Documentation Verification Report

set

📁 Source: MathlibTest/grind/set.lean

Statistics

MetricCount
Definitionsset, set, set, set, set, set, set
7
Theoremsset, set, set, set, set
5
Total12

HNNExtension.NormalWord.TransversalPair

Definitions

NameCategoryTheorems
set 📖CompOp
3 mathmath: HNNExtension.NormalWord.mem_set, HNNExtension.NormalWord.unitsSMulGroup_snd, compl

Infinite

Theorems

NameKindAssumesProvesValidatesDepends On
set 📖mathematicalInfinite
Set
of_injective
Set.singleton_injective

IsAddUnit

Theorems

NameKindAssumesProvesValidatesDepends On
set 📖mathematicalIsAddUnitSet
Set.addMonoid
Set.instSingletonSet
map
AddMonoidHom.instAddMonoidHomClass

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
set 📖mathematicalIsUnitSet
Set.monoid
Set.instSingletonSet
map
MonoidHom.instMonoidHomClass

List.Nodup

Theorems

NameKindAssumesProvesValidatesDepends On
set 📖of_cons

List.Vector

Definitions

NameCategoryTheorems
set 📖CompOp
8 mathmath: sum_set, get_set_same, prod_set, sum_set', toList_set, prod_set', get_set_eq_if, get_set_of_ne

MeasureTheory.Measure.FiniteSpanningSetsIn

Definitions

NameCategoryTheorems
set 📖CompOp
5 mathmath: spanning, finite, MeasureTheory.Measure.exists_eq_disjoint_finiteSpanningSetsIn, disjointed_set_eq, set_mem

MeasureTheory.closedCompactCylinders

Definitions

NameCategoryTheorems
set 📖CompOp
3 mathmath: isCompact, eq_cylinder, isClosed

MeasureTheory.measurableCylinders

Definitions

NameCategoryTheorems
set 📖CompOp
2 mathmath: eq_cylinder, measurableSet

Monoid.PushoutI.NormalWord.Transversal

Definitions

NameCategoryTheorems
set 📖CompOp
6 mathmath: compl, one_mem, Monoid.PushoutI.NormalWord.cons_head, Monoid.PushoutI.NormalWord.Pair.normalized, Monoid.PushoutI.NormalWord.normalized, Monoid.PushoutI.NormalWord.cons_toList

Stream'.Seq

Definitions

NameCategoryTheorems
set 📖CompOp
7 mathmath: set_cons_succ, get?_set_of_not_terminatedAt, set_nil, get?_set_of_terminatedAt, drop_set_of_lt, set_cons_zero, get?_set_of_ne

TopologicalSpace.NoetherianSpace

Theorems

NameKindAssumesProvesValidatesDepends On
set 📖mathematicalTopologicalSpace.NoetherianSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Topology.IsInducing.noetherianSpace
Topology.IsInducing.subtypeVal

---

← Back to Index