toRatAlgebra 📖 | CompOp | 121 mathmath: NumberField.basisMatrix_eq_embeddingsMatrixReindex, NumberField.InfinitePlace.sum_mult_eq, NumberField.integralBasis_apply, Rat.instSMulCommClass, NumberField.canonicalEmbedding.latticeBasis_apply, NumberField.IsCMField.unitsComplexConj_torsion, HurwitzZeta.cosZeta_two_mul_nat', NumberField.norm_norm_le_norm_mul_house_pow, NumberField.mixedEmbedding.fundamentalCone.abs_det_completeBasis_equivFunL_symm, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, NumberField.mixedEmbedding.norm_eq_norm, HurwitzZeta.cosZeta_two_mul_nat, NumberField.FinitePlace.prod_eq_inv_abs_norm, NumberField.abs_discr_ge', NumberField.adjoin_eq_top_of_infinitePlace_lt, IsCyclotomicExtension.Rat.nrComplexPlaces_eq_totient_div_two, NumberField.IsTotallyComplex.finrank, NumberField.Units.dirichletUnitTheorem.seq_next, NumberField.IsTotallyReal.finrank, NumberField.instIsTotallyRealSubtypeMemIntermediateFieldRatOfIsAlgebraic, NumberField.mixedEmbedding.exists_primitive_element_lt_of_isComplex, IsCyclotomicExtension.Rat.discr_prime_pow', IsCyclotomicExtension.Rat.absdiscr_prime_pow, NumberField.mixedEmbedding.exists_ne_zero_mem_ringOfIntegers_of_norm_le, NumberField.canonicalEmbedding.integralBasis_repr_apply, Rat.HeightOneSpectrum.adicCompletion.padicEquiv_bijOn, IntermediateField.isTotallyReal_bot, Algebra.coe_norm_int, NumberField.Units.finrank_mul_regOfFamily_eq_det, HurwitzZeta.hurwitzZeta_neg_nat, NumberField.det_basisOfFractionalIdeal_eq_absNorm, NumberField.Units.norm, NumberField.mixedEmbedding.fundamentalCone.prod_deriv_expMap_single, NumberField.mixedEmbedding.fundamentalCone.norm_expMapBasis, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, RingEquivClass.toLinearEquivClassRat, Rat.instSMulCommClass', IsPrimitiveRoot.discr_zeta_eq_discr_zeta_sub_one, IsCyclotomicExtension.Rat.discr, NumberField.hermiteTheorem.finite_of_discr_bdd_of_isComplex, HurwitzZeta.hurwitzZetaOdd_neg_two_mul_nat, NumberField.mixedEmbedding.fundamentalCone.prod_expMapBasis_pow, NumberField.Embeddings.card, hasSum_one_div_nat_pow_mul_cos, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_apply, NumberField.to_finiteDimensional, IsCyclotomicExtension.Rat.discr_prime_pow_ne_two', IsCyclotomicExtension.Rat.absdiscr_prime_pow_succ, RingHomClass.toLinearMapClassRat, PadicInt.coe_adicCompletionIntegersEquiv_apply, NumberField.mixedEmbedding.det_basisOfFractionalIdeal_eq_norm, NumberField.is_primitive_element_of_infinitePlace_lt, IsCyclotomicExtension.Rat.discr_prime_pow_succ, NumberField.RingOfIntegers.rank, IsCyclotomicExtension.Rat.galEquivZMod_apply_of_pow_eq, NumberField.integralBasis_repr_apply, continuousConstSMul_rat, HurwitzZeta.hurwitzZetaEven_one_sub_two_mul_nat, NumberField.mixedEmbedding.norm_smul, HurwitzZeta.sinZeta_two_mul_nat_add_one', IsCyclotomicExtension.Rat.galEquivZMod_restrictNormal_apply, Subfield.bot_eq_of_charZero, NumberField.mixedEmbedding.exists_ne_zero_mem_ideal_of_norm_le, IsCyclotomicExtension.Rat.natAbs_discr, NumberField.finite_of_discr_bdd, NumberField.IsCMField.unitsMulComplexConjInv_apply, NumberField.mixedEmbedding.exists_primitive_element_lt_of_isReal, IsCyclotomicExtension.Rat.absdiscr_prime, Real.rank_rat_real, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, NumberField.inverse_basisMatrix_mulVec_eq_repr, Polynomial.cyclotomic_eq_minpoly_rat, IsCyclotomicExtension.Rat.discr_prime_pow, HurwitzZeta.sinZeta_two_mul_nat_add_one, NumberField.Embeddings.coeff_bdd_of_norm_le, NumberField.exists_ideal_in_class_of_norm_le, NumberField.mem_span_integralBasis, NumberField.mem_span_basisOfFractionalIdeal, NumberField.exists_ne_zero_mem_ringOfIntegers_of_norm_le_mul_sqrt_discr, NumberField.mixedEmbedding.logMap_apply, NumberField.mixedEmbedding.latticeBasis_apply, IsCyclotomicExtension.Rat.nrRealPlaces_eq_zero, hasSum_one_div_nat_pow_mul_sin, NumberField.abs_discr_ge_of_isTotallyComplex, NumberField.mixedEmbedding.latticeBasis_repr_apply, IsCyclotomicExtension.Rat.map_eq_span_zeta_sub_one_pow, IsCyclotomicExtension.Rat.finrank, NumberField.mixedEmbedding.finrank, NumberField.isUnit_iff_norm, NumberField.mixedEmbedding.fractionalIdealLatticeBasis_apply, NumberField.isAlgebraic, NumberField.mixedEmbedding.norm_real, Complex.rank_rat_complex, Polynomial.Gal.card_complex_roots_eq_card_real_add_card_not_gal_inv, NumberField.abs_discr_rpow_ge_of_isTotallyComplex, NumberField.basisOfFractionalIdeal_apply, NumberField.mixedEmbedding.fundamentalCone.setLIntegral_expMapBasis_image, NumberField.InfinitePlace.card_add_two_mul_card_eq_rank, Complex.isIntegral_rat_I, NumberField.mixedEmbedding.fundamentalCone.abs_det_fderiv_expMapBasis, NumberField.mixedEmbedding.euclidean.finrank, NumberField.exists_ne_zero_mem_ideal_of_norm_le_mul_sqrt_discr, NumberField.mixedEmbedding.fundamentalCone.sum_expMap_symm_apply, IsCyclotomicExtension.Rat.discr_odd_prime', NumberField.canonicalEmbedding_eq_basisMatrix_mulVec, NumberField.coe_discr, NumberField.Units.finrank_mul_regulator_eq_det, NumberField.InfinitePlace.prod_eq_abs_norm, IsCyclotomicExtension.Rat.discr_prime, Algebra.coe_trace_int, NumberField.Embeddings.range_eval_eq_rootSet_minpoly, NumberField.mixedEmbedding.convexBodySum_volume, NumberField.hermiteTheorem.rank_le_rankOfDiscrBdd, Polynomial.Gal.splits_ℚ_ℂ, NumberField.IsCMField.complexConj_torsion, NumberField.house.basis_repr_norm_le_const_mul_house, NNRat.instContinuousSMulRatReal, Complex.nonempty_linearEquiv_real, IsCyclotomicExtension.Rat.discr_prime_pow_eq_unit_mul_pow', IsCyclotomicExtension.Rat.galEquivZMod_smul_of_pow_eq, NumberField.hermiteTheorem.finite_of_discr_bdd_of_isReal
|