Documentation Verification Report

NonUnitalHom

πŸ“ Source: Mathlib/Algebra/Algebra/NonUnitalHom.lean

Statistics

MetricCount
DefinitionshasCoe, toNonUnitalAlgHom, NonUnitalAlgHom, apply, comp, fst, id, inl, inr, instFunLike, instFunLike_1, instInhabited, instOneId, instZero, inverse, inverse', prod, prodEquiv, restrictScalars, snd, toDistribMulActionHom, toMulHom, NonUnitalAlgHomClass, instCoeTCNonUnitalAlgHomId, instCoeTCNonUnitalAlgHomOfNonUnitalAlgSemiHomClass, toNonUnitalAlgHom, toNonUnitalAlgSemiHom, NonUnitalAlgSemiHomClass, Β«term_→ₙₐ[_]_Β», Β«term_→ₙₐ_Β», Β«term_→ₛₙₐ[_]_Β»
31
TheoremsinstNonUnitalAlgHomClassOfAlgHomClass, toNonUnitalAlgHom_eq_coe, addHomMk_coe, coe_coe, coe_comp, coe_distribMulActionHom_mk, coe_id, coe_injective, coe_inl, coe_inr, coe_inverse, coe_inverse', coe_mk, coe_mulHom_mk, coe_one, coe_prod, coe_restrictScalars, coe_restrictScalars', coe_to_distribMulActionHom, coe_to_mulHom, coe_zero, comp_apply, congr_fun, ext, ext_iff, fst_apply, fst_prod, fst_toFun, inl_apply, inr_apply, instNonUnitalAlgSemiHomClass, map_add, map_mul, map_mul', map_smul, map_zero, mk_coe, one_apply, prodEquiv_apply, prodEquiv_symm_apply, prod_apply, prod_fst_snd, prod_toFun, restrictScalars_apply, restrictScalars_injective, snd_apply, snd_prod, snd_toFun, toDistribMulActionHom_eq_coe, toFun_eq_coe, toMulHom_eq_coe, to_distribMulActionHom_injective, to_mulHom_injective, zero_apply, instLinearMapClass, instSemilinearMapClassOfNonUnitalAlgSemiHomClassToMonoidHomRingHom, toNonUnitalRingHomClass, toDistribMulActionSemiHomClass, toMulHomClass
59
Total90

AlgHom

Definitions

NameCategoryTheorems
toNonUnitalAlgHom πŸ“–CompOp
2 mathmath: Unitization.algHom_ext'_iff, toNonUnitalAlgHom_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
instNonUnitalAlgHomClassOfAlgHomClass πŸ“–mathematicalβ€”NonUnitalAlgHomClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.toModule
β€”map_smul
SemilinearMapClass.toMulActionSemiHomClass
AlgHomClass.linearMapClass
RingHomClass.toAddMonoidHomClass
AlgHomClass.toRingHomClass
MonoidHomClass.toMulHomClass
RingHomClass.toMonoidHomClass
toNonUnitalAlgHom_eq_coe πŸ“–mathematicalβ€”toNonUnitalAlgHom
NonUnitalAlgHomClass.toNonUnitalAlgHom
AlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.toModule
funLike
instNonUnitalAlgHomClassOfAlgHomClass
algHomClass
β€”β€”

AlgHom.NonUnitalAlgHom

Definitions

NameCategoryTheorems
hasCoe πŸ“–CompOpβ€”

NonUnitalAlgHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
11 mathmath: range_comp_le_range, Unitization.algHom_ext'_iff, prodEquiv_symm_apply, coe_comp, snd_prod, Unitization.lift_symm_apply, fst_prod, range_comp, NonUnitalSubalgebra.map_map, comp_apply, subtype_comp_codRestrict
fst πŸ“–CompOp
5 mathmath: fst_toFun, prod_fst_snd, prodEquiv_symm_apply, fst_prod, fst_apply
id πŸ“–CompOp
5 mathmath: NonUnitalSubalgebra.inclusion_self, NonUnitalAlgebra.range_id, coe_id, NonUnitalSubalgebra.map_id, NonUnitalStarSubalgebra.inclusion_self
inl πŸ“–CompOp
2 mathmath: inl_apply, coe_inl
inr πŸ“–CompOp
2 mathmath: coe_inr, inr_apply
instFunLike πŸ“–CompOp
17 mathmath: MonoidAlgebra.liftMagma_apply_apply, Unitization.inrNonUnitalAlgHom_toFun, fst_toFun, AddMonoidAlgebra.mapDomainNonUnitalAlgHom_apply, prod_apply, coe_coe, LieHom.toNonUnitalAlgHom_toFun, AddMonoidAlgebra.liftMagma_apply_apply, toFun_eq_coe, LieHom.toNonUnitalAlgHom_apply, snd_apply, MonoidAlgebra.mapDomainNonUnitalAlgHom_apply, prod_toFun, Unitization.inrNonUnitalAlgHom_apply, coe_injective, fst_apply, snd_toFun
instFunLike_1 πŸ“–CompOp
79 mathmath: map_smul, congr_fun, one_apply, NonUnitalSubalgebraClass.coe_subtype, range_comp_le_range, coe_lmul_eq_mul, NonUnitalSubalgebra.inclusion_mk, NonUnitalSubalgebra.inclusion_right, FreeNonUnitalNonAssocAlgebra.of_comp_lift, toDistribMulActionHom_eq_coe, CStarMatrix.norm_def', FreeNonUnitalNonAssocAlgebra.lift_unique, NonUnitalSubalgebra.iSupLift_of_mem, prod_apply, zero_apply, Unitization.lift_symm_apply_apply, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, FreeLieAlgebra.liftAux_map_smul, NonUnitalAlgebra.range_id, map_mul, coe_restrictScalars, restrictScalars_apply, NonUnitalSubalgebra.inclusion_injective, NonUnitalSubalgebra.iSupLift_mk, map_zero, injective_codRestrict, coe_inr, coe_Lmul, coe_one, NonUnitalSubalgebra.toSubring_subtype, FreeLieAlgebra.liftAux_map_add, coe_comp, FreeNonUnitalNonAssocAlgebra.lift_symm_apply, NonUnitalSubalgebra.iSupLift_inclusion, WeakDual.CharacterSpace.coe_toNonUnitalAlgHom, coe_prod, coe_restrictScalars', NonUnitalSubalgebraClass.subtype_injective, FreeLieAlgebra.liftAux_map_mul, NonUnitalSubalgebra.inclusion_inclusion, NonUnitalStarAlgHom.coe_toNonUnitalAlgHom, inl_apply, ext_iff, Unitization.lift_range, FreeLieAlgebra.liftAux_spec, addHomMk_coe, map_add, LinearMap.nonUnitalAlgHom_comp_convMul_distrib, comp_mul', coe_inl, prod_toFun, NonUnitalAlgebra.map_top, toAlgHom_apply, toMulHom_eq_coe, coe_id, NonUnitalAlgebra.comap_top, range_comp, Unitization.lift_range_le, NonUnitalSubalgebra.toNonUnitalSubsemiring_subtype, NonUnitalAlgebra.map_bot, coe_mk, NonUnitalStarAlgHom.coe_mk', inr_apply, NonUnitalSubalgebra.coe_inclusion, NonUnitalSubalgebraClass.subtype_apply, NonUnitalAlgebra.range_eq_top, coe_zero, instNonUnitalAlgSemiHomClass, Unitization.lift_apply_apply, coe_to_mulHom, NonUnitalSubalgebra.map_map, FreeNonUnitalNonAssocAlgebra.lift_of_apply, comp_apply, coe_codRestrict, FreeNonUnitalNonAssocAlgebra.hom_ext_iff, NonUnitalSubalgebra.map_id, NonUnitalSubalgebra.range_val, FreeNonUnitalNonAssocAlgebra.lift_comp_of, coe_to_distribMulActionHom
instInhabited πŸ“–CompOpβ€”
instOneId πŸ“–CompOp
3 mathmath: one_apply, prod_fst_snd, coe_one
instZero πŸ“–CompOp
3 mathmath: zero_apply, toAlgHom_zero, coe_zero
inverse πŸ“–CompOp
1 mathmath: coe_inverse
inverse' πŸ“–CompOp
1 mathmath: coe_inverse'
prod πŸ“–CompOp
7 mathmath: prod_apply, prod_fst_snd, prodEquiv_apply, coe_prod, snd_prod, fst_prod, prod_toFun
prodEquiv πŸ“–CompOp
2 mathmath: prodEquiv_apply, prodEquiv_symm_apply
restrictScalars πŸ“–CompOp
4 mathmath: restrictScalars_injective, coe_restrictScalars, restrictScalars_apply, coe_restrictScalars'
snd πŸ“–CompOp
5 mathmath: prod_fst_snd, prodEquiv_symm_apply, snd_prod, snd_apply, snd_toFun
toDistribMulActionHom πŸ“–CompOp
7 mathmath: toDistribMulActionHom_eq_coe, WeakDual.CharacterSpace.toAlgHom_apply, PositiveLinearMap.gnsStarAlgHom_apply, toFun_eq_coe, map_mul', Pi.evalStarAlgHom_apply, NonUnitalStarAlgHom.map_star'
toMulHom πŸ“–CompOp
6 mathmath: SkewMonoidAlgebra.nonUnitalAlgHom_ext'_iff, MonoidAlgebra.nonUnitalAlgHom_ext'_iff, AddMonoidAlgebra.nonUnitalAlgHom_ext'_iff, MonoidAlgebra.liftMagma_symm_apply, AddMonoidAlgebra.liftMagma_symm_apply, toMulHom_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
addHomMk_coe πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DFunLike.coe
NonUnitalAlgHom
