Documentation Verification Report

sqrt

πŸ“ Source: MathlibTest/sqrt.lean

Statistics

MetricCount
Definitionssqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt
9
Theoremssqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt, sqrt
26
Total35

AEMeasurable

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalAEMeasurable
Real
Real.measurableSpace
Real.sqrtβ€”Measurable.comp_aemeasurable
Continuous.measurable
BorelSpace.opensMeasurable
Real.borelSpace
Real.continuous_sqrt

Asymptotics.IsBigO

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalAsymptotics.IsBigO
Real
Real.norm
Filter.EventuallyLE
Real.instLE
Pi.instZero
Real.instZero
Real.sqrtβ€”Nat.instAtLeastTwoHAddOfNat
Real.sqrt_eq_rpow
one_div
rpow
LT.lt.le
one_half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing

Asymptotics.IsLittleO

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalAsymptotics.IsLittleO
Real
Real.norm
Filter.EventuallyLE
Real.instLE
Pi.instZero
Real.instZero
Real.sqrtβ€”Nat.instAtLeastTwoHAddOfNat
Real.sqrt_eq_rpow
one_div
rpow
one_half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing

Asymptotics.IsTheta

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalAsymptotics.IsTheta
Real
Real.norm
Filter.EventuallyLE
Real.instLE
Pi.instZero
Real.instZero
Real.sqrtβ€”Asymptotics.IsBigO.sqrt

CFC

Definitions

NameCategoryTheorems
sqrt πŸ“–CompOp
57 mathmath: sqrt_eq_one_iff', sq_sqrt, nnnorm_sqrt, sqrt_rpow, Matrix.PosSemidef.sqrt_eq_zero_iff, CStarAlgebra.nonneg_iff_eq_sqrt_mul_sqrt, IsUnit.cfcSqrt, sqrt_unique, continuousOn_sqrt, Matrix.PosSemidef.det_sqrt, sqrt_eq_rpow, nnrpow_sqrt_two, sqrt_map_prod, Matrix.PosSemidef.posSemidef_sqrt, Matrix.PosSemidef.sqrt_eq_one_iff, Matrix.PosSemidef.sqrt_sq, sqrt_eq_one_iff, Matrix.PosSemidef.eq_sqrt_iff_sq_eq, sqrt_eq_iff, selfAdjoint.unitarySelfAddISMul_coe, CStarAlgebra.isStrictlyPositive_iff_isStrictlyPositive_sqrt_and_eq_sqrt_mul_sqrt, sqrt_eq_nnrpow, nnrpow_sqrt, IsStrictlyPositive.sqrt, Matrix.PosSemidef.isUnit_sqrt_iff, sqrt_sq, sqrt_zero, rpow_sqrt_nnreal, selfAdjoint.star_coe_unitarySelfAddISMul, Matrix.PosSemidef.sq_sqrt, Matrix.PosSemidef.inv_sqrt, CStarAlgebra.isStrictlyPositive_iff_isUnit_sqrt_and_eq_sqrt_mul_sqrt, monotone_sqrt, sqrt_eq_cfc, sqrt_nnrpow_two, sqrt_eq_zero_iff, CStarAlgebra.isStrictlyPositive_TFAE, sqrt_nnrpow, sqrt_algebraMap, sqrt_one, sqrt_le_sqrt, sqrt_rpow_nnreal, IsSelfAdjoint.self_add_I_smul_cfcSqrt_sub_sq_mem_unitary, sqrt_map_pi, sqrt_nonneg, CStarAlgebra.nonneg_TFAE, Matrix.PosSemidef.sqrt_mul_self, sqrt_mul_sqrt_self, sqrt_eq_real_sqrt, norm_sqrt, Matrix.PosDef.posDef_sqrt, le_iff_norm_sqrt_mul_rpow, sqrt_mul_self, Matrix.PosSemidef.sqrt_eq_iff_eq_sq, isUnit_sqrt_iff, le_iff_norm_sqrt_mul_sqrt_inv, rpow_sqrt

