Documentation Verification Report

Bilinear

๐Ÿ“ Source: Mathlib/Algebra/Algebra/Bilinear.lean

Statistics

MetricCount
Definitionslmul, mul, mul', mul'', lmul, termฮผ, ยซtermฮผ[_]ยป
7
Theoremscomp_mul', coe_lmul_eq_mul, lmul_injective, lmul_isUnit_iff, commute_mulLeft_right, flip_mul, lift_lsmul_mul_eq_lsmul_lift_lsmul, map_mul_iff, mul''_apply, mul'_apply, mul'_comm, mul'_comp_comm, mul_apply', mul_apply_apply, pow_mulLeft, pow_mulRight, toSpanSingleton_eq_algebra_linearMap, toSpanSingleton_one_eq_algebraLinearMap, coe_lmul_eq_mul, comp_mul'
20
Total27

AlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
comp_mul' ๐Ÿ“–mathematicalโ€”LinearMap.comp
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
RingHomCompTriple.ids
toLinearMap
LinearMap.mul'
Algebra.to_smulCommClass
IsScalarTower.right
TensorProduct.map
โ€”TensorProduct.ext'
RingHomCompTriple.ids
Algebra.to_smulCommClass
IsScalarTower.right
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
instNonUnitalAlgHomClassOfAlgHomClass
algHomClass

Algebra

Definitions

NameCategoryTheorems
lmul ๐Ÿ“–CompOp
11 mathmath: lmul_algebraMap, lmul_injective, toMatrix_lmul', Ideal.constr_basisSpanSingleton, isNilpotent_tensor_residueField_iff, norm_apply, baseChange_lmul, lmul_isUnit_iff, coe_lmul_eq_mul, trace_apply, leftMulMatrix_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_lmul_eq_mul ๐Ÿ“–mathematicalโ€”DFunLike.coe
AlgHom
Module.End
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
Module.End.instSemiring
Module.End.instAlgebra
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
toSMul
id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.funLike
lmul
LinearMap
RingHom.id
LinearMap.addCommMonoid
LinearMap.module
LinearMap.instFunLike
LinearMap.mul
to_smulCommClass
IsScalarTower.right
โ€”smulCommClass_self
IsScalarTower.left
lmul_injective ๐Ÿ“–mathematicalโ€”Module.End
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
DFunLike.coe
AlgHom
Module.End.instSemiring
Module.End.instAlgebra
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
toSMul
id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.funLike
lmul
โ€”smulCommClass_self
IsScalarTower.left
mul_one
DFunLike.congr_fun
lmul_isUnit_iff ๐Ÿ“–mathematicalโ€”IsUnit
Module.End
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
Module.End.instMonoid
DFunLike.coe
AlgHom
Module.End.instSemiring
Module.End.instAlgebra
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
toSMul
id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.funLike
lmul
โ€”smulCommClass_self
IsScalarTower.left
Module.End.isUnit_iff
IsUnit.isUnit_iff_mulLeft_bijective

LinearMap

Definitions

NameCategoryTheorems
mul ๐Ÿ“–CompOp
20 mathmath: mul_apply_apply, NonUnitalAlgHom.coe_lmul_eq_mul, Ideal.range_mul', mul_apply', Ideal.range_mul, Algebra.IsEpi.injective_lift_mul, flip_mul, map_mul_iff, mul''_apply, lift_lsmul_mul_eq_lsmul_lift_lsmul, CliffordAlgebra.forall_mul_self_eq_iff, QuadraticMap.associated_linMulLin, Ideal.subtype_isoBaseOfIsPrincipal_eq_mul, Algebra.norm_eq_zero_iff', Submodule.mul_eq_mapโ‚‚, QuadraticMap.associated_sq, Algebra.coe_lmul_eq_mul, Bialgebra.mul_comprโ‚‚_comul, Bialgebra.mul_comprโ‚‚_counit, mulLinearMap_eq_mul
mul' ๐Ÿ“–CompOp
21 mathmath: Pi.comul_eq_adjoint, convMul_def, mul'_comp_comm, TensorProduct.gradedMul_def, AlgHom.comp_mul', intrinsicStar_mul', mul'_apply, HopfAlgebra.mul_antipode_rTensor_comul, TensorProduct.Algebra.linearMap_comp_mul', HopfAlgebra.mul_antipode_rTensor_comul_apply, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_mul, IsLocalization.bijective_linearMap_mul', Submodule.mulMap_eq_mul'_comp_mapIncl, NonUnitalAlgHom.comp_mul', HopfAlgebra.mul_antipode_lTensor_comul_apply, mul'_tensor, HopfAlgebra.mul_antipode_lTensor_comul, Algebra.TensorProduct.lmul'_toLinearMap, convMul_apply, mul'_comm, TensorProduct.Algebra.mul'_comp_tensorTensorTensorComm
mul'' ๐Ÿ“–CompOp
1 mathmath: mul''_apply