instFunLike_1
map_add
AddMonoidHomClass.toAddHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
instNonUnitalAlgSemiHomClass
AddHomClass.toAddHom
β€”map_add
AddMonoidHomClass.toAddHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
instNonUnitalAlgSemiHomClass
coe_coe πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
instFunLike
NonUnitalAlgHomClass.toNonUnitalAlgSemiHom
β€”β€”
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
instFunLike_1
comp
β€”β€”
coe_distribMulActionHom_mk πŸ“–mathematicalDFunLike.coe
NonUnitalAlgHom
instFunLike_1
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
MulActionHom.toFun
AddZero.toAdd
DistribMulActionHom.toMulActionHom
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DistribMulActionSemiHomClass.toDistribMulActionHom
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
instNonUnitalAlgSemiHomClass
β€”NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
instNonUnitalAlgSemiHomClass
coe_id πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLike_1
id
β€”β€”
coe_injective πŸ“–mathematicalβ€”NonUnitalAlgHom
DFunLike.coe
instFunLike
β€”β€”
coe_inl πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike_1
inl
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
coe_inr πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike_1
inr
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
coe_inverse πŸ“–mathematicalDFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLike_1
inverseβ€”β€”
coe_inverse' πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
NonUnitalAlgHom
instFunLike_1
inverse'β€”β€”
coe_mk πŸ“–mathematicalSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
MulActionHom.toFun
AddZero.toAdd
DistribMulActionHom.toMulActionHom
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalAlgHom
instFunLike_1
β€”β€”
coe_mulHom_mk πŸ“–mathematicalDFunLike.coe
NonUnitalAlgHom
instFunLike_1
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
MulActionHom.toFun
AddZero.toAdd
DistribMulActionHom.toMulActionHom
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
MulHomClass.toMulHom
NonUnitalAlgSemiHomClass.toMulHomClass
instNonUnitalAlgSemiHomClass
β€”NonUnitalAlgSemiHomClass.toMulHomClass
instNonUnitalAlgSemiHomClass
coe_one πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLike_1
instOneId
β€”β€”
coe_prod πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike_1
prod
Pi.prod
β€”β€”
coe_restrictScalars πŸ“–mathematicalβ€”NonUnitalRingHomClass.toNonUnitalRingHom
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLike_1
NonUnitalAlgHomClass.toNonUnitalRingHomClass
instNonUnitalAlgSemiHomClass
restrictScalars
β€”NonUnitalAlgHomClass.toNonUnitalRingHomClass
instNonUnitalAlgSemiHomClass
coe_restrictScalars' πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLike_1
restrictScalars
β€”β€”
coe_to_distribMulActionHom πŸ“–mathematicalβ€”DFunLike.coe
DistribMulActionHom
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribMulActionHom.instFunLike
DistribMulActionSemiHomClass.toDistribMulActionHom
NonUnitalAlgHom
instFunLike_1
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
instNonUnitalAlgSemiHomClass
β€”NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
instNonUnitalAlgSemiHomClass
coe_to_mulHom πŸ“–mathematicalβ€”DFunLike.coe
MulHom
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
MulHom.funLike
MulHomClass.toMulHom
NonUnitalAlgHom
instFunLike_1
NonUnitalAlgSemiHomClass.toMulHomClass
instNonUnitalAlgSemiHomClass
β€”NonUnitalAlgSemiHomClass.toMulHomClass
instNonUnitalAlgSemiHomClass
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
instFunLike_1
instZero
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
instFunLike_1
comp
β€”β€”
congr_fun πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
instFunLike_1
β€”β€”
ext πŸ“–β€”DFunLike.coe
NonUnitalAlgHom
instFunLike_1
β€”β€”coe_injective
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
instFunLike_1
β€”ext
fst_apply πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike
fst
β€”β€”
fst_prod πŸ“–mathematicalβ€”comp
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
fst
prod
MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
β€”MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
fst_toFun πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike
fst
β€”β€”
inl_apply πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike_1
inl
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
