Documentation Verification Report

NonUnitalSubalgebra

πŸ“ Source: Mathlib/Algebra/Algebra/NonUnitalSubalgebra.lean

Statistics

MetricCount
DefinitionscodRestrict, equalizer, fintypeRange, range, rangeRestrict, adjoin, adjoinNonUnitalCommRingOfComm, adjoinNonUnitalCommSemiringOfComm, gi, instCompleteLatticeNonUnitalSubalgebra, instInhabitedNonUnitalSubalgebra, toTop, center, instNonUnitalCommRing, instNonUnitalCommSemiring, centralizer, comap, copy, iSupLift, inclusion, instInhabitedSubtypeMem, instModule, instModule', instPartialOrder, instSetLike, map, ofClass, prod, toNonUnitalCommRing, toNonUnitalCommSemiring, toNonUnitalNonAssocRing, toNonUnitalNonAssocSemiring, toNonUnitalRing, toNonUnitalSemiring, toNonUnitalSubring, toNonUnitalSubring', toNonUnitalSubsemiring, toNonUnitalSubsemiring', toSubmodule, toSubmodule', toSubmoduleEquiv, subtype, toNonUnitalSubalgebra, nonUnitalSubalgebraOfNonUnitalSubring, nonUnitalSubalgebraOfNonUnitalSubsemiring
45
Theoremscoe_codRestrict, coe_range, injective_codRestrict, map_adjoin, map_adjoin_singleton, mem_equalizer, mem_range, mem_range_self, range_comp, range_comp_le_range, subsingleton, subtype_comp_codRestrict, adjoin_empty, adjoin_eq, adjoin_eq_span, adjoin_induction, adjoin_inductionβ‚‚, adjoin_le, adjoin_le_centralizer_centralizer, adjoin_le_iff, adjoin_mono, adjoin_toSubmodule, adjoin_union, adjoin_univ, coe_bot, coe_iInf, coe_inf, coe_sInf, coe_top, comap_top, commute_of_mem_adjoin_of_forall_mem_commute, commute_of_mem_adjoin_self, commute_of_mem_adjoin_singleton_of_commute, eq_top_iff, gc, iInf_toSubmodule, inf_toNonUnitalSubsemiring, inf_toSubmodule, map_bot, map_iInf, map_inf, map_sup, map_top, mem_adjoin_of_mem, mem_bot, mem_iInf, mem_inf, mem_sInf, mem_sup_left, mem_sup_right, mem_top, mul_mem_sup, range_eq_top, range_id, sInf_toNonUnitalSubsemiring, sInf_toSubmodule, self_mem_adjoin_singleton, span_eq_toSubmodule, subset_adjoin, toNonUnitalSubring_eq_top, toNonUnitalSubring_top, toNonUnitalSubsemiring_eq_top, toSubmodule_bot, toSubmodule_eq_top, to_subring_eq_top, top_toNonUnitalSubsemiring, top_toSubmodule, top_toSubring, center_eq_top, center_toNonUnitalSubring, center_toNonUnitalSubsemiring, centralizer_le, centralizer_univ, coe_add, coe_center, coe_centralizer, coe_comap, coe_copy, coe_eq_zero, coe_iSup_of_directed, coe_inclusion, coe_map, coe_mul, coe_neg, coe_prod, coe_smul, coe_sub, coe_toNonUnitalSubring, coe_toNonUnitalSubsemiring, coe_toSubmodule, coe_zero, copy_eq, ext, ext_iff, gc_map_comap, iSupLift_comp_inclusion, iSupLift_inclusion, iSupLift_mk, iSupLift_of_mem, inclusion_inclusion, inclusion_injective, inclusion_mk, inclusion_right, inclusion_self, instCanLiftSetCoeAndMemOfNatForallForallForallForallHAddForallForallForallForallHMulForallForallForallHSMul, instIsScalarTower', instIsScalarTowerSubtypeMem, instIsTorsionFree, instNonUnitalSubringClass, instNonUnitalSubsemiringClass, instSMulCommClass, instSMulCommClass', instSMulMemClass, map_id, map_injective, map_le, map_map, map_mono, map_toNonUnitalSubsemiring, map_toSubmodule, mem_carrier, mem_center_iff, mem_centralizer_iff, mem_comap, mem_map, mem_prod, mem_toNonUnitalSubring, mem_toNonUnitalSubsemiring, mem_toSubmodule, noZeroDivisors, ofClass_carrier, prod_inf_prod, prod_mono, prod_toSubmodule, prod_top, range_val, smul_mem', subsingleton_of_subsingleton, toNonUnitalSubring_inj, toNonUnitalSubring_injective, toNonUnitalSubsemiring_inj, toNonUnitalSubsemiring_injective, toNonUnitalSubsemiring_subtype, toSubmodule_inj, toSubmodule_injective, toSubmodule_toNonUnitalSubalgebra, toSubring_subtype, coe_subtype, subtype_apply, subtype_injective, smul_mem_center, smul_mem_centralizer, coe_toNonUnitalSubalgebra, mem_toNonUnitalSubalgebra, toNonUnitalSubalgebra_mk, toNonUnitalSubalgebra_toSubmodule, mem_nonUnitalSubalgebraOfNonUnitalSubring, mem_nonUnitalSubalgebraOfNonUnitalSubsemiring
158
Total203

NonUnitalAlgHom

Definitions

NameCategoryTheorems
codRestrict πŸ“–CompOp
3 mathmath: injective_codRestrict, coe_codRestrict, subtype_comp_codRestrict
equalizer πŸ“–CompOp
1 mathmath: mem_equalizer
fintypeRange πŸ“–CompOpβ€”
range πŸ“–CompOp
11 mathmath: range_comp_le_range, NonUnitalAlgebra.range_id, mem_range, mem_range_self, Unitization.lift_range, coe_range, NonUnitalAlgebra.map_top, range_comp, Unitization.lift_range_le, NonUnitalAlgebra.range_eq_top, NonUnitalSubalgebra.range_val
rangeRestrict πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_codRestrict πŸ“–mathematicalNonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
DFunLike.coe
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSubalgebra.toNonUnitalNonAssocSemiring
NonUnitalSubalgebra.instModule
instFunLike_1
codRestrict
β€”β€”
coe_range πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubalgebra
NonUnitalSubalgebra.instSetLike
range
Set.range
DFunLike.coe
β€”Set.ext
SetLike.mem_coe
mem_range
Set.mem_range
injective_codRestrict πŸ“–mathematicalNonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
DFunLike.coe
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSubalgebra.toNonUnitalNonAssocSemiring
NonUnitalSubalgebra.instModule
instFunLike_1
codRestrict
β€”β€”
map_adjoin πŸ“–mathematicalβ€”NonUnitalSubalgebra.map
NonUnitalAlgebra.adjoin
Set.image
DFunLike.coe
β€”GaloisConnection.l_comm_of_u_comm
Set.image_preimage
NonUnitalSubalgebra.gc_map_comap
GaloisInsertion.gc
map_adjoin_singleton πŸ“–mathematicalβ€”NonUnitalSubalgebra.map
NonUnitalAlgebra.adjoin
Set
Set.instSingletonSet
DFunLike.coe
β€”map_adjoin
NonUnitalAlgebra.adjoin.congr_simp
Set.image_singleton
mem_equalizer πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
equalizer
DFunLike.coe
β€”β€”
mem_range πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
range
DFunLike.coe
β€”NonUnitalRingHom.mem_srange
NonUnitalRingHom.instNonUnitalRingHomClass
mem_range_self πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
range
DFunLike.coe
β€”mem_range
range_comp πŸ“–mathematicalβ€”range
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike_1
instNonUnitalAlgSemiHomClass
comp
MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
NonUnitalSubalgebra.map
β€”SetLike.coe_injective
instNonUnitalAlgSemiHomClass
MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
Set.range_comp
range_comp_le_range πŸ“–mathematicalβ€”NonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
NonUnitalSubalgebra.instPartialOrder
range
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike_1
instNonUnitalAlgSemiHomClass
comp
MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
β€”SetLike.coe_mono
instIsConcreteLE
instNonUnitalAlgSemiHomClass
MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
Set.range_comp_subset_range
subsingleton πŸ“–mathematicalβ€”NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”ext
NonUnitalAlgebra.mem_top
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
instNonUnitalAlgSemiHomClass
NonUnitalAlgebra.mem_bot
subtype_comp_codRestrict πŸ“–mathematicalNonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
DFunLike.coe
comp
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
NonUnitalSubalgebra.instNonUnitalSubsemiringClass
SubmoduleClass.module
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubalgebra.instSMulMemClass
NonUnitalSubalgebraClass.subtype
codRestrict
MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
NonUnitalAlgHomClass.toNonUnitalAlgHom
β€”NonUnitalSubalgebra.instNonUnitalSubsemiringClass
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubalgebra.instSMulMemClass
MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId

NonUnitalAlgebra

Definitions

NameCategoryTheorems
adjoin πŸ“–CompOp
22 mathmath: adjoin_le_algebra_adjoin, gc, adjoin_le, adjoin_le_centralizer_centralizer, self_mem_adjoin_singleton, subset_adjoin, NonUnitalStarAlgebra.adjoin_toNonUnitalSubalgebra, NonUnitalStarAlgebra.adjoin_eq_starClosure_adjoin, NonUnitalAlgHom.map_adjoin, adjoin_le_iff, adjoin_univ, Algebra.adjoin_nonUnitalSubalgebra, NonUnitalSubalgebra.topologicalClosure_adjoin_le_centralizer_centralizer, adjoin_empty, NonUnitalAlgHom.map_adjoin_singleton, adjoin_toSubmodule, adjoin_eq, adjoin_union, mem_adjoin_of_mem, adjoin_mono, adjoin_eq_span, NonUnitalSubalgebra.star_adjoin_comm
adjoinNonUnitalCommRingOfComm πŸ“–CompOpβ€”
adjoinNonUnitalCommSemiringOfComm πŸ“–CompOpβ€”
gi πŸ“–CompOpβ€”
instCompleteLatticeNonUnitalSubalgebra πŸ“–CompOp
52 mathmath: NonUnitalSubalgebra.coe_starClosure, NonUnitalSubalgebra.center_eq_top, coe_bot, mem_sup_left, coe_inf, sInf_toNonUnitalSubsemiring, NonUnitalSubalgebra.prod_inf_prod, mem_sup_right, NonUnitalSubalgebra.prod_top, mem_inf, NonUnitalStarAlgebra.iInf_toNonUnitalSubalgebra, range_id, mem_iInf, mul_mem_sup, toSubmodule_bot, top_toNonUnitalSubsemiring, NonUnitalStarAlgebra.top_toNonUnitalSubalgebra, NonUnitalSubalgebra.coe_iSup_of_directed, map_sup, eq_top_iff, coe_iInf, mem_top, NonUnitalStarAlgebra.toNonUnitalSubalgebra_eq_top, adjoin_univ, map_iInf, toSubmodule_eq_top, adjoin_empty, coe_top, map_top, to_subring_eq_top, toNonUnitalSubring_eq_top, inf_toSubmodule, mem_sInf, comap_top, map_bot, coe_sInf, range_eq_top, top_toSubring, mem_bot, NonUnitalStarAlgebra.sInf_toNonUnitalSubalgebra, top_toSubmodule, NonUnitalSubalgebra.starClosure_toNonUnitalSubalgebra, sInf_toSubmodule, toNonUnitalSubring_top, adjoin_union, inf_toNonUnitalSubsemiring, toNonUnitalSubsemiring_eq_top, NonUnitalSubalgebra.mem_starClosure, NonUnitalStarAlgebra.toNonUnitalSubalgebra_bot, map_inf, iInf_toSubmodule, NonUnitalStarAlgebra.inf_toNonUnitalSubalgebra
instInhabitedNonUnitalSubalgebra πŸ“–CompOpβ€”
toTop πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_empty πŸ“–mathematicalβ€”adjoin
Set
Set.instEmptyCollection
Bot.bot
NonUnitalSubalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”GaloisConnection.l_bot
gc
adjoin_eq πŸ“–mathematicalβ€”adjoin
SetLike.coe
NonUnitalSubalgebra
NonUnitalSubalgebra.instSetLike
β€”le_antisymm
adjoin_le
le_rfl
subset_adjoin
adjoin_eq_span πŸ“–mathematicalβ€”NonUnitalSubalgebra.toSubmodule
adjoin
Submodule.span
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
SetLike.coe
Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Subsemigroup.instSetLike
Subsemigroup.closure
β€”le_antisymm
adjoin_induction
Submodule.subset_span
Subsemigroup.subset_closure
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Submodule.addSubmonoidClass
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Submodule.span_inductionβ‚‚
MulMemClass.mul_mem
Subsemigroup.instMulMemClass
MulZeroClass.zero_mul
MulZeroClass.mul_zero
add_mul
Distrib.rightDistribClass
mul_add
Distrib.leftDistribClass
smul_mul_assoc
Submodule.smul_mem
mul_smul_comm
Submodule.span_le
Subsemigroup.closure_le
subset_adjoin
adjoin_induction πŸ“–β€”subset_adjoin
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMemClass.add_mem
NonUnitalSubalgebra
NonUnitalSubalgebra.instSetLike
AddSubmonoidClass.toAddMemClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubalgebra.instNonUnitalSubsemiringClass
adjoin
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Distrib.toMul
MulMemClass.mul_mem
NonUnitalSubsemiringClass.mulMemClass
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
SMulMemClass.smul_mem
NonUnitalSubalgebra.instSMulMemClass
SetLike.instMembership
β€”β€”subset_adjoin
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubalgebra.instNonUnitalSubsemiringClass
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
MulMemClass.mul_mem
NonUnitalSubsemiringClass.mulMemClass
SMulMemClass.smul_mem
NonUnitalSubalgebra.instSMulMemClass
adjoin_le
adjoin_inductionβ‚‚ πŸ“–β€”subset_adjoin
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
ZeroMemClass.zero_mem
NonUnitalSubalgebra
NonUnitalSubalgebra.instSetLike
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubalgebra.instNonUnitalSubsemiringClass
adjoin
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Distrib.toMul
MulMemClass.mul_mem
NonUnitalSubsemiringClass.mulMemClass
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
SMulMemClass.smul_mem
NonUnitalSubalgebra.instSMulMemClass
SetLike.instMembership
β€”β€”subset_adjoin
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubalgebra.instNonUnitalSubsemiringClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
MulMemClass.mul_mem
NonUnitalSubsemiringClass.mulMemClass
SMulMemClass.smul_mem
NonUnitalSubalgebra.instSMulMemClass
adjoin_induction
adjoin_le πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
NonUnitalSubalgebra
NonUnitalSubalgebra.instSetLike
Preorder.toLE
PartialOrder.toPreorder
NonUnitalSubalgebra.instPartialOrder
adjoin
β€”GaloisConnection.l_le
gc
adjoin_le_centralizer_centralizer πŸ“–mathematicalβ€”NonUnitalSubalgebra
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
NonUnitalSubalgebra.instPartialOrder
adjoin
NonUnitalSubalgebra.centralizer
SetLike.coe
NonUnitalSubalgebra.instSetLike
β€”adjoin_le
Set.subset_centralizer_centralizer
adjoin_le_iff πŸ“–mathematicalβ€”NonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
NonUnitalSubalgebra.instPartialOrder
adjoin
Set
Set.instHasSubset
SetLike.coe
NonUnitalSubalgebra.instSetLike
β€”gc
adjoin_mono πŸ“–mathematicalSet
Set.instHasSubset
NonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
NonUnitalSubalgebra.instPartialOrder
adjoin
β€”GaloisConnection.monotone_l
gc
adjoin_toSubmodule πŸ“–mathematicalβ€”NonUnitalSubalgebra.toSubmodule
adjoin
Submodule.span
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
SetLike.coe
NonUnitalSubsemiring
NonUnitalSubsemiring.instSetLike
NonUnitalSubsemiring.closure
β€”β€”
adjoin_union πŸ“–mathematicalβ€”adjoin
Set
Set.instUnion
NonUnitalSubalgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
β€”GaloisConnection.l_sup
gc
adjoin_univ πŸ“–mathematicalβ€”adjoin
Set.univ
Top.top
NonUnitalSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”eq_top_iff
subset_adjoin
coe_bot πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubalgebra
NonUnitalSubalgebra.instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubalgebra
NonUnitalSubalgebra.instSetLike
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
Set.iInter
β€”coe_sInf
Set.iInter_congr_Prop
Set.iInter_exists
Set.iInter_iInter_eq'
coe_inf πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubalgebra
NonUnitalSubalgebra.instSetLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
Set
Set.instInter
β€”β€”
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubalgebra
NonUnitalSubalgebra.instSetLike
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
Set.iInter
Set
Set.instMembership
β€”sInf_image
coe_top πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubalgebra
NonUnitalSubalgebra.instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.univ
β€”β€”
comap_top πŸ“–mathematicalβ€”NonUnitalSubalgebra.comap
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalAlgHom.instFunLike_1
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
Top.top
NonUnitalSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
eq_top_iff
mem_top
commute_of_mem_adjoin_of_forall_mem_commute πŸ“–β€”NonUnitalSubalgebra
NonUnitalSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
adjoin
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”Commute.symm_iff
adjoin_le_centralizer_centralizer
commute_of_mem_adjoin_self πŸ“–mathematicalNonUnitalSubalgebra
NonUnitalSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
adjoin
Set
Set.instSingletonSet
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”commute_of_mem_adjoin_singleton_of_commute
commute_of_mem_adjoin_singleton_of_commute πŸ“–β€”NonUnitalSubalgebra
NonUnitalSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
adjoin
Set
Set.instSingletonSet
