order 📖 | CompOp | 58 mathmath: le_order_subst_left', order_expand, degree_weierstrassMod_lt, Nat.Partition.tendsto_order_genFun_term_atTop_nhds_top, order_mul_ge, Polynomial.IsDistinguishedAt.degree_eq_coe_lift_order_map, le_order_smul, order_finite_iff_ne_zero, IsWeierstrassFactorization.isWeierstrassDivision, le_order_subst_right', IsWeierstrassDivisionAt.degree_lt, IsWeierstrassFactorizationAt.natDegree_eq_toNat_order_map_of_ne_top, le_order_map, order_monomial, le_order_mul, IsWeierstrassFactorization.natDegree_eq_toNat_order_map, order_zero, one_le_order_iff_constCoeff_eq_zero, coe_toNat_order, le_order_pow_of_constantCoeff_eq_zero, IsWeierstrassDivisorAt.isUnit_shift, order_eq_order, constantCoeff_divXPowOrder, min_order_le_order_add, order_exp, le_order_pow, order_pow, le_order_subst, order_prod, order_le, order_zero_of_unit, order_one, le_order, X_pow_order_dvd, coeff_divXPowOrder, order_toSubring, IsWeierstrassFactorization.degree_eq_coe_lift_order_map, coe_orderHom, IsWeierstrassFactorizationAt.degree_eq_coe_lift_order_map_of_ne_top, isWeierstrassDivisionAt_iff, order_neg, X_pow_order_mul_divXPowOrder, order_eq_top, order_X, order_eq, order_add_of_order_ne, order_eq_emultiplicity_X, order_mul, nat_le_order, IsWeierstrassDivisorAt.seq_one, order_X_pow, le_order_prod, order_add_of_order_eq, le_weightedOrder_subst, Polynomial.IsDistinguishedAt.coe_natDegree_eq_order_map, order_monomial_of_ne_zero, le_order_subst_left, order_eq_nat
|