Complex

Definitions

NameCategoryTheorems
sqrt πŸ“–CompOp
12 mathmath: RCLike.sqrt_eq_ite, re_sqrt_ofReal, sqrt_I, sqrt_neg_of_nonneg, sqrt_of_nonneg, RCLike.sqrt_complex, sqrt_zero, sqrt_neg_one, sqrt_map, sqrt_neg_I, sqrt_eq_real_add_ite, sqrt_one

ContDiff

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
Real.sqrtβ€”contDiff_iff_contDiffAt
ContDiffAt.sqrt
contDiffAt

ContDiffAt

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalContDiffAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
Real.sqrtβ€”comp
Real.contDiffAt_sqrt

ContDiffOn

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalContDiffOn
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
Real.sqrtβ€”ContDiffWithinAt.sqrt

ContDiffWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalContDiffWithinAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
Real.sqrtβ€”ContDiffAt.comp_contDiffWithinAt
Real.contDiffAt_sqrt

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalContinuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.sqrtβ€”comp
Real.continuous_sqrt

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalContinuousAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.sqrtβ€”Filter.Tendsto.sqrt

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.sqrtβ€”ContinuousWithinAt.sqrt

ContinuousSqrt

Definitions

NameCategoryTheorems
sqrt πŸ“–CompOp
3 mathmath: sqrt_mul_sqrt, sqrt_nonneg, continuousOn_sqrt

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalContinuousWithinAt
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.sqrtβ€”Filter.Tendsto.sqrt

Differentiable

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalDifferentiable
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Real.instAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
Real.pseudoMetricSpace
Real.sqrtβ€”DifferentiableAt.sqrt

DifferentiableAt

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalDifferentiableAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Real.instAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
Real.pseudoMetricSpace
Real.sqrtβ€”HasFDerivAt.differentiableAt
Algebra.to_smulCommClass
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Nat.instAtLeastTwoHAddOfNat
HasFDerivAt.sqrt
hasFDerivAt

DifferentiableOn

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalDifferentiableOn
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Real.instAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
Real.pseudoMetricSpace
Real.sqrtβ€”DifferentiableWithinAt.sqrt

DifferentiableWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalDifferentiableWithinAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Real.instAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
Real.pseudoMetricSpace
Real.sqrtβ€”HasFDerivWithinAt.differentiableWithinAt
Algebra.to_smulCommClass
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Nat.instAtLeastTwoHAddOfNat
HasFDerivWithinAt.sqrt
hasFDerivWithinAt

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalFilter.Tendsto
Real
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.sqrtβ€”comp
Continuous.tendsto
Real.continuous_sqrt

HasDerivAt

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalHasDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMul.to_continuousSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instIsTopologicalRingReal
Real.sqrt
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Nat.instAtLeastTwoHAddOfNat
congr_simp
div_eq_inv_mul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
mul_one
comp
Real.hasDerivAt_sqrt

HasDerivWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalHasDerivWithinAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMul.to_continuousSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instIsTopologicalRingReal
Real.sqrt
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Nat.instAtLeastTwoHAddOfNat
congr_simp
div_eq_inv_mul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
mul_one
HasDerivAt.comp_hasDerivWithinAt
Real.hasDerivAt_sqrt

HasFDerivAt

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalHasFDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
Real.normedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Real.instAddCommGroup
Semiring.toModule
Real.semiring
Real.pseudoMetricSpace
Real.sqrt
StrongDual
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.instSMul
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.normedCommRing
Algebra.to_smulCommClass
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
Ring.uniformContinuousConstSMul
Real.instRing
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”HasDerivAt.comp_hasFDerivAt
Nat.instAtLeastTwoHAddOfNat
Real.hasDerivAt_sqrt

HasFDerivWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalHasFDerivWithinAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
Real.normedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Real.instAddCommGroup
Semiring.toModule
Real.semiring
Real.pseudoMetricSpace
Real.sqrt
StrongDual
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.instSMul
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.normedCommRing
Algebra.to_smulCommClass
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
Ring.uniformContinuousConstSMul
Real.instRing
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”HasDerivAt.comp_hasFDerivWithinAt
Nat.instAtLeastTwoHAddOfNat
Real.hasDerivAt_sqrt

HasStrictDerivAt

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalHasStrictDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMul.to_continuousSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
instIsTopologicalRingReal
Real.sqrt
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Nat.instAtLeastTwoHAddOfNat
congr_simp
div_eq_inv_mul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
mul_one
comp
Real.hasStrictDerivAt_sqrt

HasStrictFDerivAt

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalHasStrictFDerivAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
Real.normedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Real.instAddCommGroup
Semiring.toModule
Real.semiring
Real.pseudoMetricSpace
Real.sqrt
StrongDual
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.instSMul
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.normedCommRing
Algebra.to_smulCommClass
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
Ring.uniformContinuousConstSMul
Real.instRing
instIsUniformAddGroupReal
IsTopologicalSemiring.toContinuousMul
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”HasStrictDerivAt.comp_hasStrictFDerivAt
Nat.instAtLeastTwoHAddOfNat
Real.hasStrictDerivAt_sqrt

Int

Definitions

NameCategoryTheorems
sqrt πŸ“–CompOp
8 mathmath: abs_le_sqrt, sqrt_nonneg, Rat.sqrt_intCast, abs_le_sqrt_iff_sq_le, sqrt_eq, sqrt_ofNat, sqrt_natCast, exists_mul_self

IsStrictlyPositive

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalIsStrictlyPositive
Preorder.toLE
PartialOrder.toPreorder
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
CFC.sqrt
Ring.toNonUnitalRing
Algebra.toModule
Real
Real.instCommSemiring
Algebra.to_smulCommClass
IsScalarTower.right
ContinuousFunctionalCalculus.toNonUnital
IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
Field.toSemifield
Real.instField
instStarRingReal
Real.metricSpace
IsTopologicalRing.toIsTopologicalSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.normedCommRing
instIsTopologicalRingReal
instContinuousStarReal
Real.instCompleteSpace
β€”IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
instContinuousStarReal

Matrix.PosSemidef

Definitions

NameCategoryTheorems
sqrt πŸ“–CompOpβ€”

Measurable

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalMeasurable
Real
Real.measurableSpace
Real.sqrtβ€”comp
Continuous.measurable
BorelSpace.opensMeasurable
Real.borelSpace
Real.continuous_sqrt

NNReal

Definitions

NameCategoryTheorems
sqrt πŸ“–CompOp
50 mathmath: WithLp.prod_nndist_eq_of_L2, CFC.nnnorm_sqrt, sqrt_le_iff_le_sq, sqrt_mul_lt_half_add_of_ne, agmSequences_zero, sqrt_sq, EuclideanSpace.nndist_eq, sqrt_pos, le_sqrt_iff_sq_le, sqrt_eq_rpow, PiLp.nnnorm_eq_of_L2, sqrt_zero, Matrix.frobenius_nnnorm_one, strictConcaveOn_sqrt, sqrt_le_sqrt, sqrt_eq_iff_eq_sq, Complex.antilipschitz_equivRealProd, ProbabilityTheory.Kernel.HasSubgaussianMGF.add, WithLp.prod_nnnorm_eq_of_L2, sqrt_mul, sqrt_eq_zero, mul_self_sqrt, agm_eq_agm_gm_am, le_gm_and_am_le, continuous_sqrt, Tactic.NormNum.isNNRat_nnrealSqrt_of_isNNRat, sqrt_eq_one, sqrt_pos_of_pos, sum_mul_le_sqrt_mul_sqrt, one_le_sqrt, ProbabilityTheory.HasSubgaussianMGF.add, CFC.sqrt_eq_cfc, sqrt_one, CFC.sqrt_algebraMap, sqrt_le_one, NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis, sqrt_div, EuclideanSpace.nnnorm_eq, agmSequences_succ', Real.coe_sqrt, sum_sqrt_mul_sqrt_le, sqrt_mul_le_half_add, sqrt_mul_self, sqrt_inv, dist_gm_am_le, agmSequences_succ, Tactic.NormNum.isNat_nnrealSqrt, sqrt_lt_sqrt, PiLp.nndist_eq_of_L2, sq_sqrt