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”commute_of_mem_adjoin_of_forall_mem_commute
eq_top_iff πŸ“–mathematicalβ€”Top.top
NonUnitalSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
β€”mem_top
NonUnitalSubalgebra.ext
gc πŸ“–mathematicalβ€”GaloisConnection
Set
NonUnitalSubalgebra
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
NonUnitalSubalgebra.instPartialOrder
adjoin
SetLike.coe
NonUnitalSubalgebra.instSetLike
β€”HasSubset.Subset.trans
Set.instIsTransSubset
NonUnitalSubsemiring.subset_closure
Submodule.subset_span
Submodule.span_le
NonUnitalSubsemiring.closure_le
iInf_toSubmodule πŸ“–mathematicalβ€”NonUnitalSubalgebra.toSubmodule
iInf
NonUnitalSubalgebra
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Submodule.instInfSet
β€”SetLike.coe_injective
coe_iInf
Submodule.coe_iInf
inf_toNonUnitalSubsemiring πŸ“–mathematicalβ€”NonUnitalSubalgebra.toNonUnitalSubsemiring
NonUnitalSubalgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
NonUnitalSubsemiring
NonUnitalSubsemiring.instMin
β€”β€”
inf_toSubmodule πŸ“–mathematicalβ€”NonUnitalSubalgebra.toSubmodule
NonUnitalSubalgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Submodule.instMin
β€”β€”
map_bot πŸ“–mathematicalβ€”NonUnitalSubalgebra.map
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalAlgHom.instFunLike_1
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
Bot.bot
NonUnitalSubalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”SetLike.coe_injective
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
coe_bot
Set.image_singleton
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
map_iInf πŸ“–mathematicalDFunLike.coeNonUnitalSubalgebra.map
iInf
NonUnitalSubalgebra
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
β€”SetLike.coe_injective
coe_iInf
Set.InjOn.image_iInter_eq
Set.injOn_of_injective
map_inf πŸ“–mathematicalDFunLike.coeNonUnitalSubalgebra.map
NonUnitalSubalgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
β€”SetLike.coe_injective
Set.image_inter
map_sup πŸ“–mathematicalβ€”NonUnitalSubalgebra.map
NonUnitalSubalgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
β€”GaloisConnection.l_sup
NonUnitalSubalgebra.gc_map_comap
map_top πŸ“–mathematicalβ€”NonUnitalSubalgebra.map
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalAlgHom.instFunLike_1
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
Top.top
NonUnitalSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
NonUnitalAlgHom.range
β€”SetLike.coe_injective
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
Set.image_univ
mem_adjoin_of_mem πŸ“–mathematicalSet
Set.instMembership
NonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
adjoin
β€”subset_adjoin
mem_bot πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”NonUnitalSubsemiring.closure_empty
NonUnitalSubsemiring.coe_bot
Submodule.span_zero_singleton
Submodule.mem_bot
mem_iInf πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
β€”β€”
mem_inf πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
β€”β€”
mem_sInf πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
β€”coe_sInf
mem_sup_left πŸ“–mathematicalNonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
β€”SetLike.le_def
instIsConcreteLE
le_sup_left
mem_sup_right πŸ“–mathematicalNonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
β€”SetLike.le_def
instIsConcreteLE
le_sup_right
mem_top πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Set.mem_univ
mul_mem_sup πŸ“–mathematicalNonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”MulMemClass.mul_mem
NonUnitalSubsemiringClass.mulMemClass
NonUnitalSubalgebra.instNonUnitalSubsemiringClass
mem_sup_left
mem_sup_right
range_eq_top πŸ“–mathematicalβ€”NonUnitalAlgHom.range
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalAlgHom.instFunLike_1
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
Top.top
NonUnitalSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
DFunLike.coe
β€”eq_top_iff
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
range_id πŸ“–mathematicalβ€”NonUnitalAlgHom.range
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalAlgHom.instFunLike_1
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
NonUnitalAlgHom.id
Top.top
NonUnitalSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”SetLike.coe_injective
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
Set.range_id
sInf_toNonUnitalSubsemiring πŸ“–mathematicalβ€”NonUnitalSubalgebra.toNonUnitalSubsemiring
InfSet.sInf
NonUnitalSubalgebra
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
NonUnitalSubsemiring
NonUnitalSubsemiring.instInfSet
Set.image
β€”SetLike.coe_injective
coe_sInf
Set.iInter_congr_Prop
Set.iInter_exists
Set.biInter_and'
Set.iInter_iInter_eq_right
sInf_toSubmodule πŸ“–mathematicalβ€”NonUnitalSubalgebra.toSubmodule
InfSet.sInf
NonUnitalSubalgebra
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeNonUnitalSubalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Submodule.instInfSet
Set.image
β€”SetLike.coe_injective
coe_sInf
Set.iInter_congr_Prop
Set.iInter_exists
Set.biInter_and'
Set.iInter_iInter_eq_right
self_mem_adjoin_singleton πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
adjoin
Set
Set.instSingletonSet
β€”subset_adjoin
Set.mem_singleton
span_eq_toSubmodule πŸ“–mathematicalβ€”Submodule.span
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
SetLike.coe
NonUnitalSubalgebra
NonUnitalSubalgebra.instSetLike
NonUnitalSubalgebra.toSubmodule
β€”Submodule.coe_span_eq_self
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubalgebra.instNonUnitalSubsemiringClass
NonUnitalSubalgebra.instSMulMemClass
subset_adjoin πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
NonUnitalSubalgebra
NonUnitalSubalgebra.instSetLike
adjoin
β€”HasSubset.Subset.trans
Set.instIsTransSubset
NonUnitalSubsemiring.subset_closure
Submodule.subset_span
toNonUnitalSubring_eq_top πŸ“–mathematicalβ€”NonUnitalSubalgebra.toNonUnitalSubring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
CommRing.toCommSemiring
Ring.toSemiring
Top.top
NonUnitalSubring
NonUnitalSubring.instTop
NonUnitalSubalgebra
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
IsScalarTower.right
Algebra.to_smulCommClass
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”IsScalarTower.right
Algebra.to_smulCommClass
toNonUnitalSubring_top πŸ“–mathematicalβ€”NonUnitalSubalgebra.toNonUnitalSubring
Top.top
NonUnitalSubalgebra
CommRing.toCommSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
NonUnitalSubring
NonUnitalSubring.instTop
β€”β€”
toNonUnitalSubsemiring_eq_top πŸ“–mathematicalβ€”NonUnitalSubalgebra.toNonUnitalSubsemiring
Top.top
NonUnitalSubsemiring
NonUnitalSubsemiring.instTop
NonUnitalSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”β€”
toSubmodule_bot πŸ“–mathematicalβ€”NonUnitalSubalgebra.toSubmodule
Bot.bot
NonUnitalSubalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Submodule.instBot
β€”Submodule.ext
toSubmodule_eq_top πŸ“–mathematicalβ€”NonUnitalSubalgebra.toSubmodule
Top.top
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Submodule.instTop
NonUnitalSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”NonUnitalSubalgebra.smul_mem'
to_subring_eq_top πŸ“–mathematicalβ€”NonUnitalSubalgebra.toNonUnitalSubring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
CommRing.toCommSemiring
Ring.toSemiring
Top.top
NonUnitalSubring
NonUnitalSubring.instTop
NonUnitalSubalgebra
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
IsScalarTower.right
Algebra.to_smulCommClass
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”toNonUnitalSubring_eq_top
top_toNonUnitalSubsemiring πŸ“–mathematicalβ€”NonUnitalSubalgebra.toNonUnitalSubsemiring
Top.top
NonUnitalSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
NonUnitalSubsemiring
NonUnitalSubsemiring.instTop
β€”β€”
top_toSubmodule πŸ“–mathematicalβ€”NonUnitalSubalgebra.toSubmodule
Top.top
NonUnitalSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Submodule.instTop
β€”β€”
top_toSubring πŸ“–mathematicalβ€”NonUnitalSubalgebra.toNonUnitalSubring
Top.top
NonUnitalSubalgebra
CommRing.toCommSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
NonUnitalSubring
NonUnitalSubring.instTop
β€”toNonUnitalSubring_top

