Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/AddConstMap/Basic.lean

Statistics

MetricCount
DefinitionsAddConstMap, addLeftHom, comp, conjNeg, id, instAddActionOfVAddAssocClass, instFunLike, instInhabited, instMonoid, instMul, instOne, instPowNat, instVAddOfVAddAssocClass, mkFract, replaceConsts, smul, toEnd, toFun, Β«term_β†’+c[_,_]_Β», AddConstMapClass
20
Theoremscoe_addLeftHom_apply, coe_comp, coe_conjNeg_apply, coe_id, coe_mk, coe_mul, coe_one, coe_pow, coe_replaceConsts, coe_smul, coe_vadd, comp_id, conjNeg_symm, ext, ext_iff, id_comp, instAddConstMapClass, map_add_const', mk_coe, mul_def, one_def, pow_apply, toEnd_apply, toFun_eq_coe, antitone_iff_Icc, map_add_const, map_add_int, map_add_int', map_add_nat, map_add_nat', map_add_nsmul, map_add_ofNat, map_add_ofNat', map_add_one, map_add_zsmul, map_const, map_const_add, map_fract, map_int_add, map_int_add', map_nat, map_nat', map_nat_add, map_nat_add', map_nsmul_add, map_nsmul_const, map_ofNat, map_ofNat', map_ofNat_add, map_ofNat_add', map_one, map_one_add, map_sub_const, map_sub_int, map_sub_int', map_sub_nat', map_sub_nsmul, map_sub_ofNat', map_sub_one, map_sub_zsmul, map_zsmul_add, map_zsmul_const, monotone_iff_Icc, rel_map_of_Icc, semiconj, strictAnti_iff_Icc, strictMono_iff_Icc
67
Total87