inr_apply πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike_1
inr
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
instNonUnitalAlgSemiHomClass πŸ“–mathematicalβ€”NonUnitalAlgSemiHomClass
NonUnitalAlgHom
instFunLike_1
β€”MulActionHom.map_smul'
DistribMulActionHom.map_add'
DistribMulActionHom.map_zero'
map_mul'
map_add πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
instFunLike_1
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
β€”map_add
AddMonoidHomClass.toAddHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
instNonUnitalAlgSemiHomClass
map_mul πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
instFunLike_1
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
instNonUnitalAlgSemiHomClass
map_mul' πŸ“–mathematicalβ€”MulActionHom.toFun
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DistribMulActionHom.toMulActionHom
toDistribMulActionHom
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
map_smul πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
instFunLike_1
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
β€”MulActionSemiHomClass.map_smulβ‚›β‚—
DistribMulActionSemiHomClass.toMulActionSemiHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
instNonUnitalAlgSemiHomClass
map_zero πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
instFunLike_1
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
instNonUnitalAlgSemiHomClass
mk_coe πŸ“–β€”DFunLike.coe
NonUnitalAlgHom
instFunLike_1
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
MulActionHom.toFun
AddZero.toAdd
DistribMulActionHom.toMulActionHom
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”β€”
one_apply πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLike_1
instOneId
β€”β€”
prodEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
prodEquiv
prod
β€”β€”
prodEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
prodEquiv
comp
fst
snd
β€”β€”
prod_apply πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike
prod
Pi.prod
instFunLike_1
β€”β€”
prod_fst_snd πŸ“–mathematicalβ€”prod
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
fst
snd
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
instOneId
β€”coe_injective
Pi.prod_fst_snd
prod_toFun πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike
prod
Pi.prod
instFunLike_1
β€”β€”
restrictScalars_apply πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLike_1
restrictScalars
β€”β€”
restrictScalars_injective πŸ“–mathematicalβ€”NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
restrictScalars
β€”ext
congr_fun
snd_apply πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike
snd
β€”β€”
snd_prod πŸ“–mathematicalβ€”comp
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
snd
prod
MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
β€”MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
snd_toFun πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike
snd
β€”β€”
toDistribMulActionHom_eq_coe πŸ“–mathematicalβ€”toDistribMulActionHom
DistribMulActionSemiHomClass.toDistribMulActionHom
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalAlgHom
instFunLike_1
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
instNonUnitalAlgSemiHomClass
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”MulActionHom.toFun
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DistribMulActionHom.toMulActionHom
toDistribMulActionHom
NonUnitalAlgHom
instFunLike
β€”β€”
toMulHom_eq_coe πŸ“–mathematicalβ€”toMulHom
MulHomClass.toMulHom
NonUnitalAlgHom
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
instFunLike_1
NonUnitalAlgSemiHomClass.toMulHomClass
instNonUnitalAlgSemiHomClass
β€”β€”
to_distribMulActionHom_injective πŸ“–β€”DistribMulActionSemiHomClass.toDistribMulActionHom
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalAlgHom
instFunLike_1
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
instNonUnitalAlgSemiHomClass
β€”β€”NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
instNonUnitalAlgSemiHomClass
ext
DistribMulActionHom.congr_fun
to_mulHom_injective πŸ“–β€”MulHomClass.toMulHom
NonUnitalAlgHom
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
instFunLike_1
NonUnitalAlgSemiHomClass.toMulHomClass
instNonUnitalAlgSemiHomClass
β€”β€”NonUnitalAlgSemiHomClass.toMulHomClass
instNonUnitalAlgSemiHomClass
ext
DFunLike.congr_fun
zero_apply πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
instFunLike_1
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”