NonUnitalSubalgebra

Definitions

NameCategoryTheorems
center πŸ“–CompOp
7 mathmath: center_eq_top, NonUnitalStarSubalgebra.center_toNonUnitalSubalgebra, centralizer_univ, mem_center_iff, center_toNonUnitalSubsemiring, coe_center, center_toNonUnitalSubring
centralizer πŸ“–CompOp
8 mathmath: NonUnitalAlgebra.adjoin_le_centralizer_centralizer, centralizer_univ, mem_centralizer_iff, centralizer_le, topologicalClosure_adjoin_le_centralizer_centralizer, coe_centralizer, NonUnitalAlgebra.elemental.le_centralizer_centralizer, NonUnitalStarSubalgebra.centralizer_toNonUnitalSubalgebra
comap πŸ“–CompOp
5 mathmath: map_le, mem_comap, coe_comap, gc_map_comap, NonUnitalAlgebra.comap_top
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
iSupLift πŸ“–CompOp
4 mathmath: iSupLift_of_mem, iSupLift_comp_inclusion, iSupLift_mk, iSupLift_inclusion
inclusion πŸ“–CompOp
6 mathmath: inclusion_mk, inclusion_right, inclusion_self, inclusion_injective, inclusion_inclusion, coe_inclusion
instInhabitedSubtypeMem πŸ“–CompOpβ€”
instModule πŸ“–CompOp
14 mathmath: instIsScalarTower', inclusion_mk, inclusion_right, inclusion_self, inclusion_injective, NonUnitalAlgHom.injective_codRestrict, instSMulCommClass, inclusion_inclusion, instSMulCommClass', instIsTorsionFree, instIsScalarTowerSubtypeMem, coe_inclusion, NonUnitalAlgHom.coe_codRestrict, range_val
instModule' πŸ“–CompOp
2 mathmath: instIsScalarTower', instSMulCommClass'
instPartialOrder πŸ“–CompOp
23 mathmath: NonUnitalAlgebra.adjoin_le_algebra_adjoin, NonUnitalAlgebra.gc, NonUnitalAlgebra.adjoin_le, NonUnitalAlgHom.range_comp_le_range, topologicalClosure_map_le, NonUnitalAlgebra.adjoin_le_centralizer_centralizer, starClosure_le_iff, inclusion_self, NonUnitalAlgebra.adjoin_le_iff, starClosure_mono, map_le, le_topologicalClosure, NonUnitalAlgebra.elemental.le_of_mem, centralizer_le, gc_map_comap, NonUnitalStarSubalgebra.toNonUnitalSubalgebra_le_iff, topologicalClosure_adjoin_le_centralizer_centralizer, map_topologicalClosure_le, star_mono, NonUnitalAlgebra.elemental.le_centralizer_centralizer, Unitization.lift_range_le, NonUnitalAlgebra.elemental.le_iff_mem, NonUnitalAlgebra.adjoin_mono
instSetLike πŸ“–CompOp
94 mathmath: coe_starClosure, NonUnitalAlgebra.gc, instCanLiftSetCoeAndMemOfNatForallForallForallForallHAddForallForallForallForallHMulForallForallForallHSMul, instIsScalarTower', NonUnitalAlgebra.coe_bot, NonUnitalAlgebra.span_eq_toSubmodule, NonUnitalAlgebra.coe_inf, NonUnitalAlgebra.elemental.isClosedEmbedding_coe, NonUnitalAlgebra.adjoin_le_centralizer_centralizer, coe_toNonUnitalSubring, NonUnitalAlgebra.self_mem_adjoin_singleton, ext_iff, instNonUnitalSubsemiringClass, NonUnitalAlgebra.mem_inf, coe_toNonUnitalSubsemiring, inclusion_self, mem_toNonUnitalSubsemiring, NonUnitalAlgebra.subset_adjoin, NonUnitalAlgHom.mem_range, NonUnitalAlgebra.mem_iInf, mem_map, NonUnitalAlgHom.mem_range_self, mem_star_iff, inclusion_injective, NonUnitalAlgebra.adjoin_le_iff, Algebra.adjoin_nonUnitalSubalgebra_eq_span, noZeroDivisors, coe_sub, toSubring_subtype, coe_zero, NonUnitalAlgebra.elemental.isClosed, instSMulCommClass, mem_comap, inclusion_inclusion, coe_iSup_of_directed, NonUnitalAlgebra.eq_top_iff, starClosure_eq_adjoin, mem_centralizer_iff, coe_comap, NonUnitalAlgebra.coe_iInf, Unitization.lift_range, NonUnitalAlgebra.mem_top, NonUnitalAlgHom.coe_range, mem_center_iff, coe_map, NonUnitalAlgebra.elemental.instCompleteSpaceSubtypeMemNonUnitalSubalgebra, coe_star, instSMulMemClass, Algebra.adjoin_nonUnitalSubalgebra, ofClass_carrier, topologicalClosure_adjoin_le_centralizer_centralizer, instIsTopologicalRing, instSMulCommClass', isClosed_topologicalClosure, mem_carrier, coe_centralizer, coe_center, toSubmodule_toNonUnitalSubalgebra, coe_prod, NonUnitalAlgebra.elemental.le_centralizer_centralizer, NonUnitalAlgebra.coe_top, instIsTorsionFree, coe_smul, NonUnitalAlgebra.mem_sInf, NonUnitalStarSubalgebra.coe_toNonUnitalSubalgebra, instIsTopologicalSemiring, toNonUnitalSubsemiring_subtype, coe_neg, instNonUnitalSubringClass, Submodule.coe_toNonUnitalSubalgebra, instIsScalarTowerSubtypeMem, NonUnitalAlgebra.elemental.le_iff_mem, NonUnitalAlgebra.coe_sInf, coe_inclusion, mem_nonUnitalSubalgebraOfNonUnitalSubsemiring, NonUnitalAlgebra.elemental.self_mem, mem_toSubmodule, NonUnitalAlgebra.mem_bot, NonUnitalAlgebra.adjoin_eq, mem_nonUnitalSubalgebraOfNonUnitalSubring, coe_mul, NonUnitalAlgHom.mem_equalizer, coe_toSubmodule, NonUnitalAlgebra.mem_adjoin_of_mem, mem_toNonUnitalSubring, coe_eq_zero, NonUnitalStarSubalgebra.mem_toNonUnitalSubalgebra, mem_prod, mem_starClosure, Subalgebra.one_mem_toNonUnitalSubalgebra, coe_add, range_val, Submodule.mem_toNonUnitalSubalgebra, star_mem_star_iff
map πŸ“–CompOp
22 mathmath: topologicalClosure_map_le, topologicalClosure_map, mem_map, NonUnitalAlgHom.map_adjoin, map_le, map_mono, NonUnitalAlgebra.map_sup, map_toNonUnitalSubsemiring, gc_map_comap, coe_map, NonUnitalAlgebra.map_iInf, map_topologicalClosure_le, NonUnitalAlgHom.map_adjoin_singleton, NonUnitalAlgebra.map_top, NonUnitalAlgHom.range_comp, NonUnitalAlgebra.map_bot, map_injective, map_map, NonUnitalStarSubalgebra.map_toNonUnitalSubalgebra, map_id, NonUnitalAlgebra.map_inf, map_toSubmodule
ofClass πŸ“–CompOp
1 mathmath: ofClass_carrier
prod πŸ“–CompOp
7 mathmath: NonUnitalStarSubalgebra.prod_toNonUnitalSubalgebra, prod_inf_prod, prod_top, coe_prod, prod_toSubmodule, mem_prod, prod_mono
toNonUnitalCommRing πŸ“–CompOpβ€”
toNonUnitalCommSemiring πŸ“–CompOpβ€”
toNonUnitalNonAssocRing πŸ“–CompOp
1 mathmath: instIsTopologicalRing
toNonUnitalNonAssocSemiring πŸ“–CompOp
17 mathmath: instIsScalarTower', inclusion_mk, inclusion_right, inclusion_self, inclusion_injective, noZeroDivisors, NonUnitalAlgHom.injective_codRestrict, instSMulCommClass, inclusion_inclusion, instSMulCommClass', instIsTorsionFree, instIsTopologicalSemiring, instIsScalarTowerSubtypeMem, coe_inclusion, coe_mul, NonUnitalAlgHom.coe_codRestrict, coe_add
toNonUnitalRing πŸ“–CompOpβ€”
toNonUnitalSemiring πŸ“–CompOpβ€”
toNonUnitalSubring πŸ“–CompOp
9 mathmath: coe_toNonUnitalSubring, toNonUnitalSubring_inj, toNonUnitalSubring_injective, NonUnitalAlgebra.to_subring_eq_top, NonUnitalAlgebra.toNonUnitalSubring_eq_top, center_toNonUnitalSubring, NonUnitalAlgebra.top_toSubring, NonUnitalAlgebra.toNonUnitalSubring_top, mem_toNonUnitalSubring
toNonUnitalSubring' πŸ“–CompOpβ€”
toNonUnitalSubsemiring πŸ“–CompOp
12 mathmath: NonUnitalStarSubalgebra.mem_carrier, NonUnitalAlgebra.sInf_toNonUnitalSubsemiring, coe_toNonUnitalSubsemiring, mem_toNonUnitalSubsemiring, NonUnitalAlgebra.top_toNonUnitalSubsemiring, toNonUnitalSubsemiring_inj, map_toNonUnitalSubsemiring, center_toNonUnitalSubsemiring, mem_carrier, toNonUnitalSubsemiring_injective, NonUnitalAlgebra.inf_toNonUnitalSubsemiring, NonUnitalAlgebra.toNonUnitalSubsemiring_eq_top
toNonUnitalSubsemiring' πŸ“–CompOpβ€”