Nat.Primrec'

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt πŸ“–mathematicalβ€”Nat.Primrec'
List.Vector.head
β€”le_antisymm
Nat.sqrt_le_sqrt
Nat.sqrt_lt
Nat.eq_sqrt
not_lt
Nat.sqrt_succ_le_succ_sqrt
prec'
head
const
comp₁
tail
if_lt
compβ‚‚
mul

RCLike

Definitions

NameCategoryTheorems
sqrt πŸ“–CompOp
15 mathmath: sqrt_eq_ite, re_sqrt_ofReal, Matrix.PosSemidef.det_sqrt, sqrt_one, sqrt_real, sqrt_complex, sqrt_eq_real_add_ite, sqrt_map, sqrt_of_nonneg, sqrt_neg_one, Complex.sqrt_map, sqrt_neg_I, sqrt_I, sqrt_zero, sqrt_neg_of_nonneg

Rat

Definitions

NameCategoryTheorems
sqrt πŸ“–CompOp
6 mathmath: sqrt_ofNat, sqrt_nonneg, sqrt_intCast, sqrt_eq, sqrt_natCast, exists_mul_self

Real

Definitions

NameCategoryTheorems
sqrt πŸ“–CompOp
336 mathmath: Behrend.roth_lower_bound, arctan_eq_arccos, pi_div_four_le_arcsin, hasDerivAt_arccos, RCLike.sqrt_eq_ite, cos_pi_div_five, one_le_sqrt, sqrt_eq_iff_eq_sq, sin_arctan, sqrt_eq_cases, TsirelsonInequality.sqrt_two_inv_mul_self, hasDerivAt_sqrt_mul_log, arctan_eq_arcsin, sqrt_one_add_le, strictMonoOn_sqrt, Stirling.factorial_isEquivalent_stirling, DifferentiableOn.sqrt, dist_mulExpNegMulSq_le_two_mul_sqrt, real_sqrt_le_nat_sqrt_succ, log_sqrt, Gamma_nat_add_half, Chebyshev.abs_psi_sub_theta_le_sqrt_mul_log, RCLike.re_sqrt_ofReal, ProbabilityTheory.Fernique.lt_normThreshold_zero, NumberField.dedekindZeta_residue_def, nat_floor_real_sqrt_eq_nat_sqrt, InnerProductGeometry.sin_angle, DifferentiableWithinAt.sqrt, sqrt_div_self, Complex.re_sqrt_ofReal, add_sqrt_self_sq_sub_one_inv, Behrend.roth_lower_bound_explicit, neg_sqrt_lt_of_sq_lt, Complex.sqrt_I, Behrend.sphere_subset_preimage_metric_sphere, deriv_arccos, cos_le_one_div_sqrt_sq_add_one, ContDiffOn.sqrt, deriv_sqrt_mul_log, ContinuousWithinAt.sqrt, irrational_sqrt_ratCast_iff, Polynomial.Chebyshev.integral_measureT, sin_pi_div_three, Behrend.log_two_mul_two_le_sqrt_log_eight, hasDerivAt_arcosh, irrational_sqrt_intCast_iff, HasDerivAt.sqrt, cos_arcsin, tan_arccos, sinh_arcosh, hasStrictDerivAt_arccos, InnerProductSpace.Core.norm_eq_sqrt_re_inner, WithLp.prod_dist_eq_of_L2, sqrt_inv, Gamma_mul_Gamma_add_half, HasStrictFDerivAt.arsinh, NumberField.mixedEmbedding.exists_primitive_element_lt_of_isComplex, sqrt_monotone, PositiveLinearMap.preGNS_norm_def, UpperHalfPlane.dist