Documentation Verification Report

Defs

📁 Source: Mathlib/Algebra/AddTorsor/Defs.lean

Statistics

MetricCount
DefinitionstoAddAction, toVSub, constVAdd, constVSub, pointReflection, vaddConst, addGroupIsAddTorsor
7
Theoremsnonempty, subsingleton_iff, vadd_vsub', vsub_vadd', coe_constVAdd, coe_constVSub, coe_constVSub_symm, coe_vaddConst, coe_vaddConst_symm, pointReflection_apply, pointReflection_involutive, pointReflection_self, pointReflection_symm, pointReflection_vsub_left, pointReflection_vsub_right, eq_of_vsub_eq_zero, eq_vadd_iff_vsub_eq, neg_vsub_eq_vsub_rev, vadd_eq_vadd_iff_neg_add_eq_vsub, vadd_right_cancel, vadd_right_cancel_iff, vadd_right_injective, vadd_vsub, vadd_vsub_assoc, vadd_vsub_eq_sub_vsub, vadd_vsub_vadd_cancel_right, vsub_add_vsub_cancel, vsub_eq_sub, vsub_eq_zero_iff_eq, vsub_ne_zero, vsub_self, vsub_sub_vsub_cancel_right, vsub_vadd, vsub_vadd_eq_vsub_sub
34
Total41