toSubmodule πŸ“–CompOp
21 mathmath: NonUnitalAlgebra.span_eq_toSubmodule, toSubmodule_injective, StarAlgebra.adjoin_nonUnitalStarSubalgebra_eq_span, NonUnitalAlgebra.toSubmodule_bot, Algebra.adjoin_nonUnitalSubalgebra_eq_span, NonUnitalStarAlgebra.adjoin_eq_span, toSubmodule_inj, NonUnitalAlgebra.toSubmodule_eq_top, toSubmodule_toNonUnitalSubalgebra, NonUnitalAlgebra.inf_toSubmodule, NonUnitalStarAlgebra.span_eq_toSubmodule, Submodule.toNonUnitalSubalgebra_toSubmodule, NonUnitalAlgebra.adjoin_toSubmodule, mem_toSubmodule, NonUnitalAlgebra.top_toSubmodule, prod_toSubmodule, NonUnitalAlgebra.sInf_toSubmodule, coe_toSubmodule, NonUnitalAlgebra.iInf_toSubmodule, map_toSubmodule, NonUnitalAlgebra.adjoin_eq_span
toSubmodule' πŸ“–CompOpβ€”
toSubmoduleEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
center_eq_top πŸ“–mathematicalβ€”center
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalCommSemiring.toNonUnitalSemiring
Top.top
NonUnitalSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
NonUnitalAlgebra.instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”SetLike.coe_injective
Set.center_eq_univ
center_toNonUnitalSubring πŸ“–mathematicalβ€”toNonUnitalSubring
center
CommRing.toCommSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalSubring.center
β€”β€”
center_toNonUnitalSubsemiring πŸ“–mathematicalβ€”toNonUnitalSubsemiring
center
NonUnitalSubsemiring.center
β€”β€”
centralizer_le πŸ“–mathematicalSet
Set.instHasSubset
NonUnitalSubalgebra
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
β€”Set.centralizer_subset
centralizer_univ πŸ“–mathematicalβ€”centralizer
Set.univ
center
NonUnitalSemiring.toNonUnitalNonAssocSemiring
β€”SetLike.ext'
Set.centralizer_univ
coe_add πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
toNonUnitalNonAssocSemiring
β€”β€”
coe_center πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubalgebra
instSetLike
center
Set.center
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
coe_centralizer πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubalgebra
NonUnitalSemiring.toNonUnitalNonAssocSemiring
instSetLike
centralizer
Set.centralizer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
coe_comap πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubalgebra
instSetLike
comap
Set.preimage
DFunLike.coe
β€”β€”
coe_copy πŸ“–mathematicalSetLike.coe
NonUnitalSubalgebra
instSetLike
copyβ€”β€”
coe_eq_zero πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
instSetLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
ZeroMemClass.zero
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSubsemiringClass.toAddSubmonoidClass
instNonUnitalSubsemiringClass
β€”ZeroMemClass.coe_eq_zero
AddSubmonoidClass.toZeroMemClass
NonUnitalSubsemiringClass.toAddSubmonoidClass
instNonUnitalSubsemiringClass
coe_iSup_of_directed πŸ“–mathematicalDirected
NonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.coe
instSetLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
NonUnitalAlgebra.instCompleteLatticeNonUnitalSubalgebra
Set.iUnion
β€”NonUnitalSubsemiring.coe_iSup_of_directed
Set.mem_iUnion
smul_mem'
le_antisymm
iSup_le
le_iSup
Set.iUnion_subset
coe_inclusion πŸ“–mathematicalNonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
DFunLike.coe
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
toNonUnitalNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
instModule
NonUnitalAlgHom.instFunLike_1
inclusion
β€”β€”
coe_map πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubalgebra
instSetLike
map
Set.image
DFunLike.coe
β€”β€”
coe_mul πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
toNonUnitalNonAssocSemiring
β€”β€”
coe_neg πŸ“–mathematicalβ€”NonUnitalSubalgebra
CommRing.toCommSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
SetLike.instMembership
instSetLike
NegMemClass.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
NonUnitalSubringClass.toNegMemClass
instNonUnitalSubringClass
β€”NonUnitalSubringClass.toNegMemClass
instNonUnitalSubringClass
coe_prod πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubalgebra
Prod.instNonUnitalNonAssocSemiring
Prod.instModule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
instSetLike
prod
SProd.sprod
Set
Set.instSProd
β€”β€”
coe_smul πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
instSetLike
SetLike.smul'
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Module.toDistribMulAction
instSMulMemClass
β€”instSMulMemClass
coe_sub πŸ“–mathematicalβ€”NonUnitalSubalgebra
CommRing.toCommSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
SetLike.instMembership
instSetLike
AddSubgroupClass.sub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
NonUnitalSubringClass.addSubgroupClass
instNonUnitalSubringClass
SubNegMonoid.toSub
β€”NonUnitalSubringClass.addSubgroupClass
instNonUnitalSubringClass
coe_toNonUnitalSubring πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubring
NonUnitalSubring.instSetLike
toNonUnitalSubring
NonUnitalSubalgebra
CommRing.toCommSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instSetLike
β€”β€”
coe_toNonUnitalSubsemiring πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubsemiring
NonUnitalSubsemiring.instSetLike
toNonUnitalSubsemiring
NonUnitalSubalgebra
instSetLike
β€”β€”
coe_toSubmodule πŸ“–mathematicalβ€”SetLike.coe
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Submodule.setLike
toSubmodule
NonUnitalSubalgebra
instSetLike
β€”β€”
coe_zero πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
instSetLike
ZeroMemClass.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSubsemiringClass.toAddSubmonoidClass
instNonUnitalSubsemiringClass
β€”AddSubmonoidClass.toZeroMemClass
NonUnitalSubsemiringClass.toAddSubmonoidClass
instNonUnitalSubsemiringClass
copy_eq πŸ“–mathematicalSetLike.coe
NonUnitalSubalgebra
instSetLike
copyβ€”SetLike.coe_injective
ext πŸ“–β€”NonUnitalSubalgebra
SetLike.instMembership
instSetLike
β€”β€”SetLike.ext
ext_iff πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
instSetLike
β€”ext
gc_map_comap πŸ“–mathematicalβ€”GaloisConnection
NonUnitalSubalgebra
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”map_le
iSupLift_comp_inclusion πŸ“–mathematicalDirected
NonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
NonUnitalAlgHom.comp
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
instSetLike
toNonUnitalNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
instModule
inclusion
MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
NonUnitalAlgebra.instCompleteLatticeNonUnitalSubalgebra
iSupLiftβ€”MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
NonUnitalAlgHom.ext
iSupLift_inclusion
iSupLift_inclusion πŸ“–mathematicalDirected
NonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
NonUnitalAlgHom.comp
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
instSetLike
toNonUnitalNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