_eq_iff_eq_sinh, norm_add_eq_sqrt_iff_real_inner_eq_zero, hasDerivAt_arsinh, le_sqrt', cos_pi_div_four, contDiffAt_sqrt, Tactic.NormNum.isNat_realSqrt, deriv_sqrt_aux, sqrt_sq_eq_abs, sqrt_mul_self, continuous_sqrt, cos_pi_div_sixteen, tanh_arcosh, Gamma_one_half_eq, strictConcaveOn_sqrt_mul_log_Ioi, exp_arcosh, irrational_sqrt_natCast_iff, hasDerivWithinAt_arccos_Ici, irrational_sqrt_ratCast_iff_of_nonneg, tan_div_sqrt_one_add_tan_sq, sqrt_le_iff, sqrt_lt_sqrt_iff_of_pos, sq_le, sqrt_two_lt_three_halves, Tactic.NormNum.isNNRat_realSqrt_of_isNNRat, abs_le_sqrt, sqrt_le_sqrt_iff, Stirling.stirlingSeq_one, HasDerivWithinAt.sqrt, Behrend.lower_bound_le_one, sqrt_div', real_sqrt_lt_nat_sqrt_succ, Behrend.norm_of_mem_sphere, UpperHalfPlane.dist_coe_center, norm_sub_eq_sqrt_iff_real_inner_eq_zero, sqrtTwoAddSeries_two, Stirling.le_factorial_stirling, coe_fib_eq, mul_self_sqrt, CStarModule.norm_eq_sqrt_norm_inner_self, sqrt_eq_zero_of_nonpos, le_sqrt_of_sq_le, Nat.realSqrt_mem_Ico, hasStrictDerivAt_arcosh, ContinuousLinearMap.apply_norm_eq_sqrt_inner_adjoint_right, dist_integral_mulExpNegMulSq_comp_le, HasStrictFDerivAt.sqrt, HasDerivWithinAt.arsinh, ContinuousAt.sqrt, DifferentiableAt.sqrt, hasDerivAt_arcsin, gold_sub_goldConj, arcsin_eq_arccos, irrational_sqrt_intCast_iff_of_nonneg, map_sqrt_atTop, arccos_le_pi_div_four, InnerProductSpace.volume_ball, sqrt_mul, cos_pi_div_eight, Complex.sqrt_of_nonneg, NumberField.mixedEmbedding.covolume_idealLattice, RCLike.sqrt_real, arccos_eq_arcsin, exp_arsinh, RCLike.sqrt_eq_real_add_ite, sq_sqrt, ProbabilityTheory.gaussianPDFReal_def, le_sqrt, sqrt_le_sqrt, floor_real_sqrt_eq_nat_sqrt, Complex.normSq_ofReal_add_I_mul_sqrt_one_sub, ProbabilityTheory.Fernique.normThreshold_eq, UpperHalfPlane.dist_eq, sqrt_div_self', comap_sqrt_atTop, WithCStarModule.pi_norm, Stirling.sqrt_pi_le_stirlingSeq, hasDerivWithinAt_arcsin_Ici, NumberField.Ideal.tendsto_norm_le_div_atTopβ‚€, Asymptotics.IsBigO.sqrt, abs_sin_half, sqrtTwoAddSeries_succ, abs_sin_eq_sqrt_one_sub_cos_sq, sqrt_lt', cos_pi_div_six, sin_half_eq_neg_sqrt, sqrt_le_one, coe_intFib_eq, Gamma_nat_add_one_add_half, ContinuousOn.sqrt, hasStrictDerivAt_arsinh, RCLike.sqrt_of_nonneg, inv_sqrt_two_sub_one, sq_lt, sqrt_lt_sqrt_iff, irrational_sqrt_of_multiplicity_odd, Nat.realSqrt_lt_ratSqrt_