AddTorsor

Definitions

NameCategoryTheorems
toAddAction 📖CompOp
246 mathmath: NumberField.mixedEmbedding.fundamentalDomain_integerLattice, AffineIsometryEquiv.pointReflection_apply, EuclideanGeometry.dist_smul_vadd_sq, Equiv.coe_vaddConst, EuclideanGeometry.reflection_orthogonal_vadd, Equiv.coe_constVSub_symm, fderivWithin_comp_add_left, AddCircle.isAddQuotientCoveringMap_zsmul_of_ne_zero, rank_le_card_isVisible, AffineSubspace.sSameSide_vadd_right_iff, Affine.Simplex.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, AffineSubspace.setOf_sSameSide_eq_image2, AffineEquiv.constVAdd_apply, sub_add_vsub_comm, vadd_eq_vadd_iff_neg_add_eq_vsub, vadd_vsub_assoc, Affine.Simplex.centroid_eq_smul_sum_vsub_vadd, Homeomorph.vaddConst_apply, derivWithin_comp_const_sub, vadd_right_mem_affineSpan_pair, mem_const_vadd_affineSegment, AffineSubspace.wOppSide_smul_vsub_vadd_left, vsub_vadd_comm, Sbtw.vadd_const, AddCircle.isAddFundamentalDomain_of_ae_ball, iteratedFDerivWithin_comp_add_right', AddCircle.isAddQuotientCoveringMap_nsmul_of_ne_zero, AffineSubspace.vadd_mem_mk', AffineIsometryEquiv.coe_constVAdd, vadd_mem_spanPoints_of_mem_spanPoints_of_mem_vectorSpan, Circle.isAddQuotientCoveringMap_exp, AddCircle.isAddQuotientCoveringMap_nsmul, smul_vsub_rev_vadd_mem_affineSpan_pair, EuclideanGeometry.reflection_vadd_smul_vsub_orthogonalProjection, affineSpan_singleton_union_vadd_eq_top_of_span_eq_top, Affine.Triangle.orthocenter_eq_smul_vsub_vadd_circumcenter, EuclideanGeometry.dist_eq_iff_eq_smul_rotation_pi_div_two_vadd_midpoint, IsometryEquiv.constVSub_symm_apply, EuclideanGeometry.angle_vadd_const, AffineSubspace.sOppSide_vadd_right_iff, AffineIndependent.vadd, collinear_iff_of_mem, Set.vadd_set_vsub_vadd_set, AffineMap.map_vadd', AddCircle.isAddQuotientCoveringMap_coe, vsub_vadd_eq_vsub_sub, EuclideanGeometry.orthogonalProjection_apply_mem, AffineBasis.coe_vadd, Finset.weightedVSubOfPoint_vadd, AffineSubspace.smul_vsub_vadd_mem, nndist_vadd_cancel_right, Convex.smul_vadd_mem_of_mem_nhds_of_mem_asymptoticCone, sbtw_vadd_const_iff, vadd_vsub_eq_sub_vsub, iteratedFDerivWithin_comp_add_left, affinity_unitClosedBall, vadd_eq_vadd_iff_sub_eq_vsub, ContinuousAffineMap.vadd_toAffineMap, EuclideanGeometry.orthogonalProjection_apply', NumberField.mixedEmbedding.fundamentalDomain_idealLattice, wbtw_smul_vadd_smul_vadd_of_nonpos_of_nonneg, dist_vadd_cancel_right, isAddFundamentalDomain_Ioc, EuclideanGeometry.Sphere.tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, AffineSpace.asymptoticNhds_vadd_pure, convexHull_vadd, sub_smul_slope_vadd, AffineSubspace.setOf_wOppSide_eq_image2, nndist_vadd_left, AffineSubspace.coe_pointwise_vadd, AffineEquiv.map_vadd, vadd_vsub_vadd_cancel_right, AffineSubspace.wSameSide_vadd_left_iff, mem_vadd_const_affineSegment, vadd_vsub', vadd_mem_affineSpan_of_mem_affineSpan_of_mem_vectorSpan, AffineMap.vadd_linear, Filter.Tendsto.const_vadd_asymptoticNhds, smul_vsub_vadd_mem_affineSpan_pair, Finset.affineCombination_eq_weightedVSubOfPoint_vadd_of_sum_eq_one, AffineMap.vadd_lineMap, affinity_unitBall, Affine.Triangle.circumsphere_eq_of_dist_of_oangle, AmpleSet.vadd, StrictConvex.affinity, iteratedFDerivWithin_comp_sub, differentiableWithinAt_comp_sub, EuclideanGeometry.orthogonalProjection_vadd_eq_self, IsTopologicalAddTorsor.toContinuousVAdd, AffineIsometryEquiv.coe_vaddConst, signedDist_vadd_left_swap, EuclideanGeometry.reflection_apply_of_mem, Seminorm.vadd_closedBall, instProperVAdd, LipschitzWith.vadd, DilationEquiv.smulTorsor_apply, AffineSubspace.vadd_mem_iff_mem_of_mem_direction, signedDist_vadd_right, Complex.isAddQuotientCoveringMap_exp, AffineMap.map_vadd, ZSpan.isAddFundamentalDomain', affineSegment_const_vadd_image, Sbtw.const_vadd, EuclideanGeometry.Sphere.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, AffineMap.lineMap_vadd_apply, AffineSubspace.coe_vadd, Affine.Triangle.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_circumcenter, vadd_segment, dist_vadd_left, ContinuousAffineMap.map_vadd, iteratedFDerivWithin_comp_add_right, Finset.affineCombination_apply, AffineSpace.vadd_asymptoticNhds, midpoint_vadd_midpoint, AffineSubspace.wSameSide_smul_vsub_vadd_left, AmpleSet.vadd_iff, ZSpan.exist_unique_vadd_mem_fundamentalDomain, dist_vadd_right, linearIndependent_set_iff_affineIndependent_vadd_union_singleton, AffineMap.lineMap_apply, Affine.Simplex.faceOppositeCentroid_eq_sum_vsub_vadd, differentiableWithinAt_comp_add_right, Finset.weightedVSubOfPoint_vadd_eq_of_sum_eq_one, EuclideanGeometry.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, StarConvex.smul_vadd_mem_of_isClosed_of_mem_asymptoticCone, EuclideanGeometry.inversion_def, ZSpan.isAddFundamentalDomain, Affine.Simplex.centroid_eq_smul_vsub_vadd_point, nndist_vadd_right, vsub_vadd', AffineSubspace.mem_affineSpan_insert_iff, Affine.Simplex.mongePoint_eq_smul_vsub_vadd_circumcenter, mem_affineSpan_iff_eq_weightedVSubOfPoint_vadd, mem_affineSpan_iff_exists, Finset.weightedVSub_vadd, AffineEquiv.ofLinearEquiv_apply, AffineEquiv.pointReflection_apply, AffineSubspace.wOppSide_smul_vsub_vadd_right, AffineMap.coe_lineMap, Equiv.coe_constVAdd, AffineSubspace.vadd_mem_of_mem_direction, AffineEquiv.coe_constVSub_symm, vectorSpan_vadd, Bornology.IsVonNBounded.vadd, vadd_openSegment, vadd_vsub_vadd_comm, AffineMap.vadd_apply, AffineSubspace.sSameSide_smul_vsub_vadd_right, EuclideanGeometry.dist_sq_smul_orthogonal_vadd_smul_orthogonal_vadd, signedDist_vadd_right_swap, Wbtw.vadd_const, Wbtw.const_vadd, AffineMap.homothety_apply, dist_vadd_cancel_left, hasFDerivWithinAt_comp_add_right, ContinuousAffineMap.vadd_contLinear, IsometryEquiv.vaddConst_apply, slope_vadd_const, affineSegment_vadd_const_image, AffineIsometry.map_vadd, NormedAddTorsor.to_isIsIsometricVAdd, Prod.mk_vadd_mk, signedDist_vadd_left, Finset.weightedVSub_vadd_affineCombination, iteratedFDerivWithin_comp_add_left', Affine.Simplex.coe_orthogonalProjection_vadd_smul_vsub_orthogonalProjection, AffineSubspace.vadd_mem_iff_mem_direction, edist_vadd_vadd_le, ZLattice.isAddFundamentalDomain, AffineSubspace.wSameSide_smul_vsub_vadd_right, Convex.smul_vadd_mem_of_isClosed_of_mem_asymptoticCone, wbtw_smul_vadd_smul_vadd_of_nonneg_of_le, EuclideanGeometry.reflection_apply', Finset.centroid_pair, AffineSubspace.sSameSide_vadd_left_iff, AffineSubspace.wSameSide_vadd_right_iff, Affine.Simplex.faceOppositeCentroid_eq_smul_vsub_vadd_point, derivWithin_comp_add_const, vadd_vsub_vadd_cancel_left, wbtw_or_wbtw_smul_vadd_of_nonneg, Bornology.isVonNBounded_vadd, vsub_vadd, AddCircle.isAddQuotientCoveringMap_zsmul, vadd_vsub, AffineMap.homothety_def, wbtw_const_vadd_iff, AffineIsometryEquiv.map_vadd, AffineEquiv.vaddConst_apply, AffineSubspace.vadd_mem_pointwise_vadd_iff, Finset.centroid_pair_fin, Seminorm.vadd_ball, vadd_right_injective, hasFDerivWithinAt_comp_sub, derivWithin_comp_sub_const, EuclideanGeometry.dist_smul_vadd_eq_dist, collinear_iff_exists_forall_eq_smul_vadd, AffineIsometryEquiv.coe_vaddConst', uniformContinuous_vadd, wbtw_or_wbtw_smul_vadd_of_nonpos, WithIdealFilter.mem_nhds_iff, AffineSpace.asymptoticNhds_eq_smul_vadd, AffineMap.homothety_add, wbtw_vadd_const_iff, ZSpan.vadd_mem_fundamentalDomain, differentiableWithinAt_comp_add_left, AffineSubspace.wOppSide_vadd_right_iff, AffineSubspace.sOppSide_smul_vsub_vadd_left, Prod.snd_vadd, EuclideanGeometry.orthogonalProjection_apply, derivWithin_comp_const_add, AffineSubspace.pointwise_vadd_span, convex_vadd, Filter.Tendsto.asymptoticNhds_vadd_const, AffineSubspace.setOf_sOppSide_eq_image2, AffineEquiv.map_vadd', nndist_vadd_cancel_left, AffineSubspace.setOf_wSameSide_eq_image2, vadd_right_cancel_iff, iteratedFDerivWithin_comp_sub', AffineSubspace.sSameSide_smul_vsub_vadd_left, fderivWithin_comp_add_right, nndist_vadd_vadd_le, AffineSubspace.wOppSide_vadd_left_iff, StrictConvex.vadd, OpenPartialHomeomorph.unitBallBall_apply, eq_vadd_iff_vsub_eq, Affine.Simplex.ninePointCircle_center, AffineMap.lineMap_vadd, wbtw_smul_vadd_smul_vadd_of_nonpos_of_le, Prod.fst_vadd, dist_vadd_vadd_le, fderivWithin_comp_sub, EuclideanGeometry.reflection_apply, affineIndependent_vadd, AffineMap.lineMap_vadd_lineMap, AffineSubspace.sOppSide_vadd_left_iff, sbtw_const_vadd_iff, hasFDerivWithinAt_comp_add_left, wbtw_smul_vadd_smul_vadd_of_nonneg_of_nonpos, vadd_left_mem_affineSpan_pair, signedDist_vadd_vadd, AffineMap.coe_homothety, ContinuousAffineMap.vadd_apply, EuclideanGeometry.angle_const_vadd, Equiv.pointReflection_apply, AffineSubspace.sOppSide_smul_vsub_vadd_right
toVSub 📖CompOp
329 mathmath: AffineSubspace.sOppSide_iff_exists_right, AffineIsometryEquiv.coe_constVSub, vsub_midpoint, AffineIsometryEquiv.pointReflection_apply, EuclideanGeometry.dist_smul_vadd_sq, Equiv.right_vsub_pointReflection, AffineSubspace.coe_vsub, Finset.affineCombination_vsub, AffineMap.lineMap_vsub_left, EuclideanGeometry.vsub_orthogonalProjection_mem_direction_orthogonal, Affine.Simplex.faceOppositeCentroid_vsub_point_eq_smul_sum_vsub, vectorSpan_range_eq_span_range_vsub_left_ne, Affine.Simplex.smul_mongePoint_vsub_circumcenter_eq_sum_vsub, inner_vsub_right_eq_zero_symm, Affine.Simplex.neg_mul_lt_inner_vsub_altitudeFoot, AffineMap.lineMap_linear, vsub_mem_vectorSpan_of_mem_spanPoints_of_mem_spanPoints, Affine.Simplex.smul_centroid_vsub_point_eq_smul_faceOppositeCentroid_vsub_point, Finset.weightedVSubOfPoint_apply, AffineSubspace.affineSpan_pair_parallel_iff_exists_unit_smul', AffineSubspace.mem_perpBisector_iff_inner_eq_zero', Affine.Simplex.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, AffineSubspace.setOf_sSameSide_eq_image2, EuclideanGeometry.Sphere.wbtw_secondInter, Affine.Simplex.inv_height_eq_sum_mul_inv_dist, sub_add_vsub_comm, vsub_mem_vectorSpan, Finset.affineCombination_sdiff_sub, vsub_mem_vectorSpan_pair, DilationEquiv.smulTorsor_symm_apply, vadd_eq_vadd_iff_neg_add_eq_vsub, vadd_vsub_assoc, EuclideanGeometry.Sphere.mem_orthRadius_iff_inner_right, Affine.Simplex.centroid_eq_smul_sum_vsub_vadd, vadd_right_mem_affineSpan_pair, AffineSubspace.wOppSide_smul_vsub_vadd_left, vectorSpan_eq_span_vsub_set_right_ne, vsub_vadd_comm, smul_vsub_rev_vadd_mem_affineSpan_pair, EuclideanGeometry.reflection_vadd_smul_vsub_orthogonalProjection, Prod.mk_vsub_mk, Affine.Triangle.orthocenter_eq_smul_vsub_vadd_circumcenter, affineIndependent_set_iff_linearIndependent_vsub, Affine.Simplex.point_vsub_faceOppositeCentroid_eq_smul_vsub, EuclideanGeometry.dist_eq_iff_eq_smul_rotation_pi_div_two_vadd_midpoint, wbtw_const_vsub_iff, AffineSubspace.sSameSide_iff_exists_left, vsub_right_injective, Set.vadd_set_vsub_vadd_set, AffineSubspace.vsub_mem_direction, Affine.Simplex.abs_inner_vsub_altitudeFoot_div_lt_one, Affine.Simplex.centroid_weighted_vsub_eq_zero, EuclideanGeometry.Sphere.secondInter_collinear, vsub_vadd_eq_vsub_sub, EuclideanGeometry.orthogonalProjection_apply_mem, Finset.sum_smul_vsub_eq_weightedVSubOfPoint_sub, AffineSubspace.sOppSide_iff_exists_left, AffineSubspace.mem_perpBisector_iff_inner_eq_zero, EuclideanGeometry.inversion_vsub_center, AffineSubspace.smul_vsub_vadd_mem, signedDist_apply_apply, vectorSpan_range_eq_span_range_vsub_right, AffineSubspace.direction_affineSpan_insert, EuclideanGeometry.angle_vsub_const, Affine.Simplex.inner_mongePoint_vsub_face_centroid_vsub, vadd_vsub_eq_sub_vsub, AffineIsometryEquiv.map_vsub, vsub_eq_zero_iff_eq, dist_vsub_cancel_left, Equiv.pointReflection_vsub_right, vadd_eq_vadd_iff_sub_eq_vsub, vsub_rev_mem_vectorSpan_pair, Wbtw.sameRay_vsub_right, sbtw_const_vsub_iff, EuclideanGeometry.orthogonalProjection_apply', Finset.sum_smul_const_vsub_eq_vsub_affineCombination, AffineMap.left_vsub_lineMap, Finset.weightedVSub_weightedVSubVSubWeights, AffineMap.lineMap_vsub_right, vsub_add_vsub_cancel, Affine.Simplex.abs_inner_vsub_altitudeFoot_lt_mul, EuclideanGeometry.Sphere.tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, Sbtw.vsub_const, AffineSubspace.wOppSide_iff_exists_left, AffineSubspace.signedInfDist_eq_signedDist_of_mem, Filter.Tendsto.vsub, Prod.fst_vsub, vectorSpan_image_eq_span_vsub_set_left_ne, AffineSubspace.setOf_wOppSide_eq_image2, Affine.Simplex.signedInfDist_apply_self, EuclideanGeometry.Sphere.IsTangentAt.inner_right_eq_zero_of_mem, AffineSubspace.signedInfDist_eq_signedDist_orthogonalProjection, AffineEquiv.coe_constVSub, AffineSubspace.coe_direction_eq_vsub_set, vadd_vsub_vadd_cancel_right, Pi.vsub_apply, uniformContinuous_vsub, vadd_vsub', Affine.Simplex.mongePlane_def, dist_eq_norm_vsub', AffineMap.right_vsub_lineMap, vectorSpan_eq_span_vsub_finset_right_ne, AffineSubspace.mem_direction_iff_eq_vsub, Wbtw.sameRay_vsub_left, smul_vsub_vadd_mem_affineSpan_pair, AffineMap.linearMap_vsub, EuclideanGeometry.inner_pos_or_eq_of_dist_le_radius, vectorSpan_pair_rev, Affine.Triangle.circumsphere_eq_of_dist_of_oangle, EuclideanGeometry.Sphere.sbtw_secondInter, Pi.vsub_def, EuclideanGeometry.Sphere.IsTangentAt.inner_left_eq_zero_of_mem, AffineMap.vsub_lineMap, AffineMap.vsub_apply, vectorSpan_eq_span_vsub_set_left_ne, Sbtw.const_vsub, EuclideanGeometry.reflection_apply_of_mem, AffineSubspace.direction_sup, Equiv.coe_vaddConst_symm, AffineMap.lineMap_vsub, AffineIsometry.map_vsub, vectorSpan_pair, nndist_vsub_vsub_le, Affine.Simplex.smul_faceOppositeCentroid_vsub_point_eq_sum_vsub, affineSegment_const_vsub_image, EuclideanGeometry.Sphere.sOppSide_faceOpposite_secondInter_of_mem_interior_faceOpposite, EuclideanGeometry.Sphere.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, Homeomorph.vaddConst_symm_apply, inner_vsub_vsub_right_eq_dist_sq_left_iff, Affine.Simplex.direction_mongePlane, dist_vsub_cancel_right, midpoint_vsub_left, Finset.sum_smul_const_vsub_eq_neg_weightedVSub, Affine.Triangle.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_circumcenter, EuclideanGeometry.Sphere.sOppSide_faceOpposite_secondInter_of_mem_interior, vsub_sub_vsub_comm, sbtw_vsub_const_iff, Continuous.vsub, Affine.Simplex.point_vsub_faceOppositeCentroid_eq_smul_sum_vsub, AffineSubspace.wSameSide_iff_exists_left, vectorSpan_eq_span_vsub_set_left, Affine.Simplex.faceOppositeCentroid_vsub_point_eq_smul_vsub, AffineSubspace.wSameSide_smul_vsub_vadd_left, vectorSpan_segment, EuclideanGeometry.Sphere.direction_orthRadius_le_iff, AffineMap.lineMap_apply, Affine.Simplex.faceOppositeCentroid_eq_sum_vsub_vadd, slope_fun_def, mem_vectorSpan_pair_rev, AffineSubspace.mem_perpBisector_iff_inner_eq_inner, vsub_left_injective, Wbtw.const_vsub, EuclideanGeometry.