFact.carrier
Fact
instZeroFact
โ€”biorth_least_fact

Cslib.CLL.PhaseSpace.Fact

Definitions

NameCategoryTheorems
IsValid ๐Ÿ“–MathDef
1 mathmath: valid_with
bang ๐Ÿ“–CompOpโ€”
carrier ๐Ÿ“–CompOp
3 mathmath: Cslib.CLL.PhaseSpace.mem_carrier, property, Cslib.CLL.PhaseSpace.zero_least_fact
linImpl ๐Ÿ“–CompOp
15 mathmath: par_of_linImpl, entails_top, linImpl_of_par, tensor_of_linImpl, linImpl_iff_implies, plus_entails, tensor_linImpl, linImpl_of_tensor, linImpl_par', zero_entails, neg_linImpl_neg, entails_with, linImpl_bot, one_linImpl, linImpl_par
mk_dual ๐Ÿ“–CompOp
1 mathmath: mk_dual_coe
mk_subset ๐Ÿ“–CompOp
1 mathmath: mk_subset_coe
neg ๐Ÿ“–CompOp
26 mathmath: neg_neg, neg_involutive, neg_tensor, par_of_tensor, par_of_linImpl, neg_inj, neg_bot, neg_le_neg_iff, linImpl_of_par, tensor_of_linImpl, neg_with, neg_plus, neg_surjective, neg_injective, linImpl_of_tensor, neg_par, plus_eq_with_dual, neg_top, tensor_of_par, neg_one, coe_neg, neg_linImpl_neg, linImpl_bot, with_eq_plus_dual, neg_eq_iff, neg_zero
oplus ๐Ÿ“–CompOp
14 mathmath: neg_with, par_semi_distrib_plus, tensor_distrib_plus, neg_plus, plus_entails, plus_assoc, plus_comm, plus_zero, plus_eq_with_dual, le_plus_left, plus_tensor_distrib, le_plus_right, with_eq_plus_dual, zero_plus
parr ๐Ÿ“–CompOp
18 mathmath: neg_tensor, par_of_tensor, par_of_linImpl, linImpl_of_par, bot_par, par_semi_distrib_plus, top_par, linImpl_par', neg_par, par_le_par, par_bot, tensor_of_par, par_comm, with_par_distrib, par_distrib_with, par_assoc, linImpl_par, par_top
quest ๐Ÿ“–CompOpโ€”
tensor ๐Ÿ“–CompOp
21 mathmath: neg_tensor, par_of_tensor, tensor_comm, tensor_of_linImpl, zero_tensor, tensor_le_tensor, tensor_distrib_plus, coe_tensor_assoc, tensor_rotate, tensor_zero, tensor_one, tensor_linImpl, linImpl_of_tensor, neg_par, tensor_of_par, one_tensor, tensor_semi_distrib_with, tensor_assoc, plus_tensor_distrib, with_tensor_semi_distrib, mul_subset_tensor
term!_ ๐Ÿ“–CompOpโ€”
term_โ…‹_ ๐Ÿ“–CompOpโ€”
withh ๐Ÿ“–CompOp
15 mathmath: with_assoc, valid_with, neg_with, neg_plus, plus_entails, top_with, plus_eq_with_dual, with_comm, with_top, tensor_semi_distrib_with, with_par_distrib, entails_with, par_distrib_with, with_tensor_semi_distrib, with_eq_plus_dual
ยซterm_&_ยป ๐Ÿ“–CompOpโ€”
ยซterm_แ—ฎยป ๐Ÿ“–CompOpโ€”
ยซterm_โŠ•_ยป ๐Ÿ“–CompOpโ€”
ยซterm_โŠ—_ยป ๐Ÿ“–CompOpโ€”
ยซterm_โŠธ_ยป ๐Ÿ“–CompOpโ€”
ยซtermส”_ยป ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bot_par ๐Ÿ“–mathematicalโ€”parr
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instBotFact
โ€”par_of_tensor
one_tensor
neg_neg
coe_neg ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instSetLikeFact
neg
Cslib.CLL.PhaseSpace.orthogonal
โ€”โ€”
coe_tensor_assoc ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instSetLikeFact
tensor
Cslib.CLL.PhaseSpace.orthogonal
Cslib.CLL.PhaseSpace.toCommMonoid
โ€”eq
tensor_assoc_aux
Cslib.CLL.PhaseSpace.orth_antitone
Cslib.CLL.PhaseSpace.orth_extensive
entails_top ๐Ÿ“–mathematicalโ€”linImpl
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instTopFact
โ€”linImpl_of_par
par_top
entails_with ๐Ÿ“–mathematicalโ€”linImpl
withh
โ€”linImpl_of_par
par_distrib_with
eq ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instSetLikeFact
Cslib.CLL.PhaseSpace.orthogonal
โ€”property
le_plus_left ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instPartialOrderFact
oplus
โ€”Cslib.CLL.PhaseSpace.subset_dual_dual
le_plus_right ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instPartialOrderFact
oplus
โ€”Cslib.CLL.PhaseSpace.subset_dual_dual
linImpl_bot ๐Ÿ“–mathematicalโ€”linImpl
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instBotFact