AddConstMap

Definitions

NameCategoryTheorems
addLeftHom πŸ“–CompOp
1 mathmath: coe_addLeftHom_apply
comp πŸ“–CompOp
4 mathmath: id_comp, coe_comp, mul_def, comp_id
conjNeg πŸ“–CompOp
2 mathmath: conjNeg_symm, coe_conjNeg_apply
id πŸ“–CompOp
4 mathmath: id_comp, one_def, coe_id, comp_id
instAddActionOfVAddAssocClass πŸ“–CompOpβ€”
instFunLike πŸ“–CompOp
21 mathmath: coe_addLeftHom_apply, toEnd_apply, coe_smul, pow_apply, ext_iff, AddConstEquiv.coe_val_inv_equivUnits_apply, coe_replaceConsts, coe_comp, coe_mul, AddConstEquiv.equivUnits_symm_apply_apply, coe_mk, coe_vadd, coe_id, toFun_eq_coe, AddConstEquiv.equivUnits_symm_apply_symm_apply, coe_conjNeg_apply, instAddConstMapClass, coe_pow, mk_coe, AddConstEquiv.coe_val_equivUnits_apply, coe_one
instInhabited πŸ“–CompOpβ€”
instMonoid πŸ“–CompOp
7 mathmath: coe_addLeftHom_apply, toEnd_apply, AddConstEquiv.toAddConstMapHom_apply, AddConstEquiv.coe_val_inv_equivUnits_apply, AddConstEquiv.equivUnits_symm_apply_apply, AddConstEquiv.equivUnits_symm_apply_symm_apply, AddConstEquiv.coe_val_equivUnits_apply
instMul πŸ“–CompOp
2 mathmath: coe_mul, mul_def
instOne πŸ“–CompOp
2 mathmath: one_def, coe_one
instPowNat πŸ“–CompOp
2 mathmath: pow_apply, coe_pow
instVAddOfVAddAssocClass πŸ“–CompOp
1 mathmath: coe_vadd
mkFract πŸ“–CompOpβ€”
replaceConsts πŸ“–CompOp
1 mathmath: coe_replaceConsts
smul πŸ“–CompOp
1 mathmath: coe_smul
toEnd πŸ“–CompOp
1 mathmath: toEnd_apply
toFun πŸ“–CompOp
2 mathmath: toFun_eq_coe, map_add_const'
Β«term_β†’+c[_,_]_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_addLeftHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddConstMap
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
instFunLike
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
Monoid.toMulOneClass
instMonoid
MonoidHom.instFunLike
addLeftHom
HVAdd.hVAdd
instHVAdd
Function.hasVAdd
AddSemigroupAction.toVAdd
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
β€”β€”
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
AddConstMap
instFunLike
comp
β€”β€”
coe_conjNeg_apply πŸ“–mathematicalβ€”DFunLike.coe
AddConstMap
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
conjNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
AddConstMap
instFunLike
id
β€”β€”
coe_mk πŸ“–mathematicalβ€”DFunLike.coe
AddConstMap
instFunLike
β€”β€”
coe_mul πŸ“–mathematicalβ€”DFunLike.coe
AddConstMap
instFunLike
instMul
β€”β€”
coe_one πŸ“–mathematicalβ€”DFunLike.coe
AddConstMap
instFunLike
instOne
β€”β€”
coe_pow πŸ“–mathematicalβ€”DFunLike.coe
AddConstMap
instFunLike
instPowNat
Nat.iterate
β€”β€”
coe_replaceConsts πŸ“–mathematicalβ€”DFunLike.coe
AddConstMap
instFunLike
replaceConsts
β€”β€”
coe_smul πŸ“–mathematicalβ€”DFunLike.coe
AddConstMap
AddZero.toAdd
AddZeroClass.toAddZero
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
instFunLike
smul
Function.hasSMul
β€”β€”
coe_vadd πŸ“–mathematicalβ€”DFunLike.coe
AddConstMap
instFunLike
HVAdd.hVAdd
instHVAdd
instVAddOfVAddAssocClass
Function.hasVAdd
β€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”β€”
conjNeg_symm πŸ“–mathematicalβ€”Equiv.symm
AddConstMap
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
conjNeg
β€”β€”
ext πŸ“–β€”DFunLike.coe
AddConstMap
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
AddConstMap
instFunLike
β€”ext
id_comp πŸ“–mathematicalβ€”comp
id
β€”β€”
instAddConstMapClass πŸ“–mathematicalβ€”AddConstMapClass
AddConstMap
instFunLike
β€”map_add_const'
map_add_const' πŸ“–mathematicalβ€”toFunβ€”β€”
mk_coe πŸ“–mathematicalβ€”DFunLike.coe
AddConstMap
instFunLike
map_add_const'
β€”map_add_const'
mul_def πŸ“–mathematicalβ€”AddConstMap
instMul
comp
β€”β€”
one_def πŸ“–mathematicalβ€”AddConstMap
instOne
id
β€”β€”
pow_apply πŸ“–mathematicalβ€”DFunLike.coe
AddConstMap
instFunLike
instPowNat
Nat.iterate
β€”β€”
toEnd_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
AddConstMap
Function.End
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
instMonoidEnd
MonoidHom.instFunLike
toEnd
instFunLike
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”toFun
DFunLike.coe
AddConstMap
instFunLike
β€”β€”