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, EuclideanGeometry.inversion_def, Affine.Simplex.inner_vsub_altitudeFoot_vsub_altitudeFoot_eq_zero, abs_signedDist_eq_dist_iff_vsub_mem_span, Affine.Simplex.centroid_eq_smul_vsub_vadd_point, vsub_vadd', LipschitzWith.vsub, AffineSubspace.mem_affineSpan_insert_iff, Affine.Simplex.mongePoint_eq_smul_vsub_vadd_circumcenter, Equiv.left_vsub_pointReflection, nndist_eq_nnnorm_vsub, Equiv.coe_constVSub, signedDist_vsub_self_rev, Affine.Simplex.centroid_vsub_faceOppositeCentroid_eq_smul_vsub, midpoint_vsub_midpoint, AffineEquiv.ofLinearEquiv_apply, AffineMap.vsub_linear, EuclideanGeometry.orthogonalProjection_eq_orthogonalProjection_iff_vsub_mem, AffineIsometryEquiv.coe_vaddConst_symm, AffineEquiv.pointReflection_apply, Finset.weightedVSubOfPoint_apply_const, signedDist_vsub_self, AffineSubspace.wOppSide_smul_vsub_vadd_right, ContinuousAt.vsub, midpoint_vsub_right, AffineMap.coe_lineMap, vectorSpan_range_eq_span_range_vsub_right_ne, vsub_sub_vsub_cancel_left, Affine.Simplex.eq_centroid_iff_sum_vsub_eq_zero, IsTopologicalAddTorsor.continuous_vsub, vadd_vsub_vadd_comm, Finset.centroid_vsub_const, AffineSubspace.sSameSide_smul_vsub_vadd_right, vsub_sub_vsub_cancel_right, vectorSpan_def, AffineMap.homothety_apply, EuclideanGeometry.Sphere.secondInter_vsub_mem_affineSpan, dist_vsub_vsub_le, EuclideanGeometry.inner_nonneg_of_dist_le_radius, smul_vsub_rev_mem_vectorSpan_pair, AffineSubspace.direction_affineSpan_pair_le_iff_exists_smul, inner_vsub_vsub_left_eq_dist_sq_right_iff, AffineSubspace.coe_direction_eq_vsub_set_left, EuclideanGeometry.orthogonalProjection_vsub_mem_direction, mem_const_vsub_affineSegment, vsub_right_cancel_iff, Affine.Simplex.sum_inv_height_sq_smul_vsub_eq_zero, nndist_vsub_cancel_left, AffineSubspace.sSameSide_iff_exists_right, mem_vectorSpan_pair, affineSegment_vsub_const_image, AffineSubspace.mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero, EuclideanGeometry.angle_const_vsub, EuclideanGeometry.vsub_orthogonalProjection_mem_direction, Affine.Simplex.neg_one_lt_inner_vsub_altitudeFoot_div, AffineSubspace.signedInfDist_singleton, vectorSpan_image_eq_span_vsub_set_right_ne, Affine.Simplex.coe_orthogonalProjection_vadd_smul_vsub_orthogonalProjection, Finset.weightedVSub_apply, AffineSubspace.wSameSide_iff_exists_right, neg_vsub_eq_vsub_rev, IsometryEquiv.constVSub_apply, wbtw_vsub_const_iff, AffineSubspace.wSameSide_smul_vsub_vadd_right, ContinuousAffineMap.contLinear_map_vsub, Affine.Simplex.smul_centroid_vsub_point_eq_sum_vsub, AffineSubspace.affineSpan_pair_parallel_iff_exists_unit_smul, Affine.Simplex.mongePoint_vsub_face_centroid_eq_weightedVSub_of_pointsWithCircumcenter, EuclideanGeometry.reflection_apply', Finset.centroid_pair, Affine.Simplex.point_vsub_centroid_eq_smul_vsub, mem_vsub_const_affineSegment, sub_smul_slope, ContinuousAffineMap.vsub_toAffineMap, AffineSubspace.mem_direction_iff_eq_vsub_right, Affine.Simplex.faceOppositeCentroid_eq_smul_vsub_vadd_point, vadd_vsub_vadd_cancel_left, vsub_vadd, nndist_vsub_cancel_right, vadd_vsub, Affine.Simplex.faceOppositeCentroid_vsub_centroid_eq_smul_vsub, AffineMap.homothety_def, IsometryEquiv.vaddConst_symm_apply, midpoint_vsub, AffineEquiv.vaddConst_symm_apply, AffineSubspace.signedInfDist_def, affineIndependent_iff_linearIndependent_vsub, dist_eq_norm_vsub, Finset.centroid_pair_fin, ContinuousAffineMap.vsub_apply, AffineSubspace.mem_mk', Affine.Simplex.signedInfDist_affineCombination, signedDist_apply, signedDist_eq_dist_iff_vsub_mem_span, AffineSubspace.direction_perpBisector, Finset.sum_smul_vsub_const_eq_weightedVSub, Finset.sum_smul_vsub_const_eq_affineCombination_vsub, vsub_left_cancel_iff, ContinuousOn.vsub, EuclideanGeometry.dist_smul_vadd_eq_dist, AffineSubspace.mem_perpBisector_iff_inner_eq, Affine.Simplex.faceOppositeCentroid_vsub_faceOppositeCentroid, vectorSpan_eq_span_vsub_set_right, AffineMap.homothety_add, Finset.sum_smul_vsub_eq_affineCombination_vsub, AffineSubspace.wOppSide_iff_exists_right, EuclideanGeometry.orthogonalProjection_vsub_mem_direction_orthogonal, AffineSubspace.vsub_right_mem_direction_iff_mem, Wbtw.sameRay_vsub, AffineSubspace.sOppSide_smul_vsub_vadd_left, smul_vsub_mem_vectorSpan_pair, Finset.sum_smul_const_vsub_eq_sub_weightedVSubOfPoint, exists_eq_smul_of_parallel, vsub_mem_vectorSpan_of_mem_affineSpan_of_mem_affineSpan, ContinuousAffineMap.vsub_contLinear, EuclideanGeometry.orthogonalProjection_apply, EuclideanGeometry.Sphere.direction_orthRadius, Prod.snd_vsub, EuclideanGeometry.inner_pos_of_dist_lt_radius, AffineSubspace.signedInfDist_apply_self, EuclideanGeometry.orthogonalProjection_vsub_orthogonalProjection, AffineSubspace.setOf_sOppSide_eq_image2, inner_vsub_vsub_left_eq_dist_sq_left_iff, AffineSubspace.mem_direction_iff_eq_vsub_left, EuclideanGeometry.Sphere.orthRadius_parallel_orthRadius_iff, EuclideanGeometry.inner_vsub_vsub_of_mem_sphere_of_mem_sphere, AffineSubspace.setOf_wSameSide_eq_image2, ContinuousWithinAt.vsub, vsub_set_subset_vectorSpan, edist_vsub_vsub_le, Finset.sum_smul_vsub_const_eq_weightedVSubOfPoint_sub, midpoint_vsub_midpoint_same_left, right_vsub_midpoint, AffineSubspace.sSameSide_smul_vsub_vadd_left, OpenPartialHomeomorph.unitBallBall_symm_apply, EuclideanGeometry.coe_orthogonalProjection_eq_iff_mem, EuclideanGeometry.Sphere.secondInter_eq_lineMap, vsub_eq_sub, midpoint_eq_midpoint_iff_vsub_eq_vsub, AffineMap.image_vsub_image, AffineSubspace.mem_perpBisector_pointReflection_iff_inner_eq_zero, vectorSpan_range_eq_span_range_vsub_left, Affine.Triangle.orthocenter_vsub_circumcenter_eq_sum_vsub, Affine.Simplex.affineSpan_pair_eq_altitude_iff, vsub_self, eq_vadd_iff_vsub_eq, EuclideanGeometry.orthogonalProjection_eq_iff_mem, Affine.Simplex.ninePointCircle_center, EuclideanGeometry.inner_vsub_vsub_of_dist_eq_of_dist_eq, AffineIsometryEquiv.dist_pointReflection_self', AffineSubspace.vsub_left_mem_direction_iff_mem, EuclideanGeometry.reflection_apply, EuclideanGeometry.Sphere.mem_orthRadius_iff_inner_left, EuclideanGeometry.Sphere.secondInter_eq_self_iff, Affine.Simplex.centroid_vsub_point_eq_smul_vsub, nndist_eq_nnnorm_vsub', wbtw_iff_sameRay_vsub, Affine.Simplex.points_vsub_eulerPoint, Equiv.pointReflection_vsub_left, inner_vsub_vsub_right_eq_dist_sq_right_iff, EuclideanGeometry.Sphere.eq_or_eq_secondInter_iff_mem_of_mem_affineSpan_pair, inner_vsub_left_eq_zero_symm, midpoint_vsub_midpoint_same_right, Affine.Simplex.centroid_vsub_eq, AffineMap.lineMap_vsub_lineMap, NormedAddTorsor.dist_eq_norm', Wbtw.vsub_const, Finset.sum_smul_vsub_eq_weightedVSub_sub, AffineSubspace.coe_direction_eq_vsub_set_right, vadd_left_mem_affineSpan_pair, left_vsub_midpoint, AffineMap.coe_homothety, Equiv.pointReflection_apply, Set.singleton_vsub_self, AffineSubspace.sOppSide_smul_vsub_vadd_right, AffineBasis.basisOf_apply, Affine.Simplex.inner_vsub_vsub_altitudeFoot_eq_height_sq