instModule
inclusion
MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
NonUnitalAlgebra.instCompleteLatticeNonUnitalSubalgebra
DFunLike.coe
NonUnitalAlgHom
NonUnitalAlgHom.instFunLike_1
iSupLift
β€”MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
Set.iUnionLift_inclusion
iSupLift_mk πŸ“–mathematicalDirected
NonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
NonUnitalAlgHom.comp
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
instSetLike
toNonUnitalNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
instModule
inclusion
MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
NonUnitalAlgebra.instCompleteLatticeNonUnitalSubalgebra
DFunLike.coe
NonUnitalAlgHom
NonUnitalAlgHom.instFunLike_1
iSupLift
β€”MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
iSupLift_of_mem πŸ“–mathematicalDirected
NonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
NonUnitalAlgHom.comp
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
instSetLike
toNonUnitalNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
instModule
inclusion
MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
NonUnitalAlgebra.instCompleteLatticeNonUnitalSubalgebra
DFunLike.coe
NonUnitalAlgHom
NonUnitalAlgHom.instFunLike_1
iSupLift
β€”MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
Set.iUnionLift_of_mem
inclusion_inclusion πŸ“–mathematicalNonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
DFunLike.coe
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
instSetLike
toNonUnitalNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
instModule
NonUnitalAlgHom.instFunLike_1
inclusion
le_trans
β€”le_trans
inclusion_injective πŸ“–mathematicalNonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
DFunLike.coe
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
toNonUnitalNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
instModule
NonUnitalAlgHom.instFunLike_1
inclusion
β€”β€”
inclusion_mk πŸ“–mathematicalNonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
DFunLike.coe
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
toNonUnitalNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
instModule
NonUnitalAlgHom.instFunLike_1
inclusion
β€”β€”
inclusion_right πŸ“–mathematicalNonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
DFunLike.coe
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
toNonUnitalNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
instModule
NonUnitalAlgHom.instFunLike_1
inclusion
β€”β€”
inclusion_self πŸ“–mathematicalβ€”inclusion
le_refl
NonUnitalSubalgebra
PartialOrder.toPreorder
instPartialOrder
NonUnitalAlgHom.id
SetLike.instMembership
instSetLike
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
toNonUnitalNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
instModule
β€”le_refl
instCanLiftSetCoeAndMemOfNatForallForallForallForallHAddForallForallForallForallHMulForallForallForallHSMul πŸ“–mathematicalβ€”CanLift
Set
NonUnitalSubalgebra
SetLike.coe
instSetLike
Set.instMembership
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
instIsScalarTower' πŸ“–mathematicalβ€”IsScalarTower
NonUnitalSubalgebra
SetLike.instMembership
instSetLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
toNonUnitalNonAssocSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
instModule
instModule'
β€”Submodule.isScalarTower
instIsScalarTowerSubtypeMem πŸ“–mathematicalβ€”IsScalarTower
NonUnitalSubalgebra
SetLike.instMembership
instSetLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
toNonUnitalNonAssocSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
instModule
instDistribSMul
β€”smul_assoc
instIsTorsionFree πŸ“–mathematicalβ€”Module.IsTorsionFree
NonUnitalSubalgebra
SetLike.instMembership
instSetLike
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
toNonUnitalNonAssocSemiring
instModule
β€”Submodule.instIsTorsionFree
instNonUnitalSubringClass πŸ“–mathematicalβ€”NonUnitalSubringClass
NonUnitalSubalgebra
CommRing.toCommSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instSetLike
β€”instNonUnitalSubsemiringClass
SMulMemClass.smul_mem
instSMulMemClass
neg_one_smul
instNonUnitalSubsemiringClass πŸ“–mathematicalβ€”NonUnitalSubsemiringClass
NonUnitalSubalgebra
instSetLike
β€”AddSubsemigroup.add_mem'
AddSubmonoid.zero_mem'
NonUnitalSubsemiring.mul_mem'
instSMulCommClass πŸ“–mathematicalβ€”SMulCommClass
NonUnitalSubalgebra
SetLike.instMembership
instSetLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
toNonUnitalNonAssocSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
instModule
instDistribSMul
β€”SMulCommClass.smul_comm
instSMulCommClass' πŸ“–mathematicalβ€”SMulCommClass
NonUnitalSubalgebra
SetLike.instMembership
instSetLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
toNonUnitalNonAssocSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instModule'
CommSemiring.toSemiring
instModule
β€”SMulCommClass.smul_comm
instSMulMemClass πŸ“–mathematicalβ€”SMulMemClass
NonUnitalSubalgebra
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
instSetLike
β€”smul_mem'
map_id πŸ“–mathematicalβ€”map
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalAlgHom.instFunLike_1
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
NonUnitalAlgHom.id
β€”SetLike.coe_injective
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
Set.image_id
map_injective πŸ“–mathematicalDFunLike.coeNonUnitalSubalgebra
map
β€”ext
Set.ext_iff
Set.image_injective
Set.ext
SetLike.ext_iff
map_le πŸ“–mathematicalβ€”NonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”Set.image_subset_iff
map_map πŸ“–mathematicalβ€”map
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalAlgHom.instFunLike_1
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
NonUnitalAlgHom.comp
MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
β€”SetLike.coe_injective
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
MonoidHom.CompTriple.instId_comp
MonoidHom.CompTriple.instIsId
Set.image_image
map_mono πŸ“–mathematicalNonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
mapβ€”Set.image_mono
map_toNonUnitalSubsemiring πŸ“–mathematicalβ€”toNonUnitalSubsemiring
map
NonUnitalSubsemiring.map
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHomClass.toNonUnitalRingHom
NonUnitalAlgHomClass.toNonUnitalRingHomClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”SetLike.coe_injective
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalAlgHomClass.toNonUnitalRingHomClass
map_toSubmodule πŸ“–mathematicalβ€”toSubmodule
map
Submodule.map
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMapClass.linearMap
NonUnitalAlgHomClass.instLinearMapClass
β€”SetLike.coe_injective
RingHomSurjective.ids
NonUnitalAlgHomClass.instLinearMapClass
mem_carrier πŸ“–mathematicalβ€”Set
Set.instMembership
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddSubmonoid.toAddSubsemigroup