Theorems

NameKindAssumesProvesValidatesDepends On
commute_mulLeft_right ๐Ÿ“–mathematicalโ€”Commute
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Module.End.instMul
mulLeft
mulRight
โ€”ext
mul_assoc
flip_mul ๐Ÿ“–mathematicalโ€”flip
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalCommSemiring.toNonUnitalSemiring
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
RingHom.id
Semiring.toNonAssocSemiring
mul
โ€”ext
SMulCommClass.symm
smulCommClass_self
mul_comm
lift_lsmul_mul_eq_lsmul_lift_lsmul ๐Ÿ“–mathematicalโ€”TensorProduct.lift
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
comp
LinearMap
addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
RingHomCompTriple.ids
lsmul
DFunLike.coe
instFunLike
mul
Algebra.to_smulCommClass
Algebra.id
IsScalarTower.right
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
โ€”TensorProduct.ext'
smulCommClass_self
RingHomCompTriple.ids
Algebra.to_smulCommClass
IsScalarTower.right
map_smul
SemilinearMapClass.toMulActionSemiHomClass
semilinearMapClass
mul_comm
map_mul_iff ๐Ÿ“–mathematicalโ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
instFunLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
comprโ‚‚
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
mul
complโ‚‚
RingHomCompTriple.ids
comp
addCommMonoid
module
โ€”smulCommClass_self
IsScalarTower.left
RingHomCompTriple.ids
ext_iffโ‚‚
mul''_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
TensorProduct.addCommMonoid
TensorProduct.leftModule
Semiring.toModule
Algebra.to_smulCommClass
instFunLike
mul''
AddMonoidHom
AddZeroClass.toAddZero
TensorProduct.addZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
TensorProduct.liftAux
CommSemiring.toSemiring
mul
IsScalarTower.right
โ€”Algebra.to_smulCommClass
mul'_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
mul'
TensorProduct.tmul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
โ€”โ€”
mul'_comm ๐Ÿ“–mathematicalโ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalCommSemiring.toNonUnitalSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
instFunLike
mul'
LinearEquiv
RingHomInvPair.ids
EquivLike.toFunLike
LinearEquiv.instEquivLike
TensorProduct.comm
โ€”RingHomInvPair.ids
RingHomCompTriple.ids
mul'_comp_comm
mul'_comp_comm ๐Ÿ“–mathematicalโ€”comp
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
mul'
LinearEquiv.toLinearMap
RingHomInvPair.ids
TensorProduct.comm
โ€”RingHomCompTriple.ids
RingHomInvPair.ids
smulCommClass_self
TensorProduct.lift_comp_comm_eq
SMulCommClass.symm
flip_mul
mul_apply' ๐Ÿ“–mathematicalโ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike
addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
mul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
โ€”smulCommClass_self
mul_apply_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike
addCommMonoid
module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
mul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
โ€”smulCommClass_self
pow_mulLeft ๐Ÿ“–mathematicalโ€”LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Monoid.toNatPow
Module.End.instMonoid
mulLeft
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
โ€”pow_zero
mulLeft_one
Module.End.one_eq_id
pow_succ
RingHomCompTriple.ids
mulLeft_mul
Module.End.mul_eq_comp
pow_mulRight ๐Ÿ“–mathematicalโ€”LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Monoid.toNatPow
Module.End.instMonoid
mulRight
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
โ€”pow_zero
mulRight_one
Module.End.one_eq_id
pow_succ
pow_succ'
RingHomCompTriple.ids
mulRight_mul
Module.End.mul_eq_comp
toSpanSingleton_eq_algebra_linearMap ๐Ÿ“–mathematicalโ€”toSpanSingleton
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Algebra.linearMap
โ€”toSpanSingleton_one_eq_algebraLinearMap
toSpanSingleton_one_eq_algebraLinearMap ๐Ÿ“–mathematicalโ€”toSpanSingleton
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Algebra.linearMap
โ€”ext_ring
one_smul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass

NonUnitalAlgHom

Definitions

NameCategoryTheorems
lmul ๐Ÿ“–CompOp
1 mathmath: coe_lmul_eq_mul

Theorems

NameKindAssumesProvesValidatesDepends On
coe_lmul_eq_mul ๐Ÿ“–mathematicalโ€”DFunLike.coe
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Module.End
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Module.toDistribMulAction
NonAssocSemiring.toNonUnitalNonAssocSemiring
Module.End.instSemiring
LinearMap.instDistribMulAction
RingHom.id
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
instFunLike_1
lmul
LinearMap
LinearMap.addCommMonoid
LinearMap.module
LinearMap.instFunLike
LinearMap.mul
โ€”smulCommClass_self
comp_mul' ๐Ÿ“–mathematicalโ€”LinearMap.comp
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
SemilinearMapClass.semilinearMap
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.toDistribMulAction
instFunLike_1
NonUnitalAlgHomClass.instLinearMapClass
instNonUnitalAlgSemiHomClass
LinearMap.mul'
TensorProduct.map
โ€”TensorProduct.ext'
RingHomCompTriple.ids
NonUnitalAlgHomClass.instLinearMapClass
instNonUnitalAlgSemiHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass

RingTheory.LinearMap

Definitions

NameCategoryTheorems
termฮผ ๐Ÿ“–CompOpโ€”
ยซtermฮผ[_]ยป ๐Ÿ“–CompOpโ€”

---

โ† Back to Index