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty 📖
subsingleton_iff 📖Equiv.subsingleton_congr
nonempty
vadd_vsub' 📖mathematicalVSub.vsub
toVSub
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
toAddAction
vsub_vadd' 📖mathematicalHVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
toAddAction
VSub.vsub
toVSub

Equiv

Definitions

NameCategoryTheorems
constVAdd 📖CompOp
3 mathmath: constVAdd_zero, coe_constVAdd, constVAdd_add
constVSub 📖CompOp
2 mathmath: coe_constVSub_symm, coe_constVSub
pointReflection 📖CompOp
29 mathmath: right_vsub_pointReflection, pointReflection_symm, EuclideanGeometry.Sphere.isDiameter_iff_right_mem_and_pointReflection_center_right, injective_pointReflection_left_of_injective_two_nsmul, dist_left_pointReflection, midpoint_pointReflection_left, pointReflection_vsub_right, pointReflection_midpoint_right, midpoint_pointReflection_right, EuclideanGeometry.Sphere.IsDiameter.pointReflection_center_left, pointReflection_involutive, dist_right_pointReflection, AffineEquiv.toEquiv_pointReflection, midpoint_eq_iff', AffineEquiv.pointReflection_apply_eq_equivPointReflection_apply, left_vsub_pointReflection, EuclideanGeometry.Sphere.IsTangent.eq_orthRadius_or_eq_orthRadius_pointReflection_of_parallel_orthRadius, EuclideanGeometry.Sphere.IsDiameter.pointReflection_center_right, dist_pointReflection_right, AffineSubspace.mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero, pointReflection_eq_subLeft, pointReflection_self, dist_pointReflection_left, pointReflection_midpoint_left, AffineSubspace.mem_perpBisector_pointReflection_iff_inner_eq_zero, EuclideanGeometry.Sphere.isDiameter_iff_left_mem_and_pointReflection_center_left, pointReflection_vsub_left, pointReflection_apply, pointReflection_fixed_iff_of_injective_two_nsmul
vaddConst 📖CompOp
2 mathmath: coe_vaddConst, coe_vaddConst_symm

Theorems

NameKindAssumesProvesValidatesDepends On
coe_constVAdd 📖mathematicalDFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
constVAdd
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
coe_constVSub 📖mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
constVSub
VSub.vsub
AddTorsor.toVSub
coe_constVSub_symm 📖mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
constVSub
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SubNegMonoid.toNeg
coe_vaddConst 📖mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
vaddConst
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
coe_vaddConst_symm 📖mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
symm
vaddConst
VSub.vsub
AddTorsor.toVSub
pointReflection_apply 📖mathematicalDFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
pointReflection
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
VSub.vsub
AddTorsor.toVSub
pointReflection_involutive 📖mathematicalFunction.Involutive
DFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
pointReflection
apply_eq_iff_eq_symm_apply
pointReflection_symm
pointReflection_self 📖mathematicalDFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
pointReflection
vsub_vadd
pointReflection_symm 📖mathematicalsymm
pointReflection
ext
neg_vsub_eq_vsub_rev
pointReflection_vsub_left 📖mathematicalVSub.vsub
AddTorsor.toVSub
DFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
pointReflection
vadd_vsub
pointReflection_vsub_right 📖mathematicalVSub.vsub
AddTorsor.toVSub
DFunLike.coe
Perm
EquivLike.toFunLike
instEquivLike
pointReflection
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
vadd_vsub_assoc
two_nsmul

(root)