NonUnitalSubsemiring.toAddSubmonoid
toNonUnitalSubsemiring
NonUnitalSubalgebra
SetLike.instMembership
instSetLike
β€”β€”
mem_center_iff πŸ“–mathematicalβ€”NonUnitalSubalgebra
NonUnitalSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
instSetLike
center
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Subsemigroup.mem_center_iff
mem_centralizer_iff πŸ“–mathematicalβ€”NonUnitalSubalgebra
NonUnitalSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
instSetLike
centralizer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
mem_comap πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
instSetLike
comap
DFunLike.coe
β€”β€”
mem_map πŸ“–mathematicalβ€”NonUnitalSubalgebra
SetLike.instMembership
instSetLike
map
DFunLike.coe
β€”NonUnitalSubsemiring.mem_map
NonUnitalRingHom.instNonUnitalRingHomClass
mem_prod πŸ“–mathematicalβ€”NonUnitalSubalgebra
Prod.instNonUnitalNonAssocSemiring
Prod.instModule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
SetLike.instMembership
instSetLike
prod
β€”Set.mem_prod
mem_toNonUnitalSubring πŸ“–mathematicalβ€”NonUnitalSubring
SetLike.instMembership
NonUnitalSubring.instSetLike
toNonUnitalSubring
NonUnitalSubalgebra
CommRing.toCommSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instSetLike
β€”β€”
mem_toNonUnitalSubsemiring πŸ“–mathematicalβ€”NonUnitalSubsemiring
SetLike.instMembership
NonUnitalSubsemiring.instSetLike
toNonUnitalSubsemiring
NonUnitalSubalgebra
instSetLike
β€”β€”
mem_toSubmodule πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
toSubmodule
NonUnitalSubalgebra
instSetLike
β€”β€”
noZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
NonUnitalSubalgebra
NonUnitalSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
toNonUnitalNonAssocSemiring
ZeroMemClass.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSubsemiringClass.toAddSubmonoidClass
instNonUnitalSubsemiringClass
β€”NonUnitalSubsemiringClass.noZeroDivisors
instNonUnitalSubsemiringClass
ofClass_carrier πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubalgebra
instSetLike
ofClass
β€”β€”
prod_inf_prod πŸ“–mathematicalβ€”NonUnitalSubalgebra
Prod.instNonUnitalNonAssocSemiring
Prod.instModule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
NonUnitalAlgebra.instCompleteLatticeNonUnitalSubalgebra
Prod.isScalarTowerBoth
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Prod.smulCommClassBoth
prod
β€”SetLike.coe_injective
Prod.isScalarTowerBoth
Prod.smulCommClassBoth
Set.prod_inter_prod
prod_mono πŸ“–mathematicalNonUnitalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Prod.instNonUnitalNonAssocSemiring
Prod.instModule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
prod
β€”Set.prod_mono
prod_toSubmodule πŸ“–mathematicalβ€”toSubmodule
Prod.instNonUnitalNonAssocSemiring
Prod.instModule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
prod
Submodule.prod
β€”β€”
prod_top πŸ“–mathematicalβ€”prod
Top.top
NonUnitalSubalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
NonUnitalAlgebra.instCompleteLatticeNonUnitalSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Prod.instNonUnitalNonAssocSemiring
Prod.instModule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Prod.isScalarTowerBoth
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Prod.smulCommClassBoth
β€”ext
Prod.isScalarTowerBoth
Prod.smulCommClassBoth
range_val πŸ“–mathematicalβ€”NonUnitalAlgHom.range
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
NonUnitalSubalgebra
SetLike.instMembership
instSetLike
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
instNonUnitalSubsemiringClass
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
SubmoduleClass.module
NonUnitalSubsemiringClass.toAddSubmonoidClass
instSMulMemClass
instModule
NonUnitalAlgHom.instFunLike_1
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
NonUnitalSubalgebraClass.subtype
β€”ext
instNonUnitalSubsemiringClass
NonUnitalSubsemiringClass.toAddSubmonoidClass
instSMulMemClass
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
Set.ext_iff
NonUnitalAlgHom.coe_range
Subtype.range_val
smul_mem' πŸ“–mathematicalSet
Set.instMembership
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddSubmonoid.toAddSubsemigroup
NonUnitalSubsemiring.toAddSubmonoid
toNonUnitalSubsemiring
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
β€”β€”
subsingleton_of_subsingleton πŸ“–mathematicalβ€”NonUnitalSubalgebraβ€”ext
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
NonUnitalSubsemiringClass.toAddSubmonoidClass
instNonUnitalSubsemiringClass
toNonUnitalSubring_inj πŸ“–mathematicalβ€”toNonUnitalSubringβ€”toNonUnitalSubring_injective
toNonUnitalSubring_injective πŸ“–mathematicalβ€”NonUnitalSubalgebra
CommRing.toCommSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalSubring
toNonUnitalSubring
β€”ext
mem_toNonUnitalSubring
toNonUnitalSubsemiring_inj πŸ“–mathematicalβ€”toNonUnitalSubsemiringβ€”toNonUnitalSubsemiring_injective
toNonUnitalSubsemiring_injective πŸ“–mathematicalβ€”NonUnitalSubalgebra
NonUnitalSubsemiring
toNonUnitalSubsemiring
β€”smul_mem'
toNonUnitalSubsemiring_subtype πŸ“–mathematicalβ€”NonUnitalSubsemiringClass.subtype
NonUnitalSubalgebra
instSetLike
instNonUnitalSubsemiringClass
NonUnitalRingHomClass.toNonUnitalRingHom
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
SubmoduleClass.module
NonUnitalSubsemiringClass.toAddSubmonoidClass
instSMulMemClass
NonUnitalAlgHom.instFunLike_1
NonUnitalAlgHomClass.toNonUnitalRingHomClass
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
NonUnitalSubalgebraClass.subtype
β€”instNonUnitalSubsemiringClass
toSubmodule_inj πŸ“–mathematicalβ€”toSubmoduleβ€”toSubmodule_injective
toSubmodule_injective πŸ“–mathematicalβ€”NonUnitalSubalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
toSubmodule
β€”SetLike.ext
SetLike.ext_iff
toSubmodule_toNonUnitalSubalgebra πŸ“–mathematicalβ€”Submodule.toNonUnitalSubalgebra
toSubmodule
MulMemClass.mul_mem
NonUnitalSubalgebra
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
instSetLike
NonUnitalSubsemiringClass.mulMemClass
instNonUnitalSubsemiringClass
β€”SetLike.coe_injective
MulMemClass.mul_mem
NonUnitalSubsemiringClass.mulMemClass
instNonUnitalSubsemiringClass
toSubring_subtype πŸ“–mathematicalβ€”NonUnitalSubringClass.subtype
NonUnitalSubalgebra
CommRing.toCommSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
instSetLike
instNonUnitalSubringClass
NonUnitalRingHomClass.toNonUnitalRingHom
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
instNonUnitalSubsemiringClass
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
SubmoduleClass.module
NonUnitalSubsemiringClass.toAddSubmonoidClass
instSMulMemClass
NonUnitalSubringClass.toNonUnitalNonAssocRing
NonUnitalAlgHom.instFunLike_1
NonUnitalAlgHomClass.toNonUnitalRingHomClass
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
NonUnitalSubalgebraClass.subtype
β€”instNonUnitalSubringClass