add_inv_prec, Complex.cpow_inv_two_im_eq_sqrt, Complex.cpow_inv_two_re, pi_gt_sqrtTwoAddSeries, tsirelson_inequality, WithCStarModule.prod_norm, HasDerivAt.arsinh, log_div_sqrt_antitoneOn, EuclideanSpace.norm_eq, ContinuousLinearMap.apply_norm_eq_sqrt_inner_adjoint_left, arccos_eq_arctan, NumberField.mixedEmbedding.covolume_integerLattice, neg_sqrt_le_of_sq_le, exp_half, sin_pi_over_two_pow_succ, deriv_arcsin, div_sqrt, tan_pi_div_six, arctan_inv_sqrt_three, sqrt_pos, cos_pi_div_thirty_two, inv_sqrt_one_add_tan_sq, Complex.norm_def, sqrt_eq_iff_mul_self_eq, UpperHalfPlane.dist_le_dist_coe_div_sqrt, integral_sqrt_one_sub_sq, Complex.norm_add_mul_I, HasFDerivWithinAt.arsinh, sin_pi_div_thirty_two, sqrtTwoAddSeries_one, mulExpNegMulSq_eq_sqrt_mul_mulExpNegMulSq_one, sqrt_eq_iff_mul_self_eq_of_pos, sqrt_zero, lt_sqrt_of_sq_lt, sqrt_mul_self_eq_abs, pi_lt_sqrtTwoAddSeries, coe_fib_eq', hasDerivAt_Gamma_one_half, sqrt_pos_of_pos, HasStrictDerivAt.arsinh, Gamma_mul_Gamma_add_half_of_pos, sum_mul_le_sqrt_mul_sqrt, Complex.sqrt_neg_I, HasFDerivWithinAt.sqrt, NumberField.exists_ideal_in_class_of_norm_le, Complex.sqrt_eq_real_add_ite, Measurable.sqrt, fderivWithin_sqrt, RCLike.sqrt_neg_I, lt_sqrt, sin_arccos, NumberField.Ideal.tendsto_norm_le_div_atTop, UpperHalfPlane.cosh_half_dist, EuclideanSpace.volume_ball, sqrt_le_left, sq_sqrt', abs_cos_eq_sqrt_one_sub_sin_sq, OpenPartialHomeomorph.univUnitBall_apply, cos_half, RCLike.sqrt_I, Differentiable.sqrt, UpperHalfPlane.exp_half_dist, cosh_arsinh, strictConcaveOn_sqrt, NumberField.exists_ne_zero_mem_ringOfIntegers_of_norm_le_mul_sqrt_discr, OrthonormalBasis.norm_le_card_mul_iSup_norm_inner, tan_pi_div_three, nat_sqrt_le_real_sqrt, hasStrictDerivAt_arcsin, Chebyshev.psi_le, HasFDerivAt.arsinh, cos_lt_one_div_sqrt_sq_add_one, sin_pi_div_sixteen, tendsto_sqrt_atTop, Asymptotics.IsLittleO.sqrt, UpperHalfPlane.sinh_half_dist_add_dist, Complex.dist_mk, derivWithin_sqrt, Tactic.NormNum.isNat_realSqrt_neg, polarCoord_apply, EuclideanSpace.dist_eq, exp_artanh, hasStrictDerivAt_sqrt, integral_gaussian, fderiv_sqrt, arctan_sqrt_three, sqrt_sq, Continuous.sqrt, Behrend.le_sqrt_log, PiLp.dist_eq_of_L2, ContDiff.sqrt, Complex.hasDerivAt_Gamma_one_half, Complex.Gamma_mul_Gamma_add_half, Complex.cpow_inv_two_im_eq_neg_sqrt, abs_mulExpNegMulSq_le