neg
โ€”linImpl_of_tensor
tensor_one
linImpl_iff_implies ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instSetLikeFact
linImpl
Cslib.CLL.PhaseSpace.imp
โ€”linImpl.eq_1
Cslib.CLL.PhaseSpace.of_Fact
linImpl_of_par ๐Ÿ“–mathematicalโ€”linImpl
parr
neg
โ€”par_of_linImpl
neg_neg
linImpl_of_tensor ๐Ÿ“–mathematicalโ€”linImpl
neg
tensor
โ€”โ€”
linImpl_par ๐Ÿ“–mathematicalโ€”linImpl
parr
โ€”par_of_tensor
linImpl_of_tensor
neg_neg
tensor_assoc
linImpl_par' ๐Ÿ“–mathematicalโ€”linImpl
parr
โ€”par_comm
linImpl_par
mk_dual_coe ๐Ÿ“–mathematicalCslib.CLL.PhaseSpace.orthogonalCslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instSetLikeFact
mk_dual
โ€”โ€”
mk_subset_coe ๐Ÿ“–mathematicalCslib.CLL.PhaseSpace.orthogonalCslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instSetLikeFact
mk_subset
โ€”โ€”
mul_subset_tensor ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.toCommMonoid
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instSetLikeFact
tensor
โ€”Cslib.CLL.PhaseSpace.orth_extensive
neg_bot ๐Ÿ“–mathematicalโ€”neg
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instBotFact
Cslib.CLL.PhaseSpace.instOneFact
โ€”โ€”
neg_eq_iff ๐Ÿ“–mathematicalโ€”negโ€”neg_neg
neg_inj ๐Ÿ“–mathematicalโ€”negโ€”neg_injective
neg_injective ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.Fact
neg
โ€”neg_involutive
neg_involutive ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.Fact
neg
โ€”neg_neg
neg_le_neg_iff ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instPartialOrderFact
neg
โ€”neg_neg
Cslib.CLL.PhaseSpace.orth_antitone
neg_linImpl_neg ๐Ÿ“–mathematicalโ€”linImpl
neg
โ€”linImpl_of_tensor
neg_neg
tensor_comm
neg_neg ๐Ÿ“–mathematicalโ€”negโ€”eq
neg_one ๐Ÿ“–mathematicalโ€”neg
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instOneFact
Cslib.CLL.PhaseSpace.instBotFact
โ€”neg_bot
neg_neg
neg_par ๐Ÿ“–mathematicalโ€”neg
parr
tensor
โ€”par_of_tensor
neg_neg
neg_plus ๐Ÿ“–mathematicalโ€”neg
oplus
withh
โ€”plus_eq_with_dual
neg_neg
neg_surjective ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.Fact
neg
โ€”neg_involutive
neg_tensor ๐Ÿ“–mathematicalโ€”neg
tensor
parr
โ€”tensor_of_par
neg_neg
neg_top ๐Ÿ“–mathematicalโ€”neg
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instTopFact
Cslib.CLL.PhaseSpace.instZeroFact
โ€”โ€”
neg_with ๐Ÿ“–mathematicalโ€”neg
withh
oplus
โ€”with_eq_plus_dual
neg_neg
neg_zero ๐Ÿ“–mathematicalโ€”neg
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instZeroFact
Cslib.CLL.PhaseSpace.instTopFact
โ€”neg_top
neg_neg
one_linImpl ๐Ÿ“–mathematicalโ€”linImpl
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instOneFact
โ€”linImpl_of_tensor
one_tensor
neg_neg
one_tensor ๐Ÿ“–mathematicalโ€”tensor
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instOneFact
โ€”tensor.eq_1
Cslib.CLL.PhaseSpace.dual_dual_subset_Fact_iff
Cslib.CLL.PhaseSpace.orth_extensive
Cslib.CLL.PhaseSpace.orth_antitone
par_assoc ๐Ÿ“–mathematicalโ€”parrโ€”par_of_tensor
neg_neg
tensor_assoc
par_bot ๐Ÿ“–mathematicalโ€”parr
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instBotFact
โ€”par_of_tensor
tensor_one
neg_neg
par_comm ๐Ÿ“–mathematicalโ€”parrโ€”par_of_tensor
tensor_comm
par_distrib_with ๐Ÿ“–mathematicalโ€”parr
withh
โ€”with_eq_plus_dual
par_of_tensor
neg_neg
tensor_distrib_plus
par_le_par ๐Ÿ“–mathematicalCslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instPartialOrderFact
parrโ€”Cslib.CLL.PhaseSpace.orth_antitone
par_of_linImpl ๐Ÿ“–mathematicalโ€”parr
linImpl
neg
โ€”โ€”
par_of_tensor ๐Ÿ“–mathematicalโ€”parr
neg
tensor
โ€”tensor_of_par
neg_neg
par_semi_distrib_plus ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instPartialOrderFact