NonUnitalSubalgebra.center

Definitions

NameCategoryTheorems
instNonUnitalCommRing πŸ“–CompOpβ€”
instNonUnitalCommSemiring πŸ“–CompOpβ€”

NonUnitalSubalgebraClass

Definitions

NameCategoryTheorems
subtype πŸ“–CompOp
8 mathmath: coe_subtype, NonUnitalStarSubalgebra.toNonUnitalSubalgebra_subtype, NonUnitalSubalgebra.toSubring_subtype, subtype_injective, NonUnitalSubalgebra.toNonUnitalSubsemiring_subtype, subtype_apply, NonUnitalSubalgebra.range_val, NonUnitalAlgHom.subtype_comp_codRestrict

Theorems

NameKindAssumesProvesValidatesDepends On
coe_subtype πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
SubmoduleClass.module
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalAlgHom.instFunLike_1
subtype
β€”NonUnitalSubsemiringClass.toAddSubmonoidClass
subtype_apply πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
SetLike.instMembership
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
SubmoduleClass.module
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalAlgHom.instFunLike_1
subtype
β€”NonUnitalSubsemiringClass.toAddSubmonoidClass
subtype_injective πŸ“–mathematicalβ€”SetLike.instMembership
DFunLike.coe
NonUnitalAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
NonUnitalSubsemiringClass.toNonUnitalNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
SubmoduleClass.module
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalAlgHom.instFunLike_1
subtype
β€”Subtype.coe_injective

Set

Theorems

NameKindAssumesProvesValidatesDepends On
smul_mem_center πŸ“–mathematicalSet
instMembership
center
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
β€”commute_iff_eq
mul_smul_comm
smul_mul_assoc
IsMulCentral.comm
IsMulCentral.left_assoc
IsMulCentral.right_assoc
smul_mem_centralizer πŸ“–mathematicalSet
instMembership
centralizer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSemiring.toNonUnitalNonAssocSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
β€”mul_smul_comm
smul_mul_assoc

Submodule

Definitions

NameCategoryTheorems
toNonUnitalSubalgebra πŸ“–CompOp
5 mathmath: NonUnitalSubalgebra.toSubmodule_toNonUnitalSubalgebra, toNonUnitalSubalgebra_toSubmodule, coe_toNonUnitalSubalgebra, toNonUnitalSubalgebra_mk, mem_toNonUnitalSubalgebra

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toNonUnitalSubalgebra πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
SetLike.instMembership
setLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SetLike.coe
NonUnitalSubalgebra
NonUnitalSubalgebra.instSetLike
toNonUnitalSubalgebra
β€”β€”
mem_toNonUnitalSubalgebra πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
SetLike.instMembership
setLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSubalgebra
NonUnitalSubalgebra.instSetLike
toNonUnitalSubalgebra
β€”β€”
toNonUnitalSubalgebra_mk πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
SetLike.instMembership
setLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
toNonUnitalSubalgebra
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddZero.toAdd
AddZeroClass.toAddZero
SetLike.coe
add_mem
zero_mem
smul_mem'
β€”β€”
toNonUnitalSubalgebra_toSubmodule πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
SetLike.instMembership
setLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSubalgebra.toSubmodule
toNonUnitalSubalgebra
β€”SetLike.coe_injective

(root)

Definitions

NameCategoryTheorems
nonUnitalSubalgebraOfNonUnitalSubring πŸ“–CompOp
1 mathmath: mem_nonUnitalSubalgebraOfNonUnitalSubring
nonUnitalSubalgebraOfNonUnitalSubsemiring πŸ“–CompOp
1 mathmath: mem_nonUnitalSubalgebraOfNonUnitalSubsemiring

Theorems

NameKindAssumesProvesValidatesDepends On
mem_nonUnitalSubalgebraOfNonUnitalSubring πŸ“–mathematicalβ€”NonUnitalSubalgebra
Int.instCommSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
AddCommGroup.toIntModule
NonUnitalNonAssocRing.toAddCommGroup
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
nonUnitalSubalgebraOfNonUnitalSubring
NonUnitalSubring
NonUnitalSubring.instSetLike
β€”β€”
mem_nonUnitalSubalgebraOfNonUnitalSubsemiring πŸ“–mathematicalβ€”NonUnitalSubalgebra
Nat.instCommSemiring
AddCommMonoid.toNatModule
NonUnitalNonAssocSemiring.toAddCommMonoid
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
nonUnitalSubalgebraOfNonUnitalSubsemiring
NonUnitalSubsemiring
NonUnitalSubsemiring.instSetLike
β€”β€”

---

← Back to Index