Definitions

NameCategoryTheorems
addGroupIsAddTorsor 📖CompOp
513 mathmath: AffineSubspace.wOppSide_lineMap_right, AffineMap.lineMap_apply_module, AffineMap.hasStrictDerivAt_lineMap, AffineMap.lineMap_vsub_left, Convex.intrinsicClosure, Submodule.mem_toAffineSubspace, ContinuousAffineMap.lineMap_apply', smooth_barycentric_coord, AffineMap.coe_smul, affineSpan_le_toAffineSubspace_span, ContinuousAffineMap.neg_contLinear, AffineEquiv.linear_vaddConst, AffineMap.lineMap_linear, fderivWithin_comp_add_left, AddCircle.isAddQuotientCoveringMap_zsmul_of_ne_zero, rank_le_card_isVisible, Filter.Tendsto.lineMap, ConvexOn.monotoneOn_slope_lt, AffineMap.hasDerivAtFilter, Finset.affineCombination_apply_eq_lineMap_sum, curveIntegrable_segment, HasDerivWithinAt.liminf_right_slope_le, right_lt_lineMap_iff_one_lt, AffineMap.pi_lineMap_apply, AffineSubspace.smul_mem_smul_iff₀, dist_sq_lineMap_lineMap_of_inner_eq_zero, Convex.lineMap_mem, midpoint_add_self, wbtw_sub_const_iff, ContinuousAffineMap.neg_apply, sbtw_iff_mem_image_Ioo_and_ne, Wbtw.right_mem_image_Ici_of_left_ne, MonotoneOn.slope_nonneg, ContinuousAffineMap.coe_sub, AffineBasis.coe_smul, AffineMap.lineMap_rev_mem_affineSpan_pair, derivWithin_comp_const_sub, AffineMap.hasDerivWithinAt, Convex.affine_image, ContinuousAffineMap.smul_apply, lintegral_fderiv_lineMap_eq_edist, signedDist_right_congr, lineMap_le_map_iff_slope_le_slope_right, AffineBasis.linear_eq_sumCoords, Affine.Simplex.sign_signedInfDist_lineMap_incenter_touchpoint, iteratedFDerivWithin_comp_add_right', AffineSubspace.sOppSide_lineMap_left, AddCircle.isAddQuotientCoveringMap_nsmul_of_ne_zero, lineMap_inv_two, Circle.isAddQuotientCoveringMap_exp, AddCircle.isAddQuotientCoveringMap_nsmul, ContinuousAffineMap.coe_lineMap_eq, AffineBasis.coord_apply_ne, slope_pos_iff_of_le, Convex.mapsTo_lineMap, AmpleSet.preimage_iff, signedDist_left_congr, curveIntegralFun_segment, signedDist_triangle, LinearMap.toAffineMap_linear, dslope_eventuallyEq_slope_nhdsNE, ContinuousAffineMap.lineMap_toAffineMap, wbtw_lineMap_iff, nndist_right_lineMap, signedDist_linear_apply_apply, sbtw_iff_left_ne_and_right_mem_image_Ioi, ContinuousAffineMap.decomp, AffineEquiv.apply_lineMap, wbtw_const_vsub_iff, ContinuousAffineMap.zero_apply, AffineBasis.convexHull_eq_nonneg_coord, AddCircle.isAddQuotientCoveringMap_coe, nndist_left_lineMap, AffineBasis.coord_apply, ContinuousLinearMap.toContinuousAffineMap_map_zero, ContinuousAffineMap.smul_contLinear, Convex.closure_subset_interior_image_homothety_of_one_lt, signedDist_le_dist, AffineSpace.asymptoticNhds_bind_asymptoticNhds, StarConvex.affine_image, List.SortedLE.wbtw, affineSpan_eq_affineSpan_lineMap_units, lineMap_mono_endpoints, signedDist_apply_apply, AffineMap.lineMap_injective, ConcaveOn.antitoneOn_slope_gt, map_lt_lineMap_iff_slope_lt_slope_right, Submodule.toAffineSubspace_direction, sbtw_vadd_const_iff, iteratedFDerivWithin_comp_add_left, ContinuousLinearEquiv.coe_toContinuousAffineEquiv, hasDerivAtFilter_iff_tendsto_slope, AffineMap.differentiableWithinAt, Polygon.edgeSet_eq_image_edgePath, affinity_unitClosedBall, AffineSubspace.coe_smul, Finset.affineCombination_eq_linear_combination, AffineBasis.basisOf_smul, ContinuousAffineMap.vadd_toAffineMap, image_openSegment, AffineMap.apply_lineMap, AffineMap.hasDerivAt_lineMap, AffineBasis.reindex_smul, affineSpan_convexHull, sbtw_const_vsub_iff, midpoint_eq_smul_add, AffineMap.left_vsub_lineMap, midpoint_sub_right, AffineMap.hasDerivWithinAt_lineMap, AffineMap.smul_linear, curveIntegral_segment, hasDerivAt_iff_tendsto_slope_left_right, AffineBasis.toMatrix_apply, AffineMap.decomp', AffineMap.lineMap_vsub_right, ContinuousLinearEquiv.toContinuousAffineEquiv_toContinuousAffineMap, AffineMap.lineMap_continuous, ContinuousAffineMap.coe_add, dist_lineMap_left, midpoint_le_right, signedDist_eq_zero_of_orthogonal, lineMap_lt_right_iff_lt_one, AffineSpace.asymptoticNhds_vadd_pure, lineMap_le_lineMap_iff_of_lt', lineMap_strict_mono_endpoints, ContinuousOn.lineMap, midpoint_le_midpoint, Sbtw.vsub_const, bddAbove_slope_gt_of_mem_interior, Sbtw.right_mem_image_Ioi, asymptoticCone_asymptoticCone, right_lt_lineMap_iff_lt, AffineSubspace.signedInfDist_eq_signedDist_of_mem, lineMap_mem_openSegment, convexHull_vadd, right_le_lineMap_iff_le, List.exists_map_eq_of_sorted_nonempty_iff_sbtw, signedDist_zero, AffineSubspace.signedInfDist_eq_signedDist_orthogonalProjection, AffineMap.lineMap_lineMap_right, ConcaveOn.slope_anti, AffineEquiv.coe_constVSub, mem_vadd_const_affineSegment, AffineSubspace.smul_bot, AffineMap.lineMap_mem, Filter.Tendsto.atTop_smul_nhds_tendsto_asymptoticNhds, Finset.weightedVSub_smul, slope_neg_fun, AffineMap.lineMap_mono, AffineMap.vadd_linear, AffineMap.right_vsub_lineMap, Wbtw.left_mem_image_Ici_of_right_ne, signedDist_triangle_left, ConcaveOn.comp_affineMap, IsClosed.exists_wbtw_isVisible, AffineSubspace.wOppSide_lineMap_left, slope_eq_zero_iff, sbtw_iff_right_ne_and_left_mem_image_Ioi, lineMap_le_left_iff_nonpos, AmpleSet.preimage, AffineMap.vadd_lineMap, mem_affineSpan_pair_iff_exists_lineMap_rev_eq, affinity_unitBall, AffineMap.neg_linear, AmpleSet.vadd, sbtw_const_sub_iff, StrictConvex.affinity, ConcaveOn.antitoneOn_slope_lt, eq_pos_convex_span_of_mem_convexHull, iteratedFDerivWithin_comp_sub, Affine.Simplex.ExcenterExists.sign_signedInfDist_lineMap_excenter_touchpoint, differentiableWithinAt_comp_sub, ContinuousAffineMap.sub_contLinear, AffineMap.hasDerivAt, List.exists_map_eq_of_sorted_nonempty_iff_wbtw, AffineSubspace.smul_top, AffineMap.vsub_lineMap, AffineMap.vsub_apply, lineMap_le_right_iff_le, dist_lineMap_right, AffineMap.differentiableAt, AffineSubspace.smul_mem_smul_iff_of_isUnit, AffineBasis.instIsScalarTower, map_lt_lineMap_iff_slope_lt_slope_left, MeasureTheory.hausdorffMeasure_lineMap_image, AffineMap.isCentralScalar, affineIndependent_iff, signedDist_smul_of_pos, wbtw_zero_one_iff, AffineMap.lineMap_apply_module', ContinuousAffineMap.apply_lineMap', AffineSubspace.convex, eqOn_dslope_slope, AffineSubspace.wSameSide_lineMap_left, midpoint_add_sub, ContinuousWithinAt.lineMap, slope_pos_iff, Geometry.SimplicialComplex.indep, signedDist_lineMap_lineMap, AffineBasis.sum_coord_apply_eq_one, midpoint_neg_self, Sbtw.const_vsub, affineSpan_subset_span, signedDist_vadd_left_swap, LinearEquiv.coe_toAffineEquiv, AffineBasis.coord_apply_combination_of_notMem, midpoint_le_left, AffineMap.lineMap_vsub, wbtw_add_const_iff, Seminorm.vadd_closedBall, affineIndependent_smul, AffineMap.lineMap_eq_lineMap_iff, signedDist_vadd_right, lineMap_lt_left_iff_lt, midpoint_sub_add, List.exists_map_eq_of_sorted_iff_sbtw, LinearMap.coe_toAffineMap, affineSegment_const_vsub_image, Sbtw.of_lt_of_lt, map_le_lineMap_iff_slope_le_slope_right, AffineMap.image_uIcc, AffineMap.lineMap_vadd_apply, sbtw_vsub_const_iff, iteratedFDerivWithin_comp_add_right, nndist_lineMap_right, wbtw_const_sub_iff, Finset.centroid_eq_centerMass, AntitoneOn.slope_nonpos, midpoint_vadd_midpoint, signedDist_lineMap_left, AffineMap.lineMap_apply_zero, Finset.affineCombination_affineCombinationLineMapWeights, Wbtw.of_le_of_le, ContinuousAffineMap.coe_zero, AffineMap.fst_lineMap, ConvexOn.slope_mono, AmpleSet.vadd_iff, vectorSpan_segment, signedDist_anticomm, dslope_of_ne, Convex.midpoint_mem, slope_def_field, ContinuousAffineMap.add_apply, eq_lineMap_of_dist_eq_mul_of_dist_eq_mul, ContinuousAffineMap.to_affine_map_contLinear, Finset.weightedVSubOfPoint_smul, AffineMap.derivWithin, AffineMap.add_linear, AffineMap.lineMap_apply, AffineBasis.coord_apply_eq, AffineBasis.coord_apply_centroid, left_le_lineMap_iff_le, sbtw_mul_sub_add_iff, differentiableWithinAt_comp_add_right, Wbtw.const_vsub, LinearMap.slope_comp, mem_affineSpan_pair_iff_exists_lineMap_eq, openSegment_eq_image_lineMap, List.Sorted.sbtw, wbtw_iff_right_eq_or_left_mem_image_Ici, signedDist_triangle_right, ContinuousAffineMap.add_contLinear, AffineBasis.instSMulCommClass, abs_signedDist_eq_dist_iff_vsub_mem_span, wbtw_iff_left_eq_or_right_mem_image_Ici, AmpleSet.image_iff, lineMap_lt_map_iff_slope_lt_slope, AffineMap.toConstProdLinearMap_apply, left_lt_lineMap_iff_lt, slope_neg, image_segment, wbtw_const_add_iff, AffineMap.lineMap_anti, signedDist_neg, dslope_eventuallyEq_slope_of_ne, AffineSubspace.sSameSide_lineMap_right, continuous_barycentric_coord, signedDist_vsub_self_rev, AffineMap.lineMap_same_apply, affineSegment_eq_segment, ContinuousAffineMap.coe_smul, AffineMap.sub_linear, Finset.centroid_mem_convexHull, AffineMap.toConstProdLinearMap_symm_apply, bddBelow_slope_lt_of_mem_interior, midpoint_vsub_midpoint, signedDist_linear_apply, wbtw_one_zero_iff, AffineMap.lineMap_apply_ring, AffineSubspace.sOppSide_lineMap_right, Affine.Simplex.span_eq_top, AffineMap.vsub_linear, signedDist_self, Sbtw.left_mem_image_Ioi, signedDist_vsub_self, signedDist_smul, HasDerivAt.tendsto_slope, AffineMap.coe_lineMap, lineMap_le_map_iff_slope_le_slope, AffineEquiv.coe_constVSub_symm, AffineMap.lineMap_eq_right_iff, AffineSubspace.smul_eq_map, Filter.Tendsto.atTop_smul_const_tendsto_asymptoticNhds, Bornology.IsVonNBounded.vadd, ContinuousAffineMap.apply_lineMap, slope_pos_iff_gt, sbtw_sub_const_iff, AffineBasis.coords_apply, Finset.centroid_vsub_const, AffineMap.lineMap_apply_one, AffineMap.lineMap_apply', AffineMap.vadd_apply, HasDerivWithinAt.limsup_slope_le', Caratheodory.affineIndependent_minCardFinsetOfMemConvexHull, signedDist_smul_of_neg, right_le_lineMap_iff_one_le, lineMap_le_lineMap_iff_of_lt, List.exists_map_eq_of_sorted_iff_wbtw, AffineSubspace.smul_mem_smul_iff, AffineMap.zero_linear, signedDist_vadd_right_swap, AffineMap.decomp, isVisible_iff_lineMap, lineMap_lt_map_iff_slope_lt_slope_left, lineMap_le_right_iff_le_one, ContinuousAffineMap.sub_apply, List.Sorted.wbtw, hasFDerivWithinAt_comp_add_right, ContinuousAffineMap.vadd_contLinear, slope_vadd_const, StrictAntiOn.slope_neg, affineSegment_vadd_const_image, AffineBasis.surjective_coord, ContinuousMap.Homotopy.affine_apply, AffineMap.lineMap_eq_left_iff, AffineMap.coe_neg, AffineMap.coe_add, Finset.weightedVSub_eq_linear_combination, vectorSpan_add_self, ContinuousLinearMap.toContinuousAffineMap_contLinear, dist_left_lineMap, mem_const_vsub_affineSegment, affineCombination_mem_convexHull, signedDist_vadd_left, lineMap_lt_right_iff_lt, map_le_lineMap_iff_slope_le_slope, AffineMap.coe_homothetyAffine, affineSegment_vsub_const_image, AffineMap.snd_lineMap, iteratedFDerivWithin_comp_add_left', lineMap_one_half, mem_segment_iff_wbtw, sbtw_add_const_iff, List.SortedLT.sbtw, signedDist_apply_linear_apply, AffineSubspace.signedInfDist_singleton, slope_nonpos_iff_of_le, AffineSubspace.sSameSide_lineMap_left, lineMap_le_left_iff_le, AffineMap.lineMap_lineMap_left, AffineMap.hasStrictDerivAt, wbtw_vsub_const_iff, IsClosed.convexHull_subset_affineSpan_isVisible, slope_sub_smul, left_le_midpoint, AffineMap.lineMap_same, surjOn_extremePoints_image, Continuous.lineMap, signedDist_right_lineMap, mem_vsub_const_affineSegment, AffineMap.pi_eq_zero, segment_eq_image_lineMap, AffineMap.lineMap_continuous_uncurry, ContinuousAffineMap.vsub_toAffineMap, instIsTopologicalAddTorsor, midpoint_mem_segment, nndist_lineMap_lineMap, AffineMap.differentiableOn, AffineSpace.asymptoticNhds_eq_smul, AffineSubspace.direction_smul, derivWithin_comp_add_const, AffineMap.comp_lineMap, Bornology.isVonNBounded_vadd, Convex.subset_interior_image_homothety_of_one_lt, AddCircle.isAddQuotientCoveringMap_zsmul, AffineBasis.coord_vadd, ContinuousAt.lineMap, norm_sub_le_mul_volume_of_norm_fderiv_le, AffineMap.homothety_def, sbtw_lineMap_iff, midpoint_sub_left, AffineMap.coe_zero, AffineEquiv.vaddConst_symm_apply, AffineEquiv.vaddConst_apply, AffineSubspace.wSameSide_lineMap_right, Equiv.pointReflection_eq_subLeft, AffineSubspace.signedInfDist_def, ConvexOn.comp_affineMap, signedDist_lineMap_right, ConvexOn.monotoneOn_slope_gt, AffineMap.lineMap_symm, affineCombination_eq_centerMass, ContinuousAffineMap.vsub_apply, slope_neg_iff_of_le, Seminorm.vadd_ball, isOpenMap_barycentric_coord, signedDist_apply, convexHull_eq_union, signedDist_eq_dist_iff_vsub_mem_span, hasFDerivWithinAt_comp_sub, derivWithin_comp_sub_const, slope_fun_def_field, AffineMap.lineMap_apply_ring', AffineIsometryEquiv.coe_vaddConst', asymptoticCone_submodule, right_le_midpoint, map_le_lineMap_iff_slope_le_slope_left, AffineMap.differentiable, AffineMap.image_convexHull, WithIdealFilter.mem_nhds_iff, dist_right_lineMap, AffineBasis.affineCombination_coord_eq_self, AffineBasis.coe_coord_of_subsingleton_eq_one, map_lt_lineMap_iff_slope_lt_slope, AffineMap.homothety_add, wbtw_vadd_const_iff, right_sub_midpoint, differentiableWithinAt_comp_add_left, AffineMap.pi_zero, AffineBasis.coord_smul, AffineBasis.coord_apply_combination_of_mem, ContinuousAffineMap.vsub_contLinear, Convex.closure_subset_image_homothety_interior_of_one_lt, derivWithin_comp_const_add, wbtw_neg_iff, convex_vadd, sbtw_zero_one_iff, AffineIndependent.affineCombination_eq_lineMap_iff_weight_lineMap, lineMap_lt_lineMap_iff_of_lt', Path.segment_apply, lipschitzWith_lineMap, AffineMap.lineMap_apply_one_sub, slope_nonneg_iff_of_le, AffineBasis.linear_combination_coord_eq_self, Affine.Simplex.interior_eq_image_Ioo, abs_signedDist_le_dist, hasDerivAt_iff_tendsto_slope, lineMap_mono_left, iteratedFDerivWithin_comp_sub', lineMap_le_map_iff_slope_le_slope_left, asymptoticCone_eq_closure_of_forall_smul_mem, AffineIndependent.units_lineMap, lineMap_slope_lineMap_slope_lineMap, sbtw_one_zero_iff, EuclideanGeometry.Sphere.secondInter_eq_lineMap, Convex.affine_preimage, vsub_eq_sub, lineMap_strict_mono_left, AffineMap.coe_sub, fderivWithin_comp_add_right, mem_finsuppAffineCoords_iff_linearCombination, ContinuousLinearMap.coe_toContinuousAffineMap, signedDist_apply_linear, hasDerivWithinAt_iff_tendsto_slope', antilipschitzWith_lineMap, sbtw_const_add_iff, AffineMap.deriv, lineMap_slope_slope_sub_div_sub, AmpleSet.image, ContinuousAffineMap.zero_contLinear, EuclideanGeometry.inversion_eq_lineMap, AffineMap.lineMap_mem_affineSpan_pair, StrictMonoOn.slope_pos, dist_sq_lineMap_of_inner_eq_zero, hasDerivWithinAt_iff_tendsto_slope, StrictConvex.vadd, signedDist_left_lineMap, wbtw_iff_of_le, Sbtw.mem_image_Ioo, ContinuousAffineMap.coe_neg, AffineMap.lineMap_vadd, lineMap_lt_map_iff_slope_lt_slope_right, midpoint_zero_add, slope_def_module, affineSpan_insert_zero, left_lt_lineMap_iff_pos, convexHull_subset_affineSpan, fderivWithin_comp_sub, lineMap_strict_mono_right, wbtw_mul_sub_add_iff, midpoint_self_neg, AffineMap.homothety_eq_lineMap, sbtw_neg_iff, ContinuousAffineMap.instIsCentralScalar, AffineMap.lineMap_vadd_lineMap, convexHull_range_eq_exists_affineCombination, lineMap_lt_lineMap_iff_of_lt, left_sub_midpoint, lineMap_mono_right, dist_lineMap_lineMap, hasFDerivWithinAt_comp_add_left, AffineMap.lineMap_vsub_lineMap, Path.eqOn_extend_segment, Wbtw.vsub_const, nndist_lineMap_left, Convex.combo_affine_apply, signedDist_vadd_vadd, HasDerivWithinAt.limsup_slope_le, left_le_lineMap_iff_nonneg, lineMap_lt_left_iff_neg, ContinuousAffineMap.vadd_apply, Convex.asymptoticCone, AffineSubspace.smul_span

