toIntAlgebra π | CompOp | 348 mathmath: IsPrimitiveRoot.subOneIntegralPowerBasis_gen_prime, NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply', IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_prime, RootPairing.GeckConstruction.h_def, IsCyclotomicExtension.Rat.inertiaDeg_eq_of_prime_pow, NumberField.Ideal.inertiaDeg_primesOverSpanEquivMonicFactorsMod_symm_apply, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime_pow, WittVector.aeval_verschiebung_poly', Differential.implicitDeriv_C, Ideal.absNorm_span_insert, NumberField.isCoprime_differentIdeal_of_isCoprime_discr, Differential.algHom_deriv, IsPrimitiveRoot.totient_le_degree_minpoly, RootPairing.Base.injective_pairingIn, jacobiSum_mem_algebraAdjoin_of_pow_eq_one, one_le_pow_mul_abs_eval_div, AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_symm_apply, WittVector.ghostComponent_apply, NumberField.RingOfIntegers.instIsIntegralClosureIntWithVal, NumberField.Ideal.inertiaDeg_primesOverSpanEquivMonicFactorsMod_symm_apply', IsCyclotomicExtension.Rat.ncard_primesOver_of_prime_pow, ChevalleyThm.chevalley_polynomialC, IsPrimitiveRoot.minpoly_dvd_pow_mod, MulChar.apply_mem_algebraAdjoin_of_pow_eq_one, CongruenceSubgroup.exists_Gamma_le_conj', IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_apply, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, IsPrimitiveRoot.norm_toInteger_sub_one_of_eq_two_pow, BoxIntegral.unitPartition.mem_smul_span_iff, RootPairing.EmbeddedG2.pairingIn_threeShortAddLong_right, Real.isIntegral_two_mul_sin_rat_mul_pi, IsCyclotomicExtension.Rat.ramificationIdxIn_eq, FractionalIdeal.absNorm_eq', ModularGroup.one_lt_normSq_T_zpow_smul, CongruenceSubgroup.strictPeriods_Gamma0, Algebra.discr_eq_discr, IsPrimitiveRoot.subOneIntegralPowerBasis_gen, MulChar.apply_mem_algebraAdjoin, Rat.isFractionRingDen, IsCyclotomicExtension.Rat.ramificationIdx_span_zeta_sub_one', RingOfIntegers.exponent_eq_sInf, RootPairing.Base.pairingIn_le_zero_of_ne, jacobiTheta_T_sq_smul, ModularForm.levelOne_neg_weight_rank_zero, Ideal.absNorm_eq_pow_inertiaDeg', Subgroup.IsArithmetic.is_commensurable, ModularGroup.sl_moeb, IsPrimitiveRoot.is_roots_of_minpoly, NumberField.RingOfIntegers.withValEquiv_symm_apply, IsPrimitiveRoot.norm_toInteger_sub_one_of_eq_two, ModularGroup.coe_T_zpow_smul_eq, NumberField.FinitePlace.prod_eq_inv_abs_norm_int, CongruenceSubgroup.exists_Gamma_le_conj, Real.isIntegral_two_mul_cos_rat_mul_pi, Subgroup.instIsArithmeticRangeSpecialLinearGroupFinOfNatNatIntGeneralLinearGroupRealMapGL, DifferentialAlgebra.deriv_algebraMap, RootPairing.EmbeddedG2.toIsValuedIn, LindemannWeierstrass.exp_polynomial_approx, IsPrimitiveRoot.integralPowerBasisOfPrimePow_gen, IsCyclotomicExtension.Rat.ramificationIdx_eq_of_prime_pow, RootPairing.pairingIn_pairingIn_mem_set_of_length_eq, RootPairing.zero_le_pairingIn_of_root_sub_mem, IsPrimitiveRoot.prime_norm_toInteger_sub_one_of_prime_pow_ne_two, ModularGroup.tendsto_abs_re_smul, Subgroup.instIsArithmeticMapSpecialLinearGroupFinOfNatNatIntGeneralLinearGroupRealMapGLOfFiniteIndex, IsCyclotomicExtension.Rat.ramificationIdx_eq_of_prime, IsPrimitiveRoot.adjoinEquivRingOfIntegers_symm_apply, ModularGroup.exists_max_im, RingHom.toIntAlgHom_apply, RootPairing.Base.exists_mem_span_pairingIn_ne_zero_and_pairwise_ne, Rat.associated_num_den, Subgroup.IsArithmetic.isCusp_iff_isCusp_SL2Z, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure_of_prime_pow, CharP.ker_intAlgebraMap_eq_span, instIsGaloisGroupIntRingOfIntegersOfRat, isCusp_SL2Z_iff', RootPairing.pairingIn_pairingIn_mem_set_of_length_eq_of_ne, IsPrimitiveRoot.minpoly_eq_pow_coprime, ModularGroup.im_T_smul, IsPrimitiveRoot.subOneIntegralPowerBasis'_gen_prime, ChevalleyThm.chevalley_mvPolynomialC, RootPairing.pairingIn_eq_zero_of_add_notMem_of_sub_notMem, IsCyclotomicExtension.Rat.inertiaDegIn_of_not_dvd, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime, Algebra.coe_norm_int, NonUnitalSubring.unitization_apply, CommRingCat.coproductCocone_inl, IsIntegral.ratCast_iff, RootPairing.isG2_iff, WittVector.mulN_coeff, Subgroup.strictWidthInfty_eq_one_of_T_mem, IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply, algebraMap.coe_deriv, RootPairing.IsG2.toIsValuedIn, EisensteinSeries.G2_S_transform, Complex.isIntegral_exp_rat_mul_pi_mul_I, ModularGroup.SL_to_GL_tower, ModularFormClass.one_mem_strictPeriods_SL2Z, Differential.coeff_mapCoeffs, IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_prime_pow, IsPrimitiveRoot.norm_toInteger_pow_sub_one_of_two, NumberField.RingOfIntegers.instIsLocalizationAlgebraMapSubmonoidIntNonZeroDivisors, jacobiTheta_S_smul, ModularForm.levelOne_weight_zero_rank_one, ModularGroup.re_T_smul, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, Algebra.Presentation.coeffs_subset_core, CongruenceSubgroup.strictWidthInfty_Gamma0, IsPrimitiveRoot.integralPowerBasis'_gen, Algebra.Presentation.coeffs_relation_subset_core, Real.isAlgebraic_tan_rat_mul_pi, IsPrimitiveRoot.prime_norm_toInteger_sub_one_of_prime_ne_two', Complex.isAlgebraic_sin_rat_mul_pi, CommRingCat.coproductCocone_inr, Real.isAlgebraic_cos_rat_mul_pi, IsPrimitiveRoot.subOneIntegralPowerBasis'_gen, Matrix.SpecialLinearGroup.isClosedEmbedding_mapGLInt, RootPairing.coxeterWeightIn_eq_zero_iff, IsPrimitiveRoot.power_basis_int'_dim, RootPairing.EmbeddedG2.pairingIn_twoShortAddLong_left, Subgroup.IsArithmetic.isFiniteRelIndexSL, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure, RootPairing.IsNotG2.toIsValuedIn, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_ne_zero, UpperHalfPlane.modular_S_smul, Subgroup.strictPeriods_eq_zmultiples_one_of_T_mem, ModularGroup.re_T_inv_smul, NumberField.house.exists_ne_zero_int_vec_house_le, CongruenceSubgroup.isArithmetic_conj_SL2Z, EisensteinSeries.q_expansion_riemannZeta, NumberField.Ideal.liesOver_primesOverSpanEquivMonicFactorsMod_symm, RingOfIntegers.not_dvd_exponent_iff, mem_subalgebraOfSubring, IsPrimitiveRoot.integralPowerBasisOfPrimePow_dim, ModularGroup.normSq_S_smul_lt_one, RootPairing.EmbeddedG2.pairingIn_threeShortAddTwoLong_right, NumberField.discr_eq_discr, ModularGroup.exists_row_one_eq_and_min_re, IsPrimitiveRoot.minpoly_dvd_expand, WittVector.IsPoly.poly, IsCyclotomicExtension.ring_of_integers', IsPrimitiveRoot.minpoly_dvd_mod_p, Differential.mapCoeffs_monomial, RootPairing.pairingIn_pairingIn_mem_set_of_isCrystal_of_isRed, ModularGroup.re_T_zpow_smul, IsCyclotomicExtension.ringOfIntegers, PadicInt.coe_adicCompletionIntegersEquiv_apply, Ideal.relNorm_int, IsCyclotomicExtension.Rat.inertiaDeg_span_zeta_sub_one, exists_jacobiSum_eq_neg_one_add, Differential.mapCoeffs_C, RootPairing.chainBotCoeff_add_chainTopCoeff_eq_pairingIn_chainTopIdx, IsCyclotomicExtension.Rat.inertiaDeg_eq, ModularGroup.im_lt_im_S_smul, NumberField.Units.dirichletUnitTheorem.seq_norm_le, IsPrimitiveRoot.separable_minpoly_mod, NumberField.integralBasis_repr_apply, Complex.isIntegral_two_mul_sin_rat_mul_pi, Int.absNorm_under_mem, Polynomial.hermite_eq_deriv_gaussian', IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_not_dvd, Subgroup.isArithmetic_iff_finiteIndex, RootPairing.IsG2.pairingIn_mem_zero_one_three, CommRingCat.coproductCocone_pt, IsPrimitiveRoot.norm_toInteger_sub_one_eq_one, ModularGroup.im_T_zpow_smul, FractionalIdeal.absNorm_eq, EisensteinSeries.isBoundedAtImInfty_eisensteinSeries_SIF, RootPairing.EmbeddedG2.pairingIn_long_short, subalgebraOfSubring_toSubsemiring, IsPrimitiveRoot.isIntegral, NumberField.RingOfIntegers.mk_zero, IsCyclotomicExtension.Rat.inertiaDeg_span_zeta_sub_one', isCusp_SL2Z_iff, RootPairing.coxeterWeightIn_mem_set_of_isCrystallographic, Polynomial.deriv_gaussian_eq_hermite_mul_gaussian, RootPairing.EmbeddedG2.pairingIn_threeShortAddLong_left, ModularForm.slash_action_eq'_iff, surjective_cosetToCuspOrbit, Subbimodule.coe_toSubbimoduleInt, CongruenceSubgroup.strictWidthInfty_Gamma1, EisensteinSeries.eisensteinSeries_SIF_apply, IsCyclotomicExtension.Rat.ncard_primesOver_of_prime, IsCyclotomicExtension.Rat.liesOver_span_zeta_sub_one, Rat.isFractionRing, NumberField.RingOfIntegers.withValEquiv_apply, RootPairing.forall_pairingIn_eq_swap_or, Complex.isIntegral_exp_neg_rat_mul_pi_mul_I, RootPairing.EmbeddedG2.pairingIn_short_long, ModularGroup.exists_one_half_le_im_smul, Subbimodule.coe_toSubbimoduleNat, Polynomial.hermite_eq_deriv_gaussian, Differential.mapCoeffs_X, WittVector.coeff_frobeniusFun, NumberField.discr_mem_differentIdeal, UpperHalfPlane.petersson_slash_SL, NumberField.absNorm_differentIdeal, NumberField.RingOfIntegers.isIntegral_coe, ModularForm.SL_slash_def, RootPairing.GeckConstruction.diagonal_elim_mem_span_h_iff, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_symm_apply, NumberField.RingOfIntegers.mk_one, Rat.isFractionRingNum, IsPrimitiveRoot.prime_norm_toInteger_sub_one_of_prime_ne_two, Differential.algHom_deriv', CongruenceSubgroup.strictPeriods_Gamma1, RootPairing.pairingIn_pairingIn_mem_set_of_isCrystal_of_isRed', Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, NumberField.RingOfIntegers.instIsIntegralClosureInt, RingOfIntegers.ZModXQuotSpanEquivQuotSpan_mk_apply, Int.absNorm_under_dvd_absNorm, Rat.isLocalizationIsInteger_iff, IsPrimitiveRoot.norm_toInteger_sub_one_of_prime_ne_two, SlashInvariantForm.slash_action_eqn_SL'', CongruenceSubgroup.strictWidthInfty_Gamma, IsPrimitiveRoot.squarefree_minpoly_mod, transcendental_liouvilleNumber, UpperHalfPlane.ModularGroup_T_zpow_mem_verticalStrip, EisensteinSeries.q_expansion_bernoulli, RootPairing.pairingIn_rat, IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_not_dvd, RootPairing.EmbeddedG2.pairingIn_twoShortAddLong_right, IsPrimitiveRoot.card_quotient_toInteger_sub_one, IsCyclotomicExtension.Rat.ramificationIdxIn_eq_of_prime_pow, ModularGroup.im_smul_eq_div_normSq, IsCyclotomicExtension.Rat.inertiaDegIn_eq, CommRingCat.coproductCoconeIsColimit_desc, witt_structure_prop, RootPairing.pairingIn_le_zero_of_root_add_mem, Real.isAlgebraic_sin_rat_mul_pi, WittVector.coeff_select, RootPairing.EmbeddedG2.pairingIn_threeShortAddTwoLong_left, EisensteinSeries.tendsto_double_sum_S_act, CongruenceSubgroup.strictPeriods_Gamma, cosetToCuspOrbit_apply_mk, Rat.int_algebraMap_injective, NonUnitalSubring.unitization_range, Complex.isIntegral_two_mul_cos_rat_mul_pi, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply_eq_span, Differential.deriv_aeval_eq, RingOfIntegers.exponent_eq_one_iff, Subgroup.strictPeriods_SL2Z, Differential.logDeriv_eq_zero, IsCyclotomicExtension.Rat.cyclotomicRing_isIntegralClosure_of_prime, NumberField.RingOfIntegers.isIntegral, IsPrimitiveRoot.norm_toInteger_pow_sub_one_of_prime_pow_ne_two, RootPairing.chainBotCoeff_if_one_zero, RootPairing.chainTopCoeff_if_one_zero, NumberField.hermiteTheorem.natDegree_le_rankOfDiscrBdd, Rat.int_algebraMap_surjective, IsCyclotomicExtension.Rat.map_eq_span_zeta_sub_one_pow, IsPrimitiveRoot.IsCyclotomicExtension.ringOfIntegersOfPrimePow, ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le, IsPrimitiveRoot.integralPowerBasis_dim, IsCyclotomicExtension.Rat.ramificationIdx_of_not_dvd, RootPairing.Base.IsPos.exists_mem_support_pos_pairingIn, FractionalIdeal.abs_det_basis_change, IsPrimitiveRoot.subOneIntegralPowerBasisOfPrimePow_gen, IsCyclotomicExtension.Rat.ramificationIdx_eq_of_not_dvd, Ideal.span_singleton_absNorm, SlashInvariantForm.vAdd_width_periodic, ModularGroup.exists_smul_mem_fd, IsCyclotomicExtension.Rat.adjoin_singleton_eq_top, RootPairing.chainTopCoeff_sub_chainBotCoeff, NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply, NumberField.RingOfIntegers.instIsIntegralInt, Differential.implicitDeriv_X, RingHom.toIntAlgHom_coe, FractionalIdeal.absNorm_div_norm_eq_absNorm_div_norm, IsPrimitiveRoot.self_sub_one_pow_dvd_order, Ideal.absNorm_eq_pow_inertiaDeg, EisensteinSeries.eisensteinSeriesSIF_apply, IsPrimitiveRoot.coe_toInteger, ModularGroup.im_T_inv_smul, NumberField.Embeddings.finite_of_norm_le, IsPrimitiveRoot.integralPowerBasis_gen, algebraMap_int_eq, IsCyclotomicExtension.Rat.ramificationIdx_eq, UpperHalfPlane.modular_T_zpow_smul, Differential.algEquiv_deriv', IsCyclotomicExtension.Rat.associated_norm_zeta_sub_one, IsPrimitiveRoot.pow_isRoot_minpoly, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformlyOn, RootPairing.isNotG2_iff, Complex.isAlgebraic_tan_rat_mul_pi, instIsLocalizationIntPosRat, Subgroup.IsArithmetic.finiteIndex_comap, ModularForm.SL_slash_apply, IsCyclotomicExtension.Rat.inertiaDeg_of_not_dvd, Matrix.SpecialLinearGroup.discreteSpecialLinearGroupIntRange, EisensteinSeries.eisSummand_SL2_apply, WittVector.aeval_verschiebungPoly, EisensteinSeries.eisensteinSeries_SIF_MDifferentiable, RootPairing.IsG2.exists_pairingIn_neg_three, IsCyclotomicExtension.Rat.ramificationIdxIn_of_not_dvd, Polynomial.shiftedLegendre_eval_symm, isIntegral_two_mul_cos_rat_mul_pi, IsPrimitiveRoot.minpoly_eq_pow, MvPolynomial.exists_restrict_to_vars, Complex.isAlgebraic_cos_rat_mul_pi, Algebra.coe_trace_int, Int.absNorm_under_eq_sInf, Ideal.absNorm_span_singleton, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton, RootPairing.EmbeddedG2.pairingIn_shortAddLong_left, IsCyclotomicExtension.Rat.inertiaDeg_eq_of_not_dvd, IsPrimitiveRoot.minpoly_dvd_cyclotomic, RootPairing.pairingIn_pairingIn_mem_set_of_isCrystallographic, NumberField.RingOfIntegers.minpoly_coe, IsCyclotomicExtension.Rat.ramificationIdxIn_of_prime, Int.cast_mem_ideal_iff, Liouville.transcendental, RootPairing.GeckConstruction.h_eq_diagonal, Polynomial.cyclotomic_eq_minpoly, IsCyclotomicExtension.Rat.inertiaDeg_eq_of_prime, EisensteinSeries.eisensteinSeriesSIF_mdifferentiable, RootPairing.EmbeddedG2.pairingIn_shortAddLong_right, WittVector.coeff_frobenius, Subgroup.strictWidthInfty_SL2Z, Ideal.ringChar_quot, IsPrimitiveRoot.norm_toInteger_sub_one_of_prime_ne_two', ModularGroup.SL_neg_smul, Int.liesOver_span_absNorm, IsCyclotomicExtension.Rat.inertiaDegIn_eq_of_prime, RingHom.toIntAlgHom_injective, Algebra.Presentation.instFiniteTypeIntCoreOfFinite, Complex.isIntegral_int_I, Algebra.adjoin_int, CommRingCat.coproductCocone_ΞΉ, EisensteinSeries.tsum_symmetricIco_tsum_eq_S_act, IsPrimitiveRoot.subOneIntegralPowerBasisOfPrimePow_gen_prime, Differential.algEquiv_deriv, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, IsCyclotomicExtension.Rat.ramificationIdx_span_zeta_sub_one, RootPairing.chainBotCoeff_sub_chainTopCoeff, ModularGroup.exists_eq_T_zpow_of_c_eq_zero, Nat.absNorm_under_prime, UpperHalfPlane.modular_T_smul, Rat.ringOfIntegersWithValEquiv_apply, IsPrimitiveRoot.norm_toInteger_pow_sub_one_of_prime_ne_two, ModularGroup.smul_eq_lcRow0_add, SlashInvariantForm.T_zpow_width_invariant, EisensteinSeries.isBoundedAtImInfty_eisensteinSeriesSIF, RootPairing.Base.chainTopCoeff_eq_of_ne, IsPrimitiveRoot.minpoly_dvd_x_pow_sub_one, Ideal.absNorm_dvd_norm_of_mem, RootPairing.baseOf_pairwise_pairing_le_zero, RootPairing.IsNotG2.pairingIn_mem_zero_one_two
|