NonUnitalAlgHom.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”

NonUnitalAlgHomClass

Definitions

NameCategoryTheorems
instCoeTCNonUnitalAlgHomId πŸ“–CompOpβ€”
instCoeTCNonUnitalAlgHomOfNonUnitalAlgSemiHomClass πŸ“–CompOpβ€”
toNonUnitalAlgHom πŸ“–CompOp
5 mathmath: AlgHom.toNonUnitalAlgHom_eq_coe, NonUnitalStarSubalgebra.toNonUnitalSubalgebra_subtype, Unitization.lift_symm_apply, NonUnitalStarSubalgebra.inclusion_self, NonUnitalAlgHom.subtype_comp_codRestrict
toNonUnitalAlgSemiHom πŸ“–CompOp
1 mathmath: NonUnitalAlgHom.coe_coe

Theorems

NameKindAssumesProvesValidatesDepends On
instLinearMapClass πŸ“–mathematicalβ€”LinearMapClass
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”AddMonoidHomClass.toAddHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
DistribMulActionSemiHomClass.toMulActionSemiHomClass
instSemilinearMapClassOfNonUnitalAlgSemiHomClassToMonoidHomRingHom πŸ“–mathematicalβ€”SemilinearMapClass
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
β€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
AddMonoidHomClass.toAddHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
DistribMulActionSemiHomClass.toMulActionSemiHomClass
toNonUnitalRingHomClass πŸ“–mathematicalβ€”NonUnitalRingHomClassβ€”NonUnitalAlgSemiHomClass.toMulHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass

NonUnitalAlgSemiHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
toDistribMulActionSemiHomClass πŸ“–mathematicalβ€”DistribMulActionSemiHomClass
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”β€”
toMulHomClass πŸ“–mathematicalβ€”MulHomClass
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”

(root)