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_vsub_eq_zero 📖VSub.vsub
AddTorsor.toVSub
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
vsub_vadd
zero_vadd
eq_vadd_iff_vsub_eq 📖mathematicalHVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
VSub.vsub
AddTorsor.toVSub
vadd_vsub
vsub_vadd
neg_vsub_eq_vsub_rev 📖mathematicalSubNegMonoid.toNeg
AddGroup.toSubNegMonoid
VSub.vsub
AddTorsor.toVSub
neg_eq_of_add_eq_zero_right
vadd_right_cancel
vsub_add_vsub_cancel
vsub_self
vadd_eq_vadd_iff_neg_add_eq_vsub 📖mathematicalHVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
AddSemigroup.toAdd
SubNegMonoid.toNeg
VSub.vsub
AddTorsor.toVSub
eq_vadd_iff_vsub_eq
vadd_vsub_assoc
AddLeftCancelSemigroup.toIsLeftCancelAdd
neg_add_cancel_left
vadd_right_cancel 📖HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
vadd_vsub
vadd_right_cancel_iff 📖mathematicalHVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
vadd_right_cancel
vadd_right_injective 📖mathematicalHVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
vadd_right_cancel
vadd_vsub 📖mathematicalVSub.vsub
AddTorsor.toVSub
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
AddTorsor.vadd_vsub'
vadd_vsub_assoc 📖mathematicalVSub.vsub
AddTorsor.toVSub
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
AddSemigroup.toAdd
vadd_right_cancel
vsub_vadd
AddSemigroupAction.add_vadd
vadd_vsub_eq_sub_vsub 📖mathematicalVSub.vsub
AddTorsor.toVSub
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SubNegMonoid.toSub
vadd_vsub_assoc
sub_eq_add_neg
neg_vsub_eq_vsub_rev
vadd_vsub_vadd_cancel_right 📖mathematicalVSub.vsub
AddTorsor.toVSub
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SubNegMonoid.toSub
vsub_vadd_eq_vsub_sub
vadd_vsub_assoc
vsub_self
add_zero
vsub_add_vsub_cancel 📖mathematicalAddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
VSub.vsub
AddTorsor.toVSub
vadd_right_cancel
AddSemigroupAction.add_vadd
vsub_vadd
vsub_eq_sub 📖mathematicalVSub.vsub
AddTorsor.toVSub
addGroupIsAddTorsor
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
vsub_eq_zero_iff_eq 📖mathematicalVSub.vsub
AddTorsor.toVSub
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
eq_of_vsub_eq_zero
vsub_self
vsub_ne_zero 📖vsub_eq_zero_iff_eq
vsub_self 📖mathematicalVSub.vsub
AddTorsor.toVSub
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
zero_add
vadd_vsub_assoc
vadd_vsub
vsub_sub_vsub_cancel_right 📖mathematicalSubNegMonoid.toSub
AddGroup.toSubNegMonoid
VSub.vsub
AddTorsor.toVSub
vsub_vadd_eq_vsub_sub
vsub_vadd
vsub_vadd 📖mathematicalHVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
VSub.vsub
AddTorsor.toVSub
AddTorsor.vsub_vadd'
vsub_vadd_eq_vsub_sub 📖mathematicalVSub.vsub
AddTorsor.toVSub
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
SubNegMonoid.toSub
AddLeftCancelSemigroup.toIsLeftCancelAdd
vsub_add_vsub_cancel
neg_vsub_eq_vsub_rev
vadd_vsub
add_sub_assoc
neg_add_cancel
zero_sub

---

← Back to Index