Documentation Verification Report

Epi

πŸ“ Source: Mathlib/Algebra/Algebra/Epi.lean

Statistics

MetricCount
DefinitionsIsEpi, lid'
2
Theoremsinjective_lift_mul, injective_lift_lsmul, instIsEpiOfIsDomainOfIsFractionRing, isEpi_iff_forall_one_tmul_eq, isEpi_iff_surjective_algebraMap_of_finite, isEpi_of_surjective_algebraMap, tmul_comm, surjective_of_tmul_eq_tmul_of_finite, lid'_apply_tmul, lid'_symm_apply
10
Total12

Algebra

Definitions

NameCategoryTheorems
IsEpi πŸ“–CompData
7 mathmath: RingHom.surjective_of_tmul_eq_tmul_of_finite, isEpi_of_surjective_algebraMap, CommRingCat.epi_iff_tmul_eq_tmul, CommRingCat.epi_iff_epi, instIsEpiOfIsDomainOfIsFractionRing, isEpi_iff_surjective_algebraMap_of_finite, isEpi_iff_forall_one_tmul_eq

Theorems

NameKindAssumesProvesValidatesDepends On
injective_lift_lsmul πŸ“–mathematicalβ€”TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
toModule
DFunLike.coe
LinearMap
RingHom.id
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
TensorProduct.lift
LinearMap.restrictScalars₁₂
Semiring.toModule
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
toSMul
IsScalarTower.right
LinearMap.lsmul
β€”smulCommClass_self
add_smul
TensorProduct.tmul_add
smul_assoc
TensorProduct.tmul_smul
TensorProduct.CompatibleSMul.isScalarTower
IsScalarTower.left
LinearMap.ext
TensorProduct.add_tmul
one_smul
tmul_comm
RingHomCompTriple.ids
IsScalarTower.right
TensorProduct.AlgebraTensorModule.curry_injective
TensorProduct.isScalarTower
IsScalarTower.to_smulCommClass
instIsEpiOfIsDomainOfIsFractionRing πŸ“–mathematicalβ€”IsEpi
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”isEpi_iff_forall_one_tmul_eq
IsFractionRing.div_surjective
IsFractionRing.instFaithfulSMul
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
smul_div_assoc
IsScalarTower.right
algebraMap_eq_smul_one
TensorProduct.smul_tmul
TensorProduct.CompatibleSMul.isScalarTower
IsScalarTower.left
smul_def
mul_div_cancelβ‚€
isEpi_iff_forall_one_tmul_eq πŸ“–mathematicalβ€”IsEpi
TensorProduct.tmul
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”IsEpi.injective_lift_mul
to_smulCommClass
IsScalarTower.right
one_mul
mul_one
TensorProduct.induction_on
TensorProduct.zero_tmul
TensorProduct.add_tmul
isEpi_iff_surjective_algebraMap_of_finite πŸ“–mathematicalβ€”IsEpi
CommRing.toCommSemiring
Ring.toSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”RingHomSurjective.ids
subsingleton_or_nontrivial
LinearMap.range_eq_top
Submodule.Quotient.subsingleton_iff
TensorProduct.induction_on
Submodule.mkQ_surjective
to_smulCommClass
IsScalarTower.right
isEpi_iff_forall_one_tmul_eq
mul_one
one_mul
Submodule.Quotient.mk_eq_zero
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
TensorProduct.map_tmul
TensorProduct.zero_tmul
zero_add
false_of_nontrivial_of_subsingleton
instNontrivialTensorProduct
Module.Finite.quotient
isEpi_of_surjective_algebraMap
isEpi_of_surjective_algebraMap πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
IsEpiβ€”isEpi_iff_forall_one_tmul_eq
algebraMap_eq_smul_one
TensorProduct.smul_tmul
TensorProduct.CompatibleSMul.isScalarTower
IsScalarTower.left
tmul_comm πŸ“–mathematicalβ€”TensorProduct.tmul
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
toModule
β€”to_smulCommClass
TensorProduct.tmul_eq_smul_one_tmul
isEpi_iff_forall_one_tmul_eq
SMulCommClass.smul_comm
TensorProduct.smulCommClass_left

Algebra.IsEpi

Theorems

NameKindAssumesProvesValidatesDepends On
injective_lift_mul πŸ“–mathematicalβ€”TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
TensorProduct.lift
LinearMap.mul
Algebra.to_smulCommClass
IsScalarTower.right
β€”β€”

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
surjective_of_tmul_eq_tmul_of_finite πŸ“–mathematicalβ€”Algebra.IsEpi
CommRing.toCommSemiring
Ring.toSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instFunLike
algebraMap
β€”Algebra.isEpi_iff_surjective_algebraMap_of_finite

TensorProduct

Definitions

NameCategoryTheorems
lid' πŸ“–CompOp
2 mathmath: lid'_apply_tmul, lid'_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
lid'_apply_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
addCommMonoid
leftModule
Semiring.toModule
Algebra.to_smulCommClass
EquivLike.toFunLike
LinearEquiv.instEquivLike
lid'
tmul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”RingHomInvPair.ids
Algebra.to_smulCommClass
lid'_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
addCommMonoid
leftModule
Semiring.toModule
Algebra.to_smulCommClass
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
lid'
tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”LinearEquiv.injective
Algebra.to_smulCommClass
RingHomInvPair.ids
LinearEquiv.apply_symm_apply
one_smul

---

← Back to Index