Definitions

NameCategoryTheorems
NonUnitalAlgHom πŸ“–CompData
105 mathmath: NonUnitalAlgHom.map_smul, NonUnitalAlgHom.congr_fun, MonoidAlgebra.liftMagma_apply_apply, NonUnitalAlgHom.one_apply, Unitization.inrNonUnitalAlgHom_toFun, NonUnitalSubalgebraClass.coe_subtype, NonUnitalAlgHom.fst_toFun, NonUnitalAlgHom.range_comp_le_range, NonUnitalAlgHom.restrictScalars_injective, AddMonoidAlgebra.mapDomainNonUnitalAlgHom_apply, NonUnitalAlgHom.coe_lmul_eq_mul, NonUnitalSubalgebra.inclusion_mk, NonUnitalSubalgebra.inclusion_right, FreeNonUnitalNonAssocAlgebra.of_comp_lift, NonUnitalAlgHom.toDistribMulActionHom_eq_coe, CStarMatrix.norm_def', FreeNonUnitalNonAssocAlgebra.lift_unique, NonUnitalSubalgebra.iSupLift_of_mem, NonUnitalAlgHom.prod_apply, NonUnitalAlgHom.zero_apply, Unitization.lift_symm_apply_apply, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, FreeLieAlgebra.liftAux_map_smul, NonUnitalAlgebra.range_id, NonUnitalAlgHom.map_mul, NonUnitalAlgHom.subsingleton, NonUnitalAlgHom.coe_restrictScalars, NonUnitalAlgHom.restrictScalars_apply, NonUnitalAlgHom.toAlgHom_zero, NonUnitalAlgHom.prod_fst_snd, NonUnitalSubalgebra.inclusion_injective, NonUnitalAlgHom.prodEquiv_apply, NonUnitalSubalgebra.iSupLift_mk, NonUnitalAlgHom.prodEquiv_symm_apply, NonUnitalAlgHom.coe_coe, NonUnitalAlgHom.map_zero, NonUnitalAlgHom.injective_codRestrict, NonUnitalAlgHom.coe_inr, NonUnitalAlgHom.coe_Lmul, NonUnitalAlgHom.coe_one, NonUnitalSubalgebra.toSubring_subtype, FreeLieAlgebra.liftAux_map_add, NonUnitalAlgHom.coe_comp, FreeNonUnitalNonAssocAlgebra.lift_symm_apply, NonUnitalSubalgebra.iSupLift_inclusion, WeakDual.CharacterSpace.coe_toNonUnitalAlgHom, NonUnitalAlgHom.coe_prod, NonUnitalAlgHom.coe_restrictScalars', NonUnitalSubalgebraClass.subtype_injective, LieHom.toNonUnitalAlgHom_toFun, FreeLieAlgebra.liftAux_map_mul, NonUnitalSubalgebra.inclusion_inclusion, NonUnitalStarAlgHom.coe_toNonUnitalAlgHom, NonUnitalAlgHom.inl_apply, NonUnitalAlgHom.ext_iff, Unitization.lift_range, FreeLieAlgebra.liftAux_spec, NonUnitalAlgHom.addHomMk_coe, Unitization.lift_symm_apply, NonUnitalAlgHom.map_add, AddMonoidAlgebra.liftMagma_apply_apply, NonUnitalAlgHom.toFun_eq_coe, MonoidAlgebra.liftMagma_symm_apply, AddMonoidAlgebra.liftMagma_symm_apply, LieHom.toNonUnitalAlgHom_apply, LinearMap.nonUnitalAlgHom_comp_convMul_distrib, NonUnitalAlgHom.comp_mul', NonUnitalAlgHom.snd_apply, NonUnitalAlgHom.coe_inl, MonoidAlgebra.mapDomainNonUnitalAlgHom_apply, NonUnitalAlgHom.prod_toFun, NonUnitalAlgebra.map_top, NonUnitalAlgHom.toAlgHom_apply, NonUnitalAlgHom.toMulHom_eq_coe, NonUnitalAlgHom.coe_id, Unitization.inrNonUnitalAlgHom_apply, NonUnitalAlgebra.comap_top, NonUnitalAlgHom.range_comp, Unitization.lift_range_le, NonUnitalSubalgebra.toNonUnitalSubsemiring_subtype, NonUnitalAlgHom.coe_injective, NonUnitalAlgebra.map_bot, NonUnitalAlgHom.coe_mk, NonUnitalStarAlgHom.coe_mk', NonUnitalAlgHom.inr_apply, NonUnitalSubalgebra.coe_inclusion, NonUnitalSubalgebraClass.subtype_apply, NonUnitalAlgebra.range_eq_top, NonUnitalAlgHom.coe_zero, NonUnitalAlgHom.instNonUnitalAlgSemiHomClass, Unitization.lift_apply_apply, NonUnitalAlgHom.coe_to_mulHom, NonUnitalSubalgebra.map_map, NonUnitalAlgHom.fst_apply, FreeNonUnitalNonAssocAlgebra.lift_of_apply, NonUnitalAlgHom.comp_apply, NonUnitalAlgHom.coe_codRestrict, Unitization.lift_apply, FreeNonUnitalNonAssocAlgebra.hom_ext_iff, NonUnitalSubalgebra.map_id, NonUnitalSubalgebra.range_val, NonUnitalAlgHom.snd_toFun, LieHom.toNonUnitalAlgHom_injective, FreeNonUnitalNonAssocAlgebra.lift_comp_of, NonUnitalAlgHom.coe_to_distribMulActionHom
NonUnitalAlgHomClass πŸ“–MathDef
4 mathmath: WeakDual.CharacterSpace.instNonUnitalAlgHomClass, instNonUnitalAlgHomClassOfNonUnitalAlgEquivClass, AlgHom.instNonUnitalAlgHomClassOfAlgHomClass, NonUnitalStarAlgHom.instNonUnitalAlgHomClass
NonUnitalAlgSemiHomClass πŸ“–CompData
1 mathmath: NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
Β«term_→ₙₐ[_]_Β» πŸ“–CompOpβ€”
Β«term_→ₙₐ_Β» πŸ“–CompOpβ€”
Β«term_→ₛₙₐ[_]_Β» πŸ“–CompOpβ€”

---

← Back to Index