, Filter.Tendsto.sqrt, goldenRatio_sub_goldenConj, Behrend.lower_bound_le_one', ProbabilityTheory.Fernique.sq_normThreshold_add_one_le, Asymptotics.IsTheta.sqrt, ProbabilityTheory.measure_le_mul_measure_gt_le_of_map_rotation_eq_self, rpow_div_two_eq_sqrt, InnerProductSpace.volume_closedBall, UpperHalfPlane.sinh_half_dist, UpperHalfPlane.dist_le_iff_le_sinh, sin_pi_div_eight, Bertrand.real_main_inequality, Nat.ratSqrt_mem_Ioc, sqrt_one, Zsqrtd.toReal_apply, sqrt_div, NumberField.exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr, HasFDerivAt.sqrt, sqrt_nonneg, NumberField.Ideal.tendsto_norm_le_and_mk_eq_div_atTop, ruzsaSzemerediNumberNat_lower_bound, norm_eq_sqrt_re_inner, deriv_arcsin_aux, coe_sqrt, sqrt_lt, integral_gaussian_Ioi, Complex.norm_eq_sqrt_sq_add_sq, sqrt_mul', Nat.ratSqrt_le_realSqrt, abs_integral_sub_setIntegral_mulExpNegMulSq_comp_lt, AEMeasurable.sqrt, irrational_sqrt_ofNat_iff, RCLike.sqrt_normSq_eq_norm, Stirling.tendsto_stirlingSeq_sqrt_pi, arcsin_eq_arctan, ruzsaSzemerediNumberNat_asymptotic_lower_bound, cos_eq_sqrt_one_sub_sin_sq, tanh_arsinh, PiLp.norm_eq_of_L2, sum_sqrt_mul_sqrt_le, Complex.abs_cpow_inv_two_im, Nat.Prime.irrational_sqrt, Complex.norm_le_sqrt_two_mul_max, tan_arcsin, sqrt_one_add_norm_sq_le, InnerProductGeometry.sin_angle_add, Polynomial.Chebyshev.intervalIntegrable_sqrt_one_sub_sq_inv, CFC.sqrt_eq_real_sqrt, OpenPartialHomeomorph.univUnitBall_symm_apply, ProbabilityTheory.Fernique.normThreshold_add_one, one_lt_sqrt_two, sqrt_lt_sqrt, CFC.norm_sqrt, sqrt_eq_one, WithLp.prod_norm_eq_of_L2, hasDerivAt_sqrt, hasDerivWithinAt_arccos_Iic, deriv_sqrt_mul_log', sinh_artanh, InnerProductGeometry.sin_angle_mul_norm_mul_norm, EuclideanSpace.volume_closedBall, sqrt_eq_rpow, sin_half_eq_sqrt, sin_eq_sqrt_one_sub_cos_sq, sqrt_eq_zero', Complex.normSq_ofReal_sub_I_mul_sqrt_one_sub, sqrt_inj, Tactic.NormNum.isNat_realSqrt_of_isRat_negOfNat, irrational_sqrt_two, cosh_artanh, ContDiffWithinAt.sqrt, ContDiffAt.sqrt, sqrt_prod, HasStrictDerivAt.sqrt, hasDerivWithinAt_arcsin_Iic, InnerProductSpace.Core.sqrt_normSq_eq_norm, sqrt_eq_zero, log_doublingGamma_eq, deriv_sqrt, deriv2_sqrt_mul_log, sin_pi_div_four, sqrt_le_sqrt_iff', Complex.dist_eq_re_im, cos_arctan, norm_eq_sqrt_real_inner, one_add_norm_le_sqrt_two_mul_sqrt

---

← Back to Index