| Name | Category | Theorems |
equivUnits π | CompOp | 4 mathmath: coe_val_inv_equivUnits_apply, equivUnits_symm_apply_apply, equivUnits_symm_apply_symm_apply, coe_val_equivUnits_apply
|
instDiv π | CompOp | β |
instEquivLike π | CompOp | 10 mathmath: trans_apply, refl_apply, ext_iff, coe_symm_toEquiv, coe_val_inv_equivUnits_apply, equivUnits_symm_apply_apply, coe_toEquiv, instAddConstMapClass, equivUnits_symm_apply_symm_apply, coe_val_equivUnits_apply
|
instGroup π | CompOp | 3 mathmath: toAddConstMapHom_apply, coe_val_inv_equivUnits_apply, toPerm_apply
|
instInv π | CompOp | β |
instMul π | CompOp | 4 mathmath: coe_val_inv_equivUnits_apply, equivUnits_symm_apply_apply, equivUnits_symm_apply_symm_apply, coe_val_equivUnits_apply
|
instOne π | CompOp | β |
instPowInt π | CompOp | β |
instPowNat π | CompOp | β |
refl π | CompOp | 7 mathmath: refl_apply, symm_trans_self, symm_refl, self_trans_symm, refl_toEquiv, trans_refl, refl_trans
|
toAddConstMap π | CompOp | 1 mathmath: toAddConstMapHom_apply
|
toAddConstMapHom π | CompOp | 1 mathmath: toAddConstMapHom_apply
|
toEquiv π | CompOp | 10 mathmath: toEquiv_injective, coe_symm_toEquiv, toEquiv_inj, toEquiv_symm, toEquiv_trans, toPerm_apply, map_add_const', coe_toEquiv, trans_toEquiv, refl_toEquiv
|
toPerm π | CompOp | 1 mathmath: toPerm_apply
|
trans π | CompOp | 7 mathmath: trans_apply, symm_trans_self, toEquiv_trans, self_trans_symm, trans_toEquiv, trans_refl, refl_trans
|