AddConstMapClass

Theorems

NameKindAssumesProvesValidatesDepends On
antitone_iff_Icc πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Antitone
DFunLike.coe
AntitoneOn
Set.Icc
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”monotone_iff_Icc
OrderDual.isOrderedAddMonoid
AddCommGroup.add_comm
map_add_const πŸ“–mathematicalβ€”DFunLike.coeβ€”β€”
map_add_int πŸ“–mathematicalβ€”DFunLike.coe
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
AddGroupWithOne.toIntCast
β€”map_add_int'
zsmul_one
map_add_int' πŸ“–mathematicalβ€”DFunLike.coe
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
AddGroupWithOne.toIntCast
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SubNegMonoid.toZSMul
β€”map_add_zsmul
zsmul_one
map_add_nat πŸ“–mathematicalβ€”DFunLike.coe
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toNatCast
β€”map_add_nat'
nsmul_one
map_add_nat' πŸ“–mathematicalβ€”DFunLike.coe
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toNatCast
AddMonoid.toNatSMul
β€”nsmul_one
map_add_nsmul πŸ“–mathematicalβ€”DFunLike.coe
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoid.toNatSMul
β€”add_right_iterate
Function.Semiconj.iterate_right
semiconj
map_add_ofNat πŸ“–mathematicalβ€”DFunLike.coe
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
β€”map_add_nat
map_add_ofNat' πŸ“–mathematicalβ€”DFunLike.coe
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
AddMonoid.toNatSMul
β€”map_add_nat'
map_add_one πŸ“–mathematicalβ€”DFunLike.coe
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toOne
β€”map_add_const
map_add_zsmul πŸ“–mathematicalβ€”DFunLike.coe
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SubNegMonoid.toZSMul
β€”natCast_zsmul
map_add_nsmul
negSucc_zsmul
map_sub_nsmul
map_const πŸ“–mathematicalβ€”DFunLike.coe
AddZero.toZero
AddZeroClass.toAddZero
β€”zero_add
map_add_const
map_const_add πŸ“–mathematicalβ€”DFunLike.coe
AddCommMagma.toAdd
β€”add_comm
map_add_const
map_fract πŸ“–mathematicalβ€”DFunLike.coe
Int.fract
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SubNegMonoid.toZSMul
Int.floor
β€”map_sub_int'
map_int_add πŸ“–mathematicalβ€”DFunLike.coe
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommMonoidWithOne.toAddCommMonoid
AddCommGroupWithOne.toAddCommMonoidWithOne
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
β€”map_int_add'
zsmul_one
map_int_add' πŸ“–mathematicalβ€”DFunLike.coe
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommMonoidWithOne.toAddCommMonoid
AddCommGroupWithOne.toAddCommMonoidWithOne
AddGroupWithOne.toIntCast
AddCommGroupWithOne.toAddGroupWithOne
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SubNegMonoid.toZSMul
β€”map_zsmul_add
zsmul_one
map_nat πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidWithOne.toNatCast
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”map_nat'
nsmul_one
map_nat' πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidWithOne.toNatCast
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddMonoid.toNatSMul
β€”zero_add
map_add_nat'
map_nat_add πŸ“–mathematicalβ€”DFunLike.coe
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommMonoidWithOne.toAddCommMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
β€”map_nat_add'
nsmul_one
map_nat_add' πŸ“–mathematicalβ€”DFunLike.coe
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommMonoidWithOne.toAddCommMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoid.toNatSMul
β€”nsmul_one
map_nsmul_add
map_nsmul_add πŸ“–mathematicalβ€”DFunLike.coe
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
β€”add_comm
map_add_nsmul
map_nsmul_const πŸ“–mathematicalβ€”DFunLike.coe
AddMonoid.toNatSMul
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”zero_add
map_add_nsmul
map_ofNat πŸ“–mathematicalβ€”DFunLike.coe
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”map_nat
map_ofNat' πŸ“–mathematicalβ€”DFunLike.coe
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddMonoid.toNatSMul
β€”map_nat'
map_ofNat_add πŸ“–mathematicalβ€”DFunLike.coe
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommMonoidWithOne.toAddCommMonoid
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
β€”map_nat_add
map_ofNat_add' πŸ“–mathematicalβ€”DFunLike.coe
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommMonoidWithOne.toAddCommMonoid
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoid.toNatSMul
β€”map_nat_add'
map_one πŸ“–mathematicalβ€”DFunLike.coe
AddZero.toZero
AddZeroClass.toAddZero
β€”map_const
map_one_add πŸ“–mathematicalβ€”DFunLike.coe
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommMonoidWithOne.toAddCommMonoid
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
β€”map_const_add
map_sub_const πŸ“–mathematicalβ€”DFunLike.coe
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”one_smul
map_sub_nsmul
map_sub_int πŸ“–mathematicalβ€”DFunLike.coe
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddGroupWithOne.toIntCast
β€”map_sub_int'
zsmul_one
map_sub_int' πŸ“–mathematicalβ€”DFunLike.coe
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddGroupWithOne.toIntCast
SubNegMonoid.toZSMul
β€”map_sub_zsmul
zsmul_one
map_sub_nat' πŸ“–mathematicalβ€”DFunLike.coe
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
β€”nsmul_one
map_sub_nsmul
map_sub_nsmul πŸ“–mathematicalβ€”DFunLike.coe
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
β€”sub_add_cancel
map_add_nsmul
add_sub_cancel_right
map_sub_ofNat' πŸ“–mathematicalβ€”DFunLike.coe
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
β€”map_sub_nat'
map_sub_one πŸ“–mathematicalβ€”DFunLike.coe
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”map_sub_const
map_sub_zsmul πŸ“–mathematicalβ€”DFunLike.coe
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
SubNegMonoid.toZSMul
β€”sub_eq_add_neg
neg_zsmul
map_add_zsmul
map_zsmul_add πŸ“–mathematicalβ€”DFunLike.coe
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
β€”add_comm
map_add_zsmul
map_zsmul_const πŸ“–mathematicalβ€”DFunLike.coe
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”zero_add
map_add_zsmul
monotone_iff_Icc πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Monotone
DFunLike.coe
MonotoneOn
Set.Icc
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”Monotone.monotoneOn
monotone_iff_forall_lt
rel_map_of_Icc
instIsTransLe
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
LT.lt.le
rel_map_of_Icc πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
DFunLike.coe
Relator.LiftFunβ€”CovariantClass.elim
LT.lt.le
existsUnique_sub_zsmul_mem_Ioc
lt_trichotomy
sub_le_iff_le_add
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
add_comm
add_smul
one_smul
add_assoc
add_le_add_right
zsmul_le_zsmul_left
le_of_lt
zero_smul
add_zero
LT.lt.not_ge
Set.Ico_subset_Icc_self
sub_zero
Set.Ioc_subset_Icc_self
sub_add_cancel
map_add_zsmul
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
LE.le.eq_or_lt
zero_add
Int.rel_of_forall_rel_succ_of_lt
add_zsmul
one_zsmul
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
existsUnique_sub_zsmul_mem_Ico
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
map_sub_zsmul
semiconj πŸ“–mathematicalβ€”Function.Semiconj
DFunLike.coe
β€”map_add_const
strictAnti_iff_Icc πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
StrictAnti
DFunLike.coe
StrictAntiOn
Set.Icc
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”strictMono_iff_Icc
OrderDual.isOrderedAddMonoid
AddCommGroup.add_comm
strictMono_iff_Icc πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
StrictMono
DFunLike.coe
StrictMonoOn
Set.Icc
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”StrictMono.strictMonoOn
rel_map_of_Icc
instIsTransLt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono

(root)

Definitions

NameCategoryTheorems
AddConstMap πŸ“–CompData
25 mathmath: AddConstMap.conjNeg_symm, AddConstMap.coe_addLeftHom_apply, AddConstMap.toEnd_apply, AddConstMap.one_def, AddConstMap.coe_smul, AddConstEquiv.toAddConstMapHom_apply, AddConstMap.pow_apply, AddConstMap.ext_iff, AddConstEquiv.coe_val_inv_equivUnits_apply, AddConstMap.coe_replaceConsts, AddConstMap.coe_comp, AddConstMap.coe_mul, AddConstEquiv.equivUnits_symm_apply_apply, AddConstMap.mul_def, AddConstMap.coe_mk, AddConstMap.coe_vadd, AddConstMap.coe_id, AddConstMap.toFun_eq_coe, AddConstEquiv.equivUnits_symm_apply_symm_apply, AddConstMap.coe_conjNeg_apply, AddConstMap.instAddConstMapClass, AddConstMap.coe_pow, AddConstMap.mk_coe, AddConstEquiv.coe_val_equivUnits_apply, AddConstMap.coe_one
AddConstMapClass πŸ“–CompData
2 mathmath: AddConstEquiv.instAddConstMapClass, AddConstMap.instAddConstMapClass

---

← Back to Index