oplus
parr
โ€”neg_le_neg_iff
neg_par
neg_plus
tensor_semi_distrib_with
par_top ๐Ÿ“–mathematicalโ€”parr
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instTopFact
โ€”par_comm
top_par
plus_assoc ๐Ÿ“–mathematicalโ€”oplusโ€”plus_eq_with_dual
neg_neg
with_assoc
plus_comm ๐Ÿ“–mathematicalโ€”oplusโ€”oplus.eq_1
plus_entails ๐Ÿ“–mathematicalโ€”linImpl
oplus
withh
โ€”linImpl_of_tensor
plus_tensor_distrib
with_eq_plus_dual
neg_neg
plus_eq_with_dual ๐Ÿ“–mathematicalโ€”oplus
neg
withh
โ€”oplus.eq_1
withh.eq_1
plus_tensor_distrib ๐Ÿ“–mathematicalโ€”tensor
oplus
โ€”tensor_comm
tensor_distrib_plus
plus_zero ๐Ÿ“–mathematicalโ€”oplus
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instZeroFact
โ€”plus_eq_with_dual
neg_zero
with_top
neg_neg
property ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.isFact
carrier
โ€”โ€”
tensor_assoc ๐Ÿ“–mathematicalโ€”tensorโ€”โ€”
tensor_assoc_aux ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.toCommMonoid
Cslib.CLL.PhaseSpace.orthogonal
โ€”โ€”
tensor_comm ๐Ÿ“–mathematicalโ€”tensorโ€”tensor.eq_1
tensor_distrib_plus ๐Ÿ“–mathematicalโ€”tensor
oplus
โ€”tensor.eq_1
Cslib.CLL.PhaseSpace.dualFact.eq_1
mk_dual_coe
oplus.eq_1
Cslib.CLL.PhaseSpace.dual_dual_subset_Fact_iff
eq
tensor_assoc_aux
Cslib.CLL.PhaseSpace.dual_subset_dual
Cslib.CLL.PhaseSpace.subset_dual_dual
le_plus_left
mul_subset_tensor
le_plus_right
tensor_le_tensor ๐Ÿ“–mathematicalCslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instPartialOrderFact
tensorโ€”Cslib.CLL.PhaseSpace.orth_antitone
tensor_linImpl ๐Ÿ“–mathematicalโ€”linImpl
tensor
โ€”linImpl_of_tensor
tensor_assoc
neg_neg
tensor_of_linImpl ๐Ÿ“–mathematicalโ€”tensor
neg
linImpl
โ€”linImpl_of_tensor
neg_neg
tensor_of_par ๐Ÿ“–mathematicalโ€”tensor
neg
parr
โ€”eq
tensor_one ๐Ÿ“–mathematicalโ€”tensor
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instOneFact
โ€”tensor_comm
one_tensor
tensor_rotate ๐Ÿ“–mathematicalโ€”tensorโ€”tensor_comm
tensor_assoc
tensor_semi_distrib_with ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instPartialOrderFact
tensor
withh
โ€”Cslib.CLL.PhaseSpace.dual_subset_dual
tensor_zero ๐Ÿ“–mathematicalโ€”tensor
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instZeroFact
โ€”tensor_comm
zero_tensor
top_par ๐Ÿ“–mathematicalโ€”parr
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instTopFact
โ€”Cslib.CLL.PhaseSpace.coe_top
Cslib.CLL.PhaseSpace.orthogonal_def
top_with ๐Ÿ“–mathematicalโ€”withh
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instTopFact
โ€”โ€”
valid_with ๐Ÿ“–mathematicalโ€”IsValid
withh
โ€”โ€”
with_assoc ๐Ÿ“–mathematicalโ€”withhโ€”withh.eq_1
Cslib.CLL.PhaseSpace.coe_min
with_comm ๐Ÿ“–mathematicalโ€”withhโ€”Cslib.CLL.PhaseSpace.inter_eq_orth_union_orth
with_eq_plus_dual ๐Ÿ“–mathematicalโ€”withh
neg
oplus
โ€”plus_eq_with_dual
neg_neg
with_par_distrib ๐Ÿ“–mathematicalโ€”parr
withh
โ€”par_comm
par_distrib_with
with_tensor_semi_distrib ๐Ÿ“–mathematicalโ€”Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instPartialOrderFact
tensor
withh
โ€”tensor_comm
tensor_semi_distrib_with
with_top ๐Ÿ“–mathematicalโ€”withh
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instTopFact
โ€”โ€”
zero_entails ๐Ÿ“–mathematicalโ€”linImpl
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instZeroFact
Cslib.CLL.PhaseSpace.instTopFact
โ€”linImpl_of_par
neg_zero
top_par
zero_plus ๐Ÿ“–mathematicalโ€”oplus
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instZeroFact
โ€”plus_eq_with_dual
neg_zero
top_with
neg_neg
zero_tensor ๐Ÿ“–mathematicalโ€”tensor
Cslib.CLL.PhaseSpace.Fact
Cslib.CLL.PhaseSpace.instZeroFact
โ€”tensor_of_par
neg_zero
top_par

---

โ† Back to Index