Documentation Verification Report

RestrictScalars

πŸ“ Source: Mathlib/Algebra/Algebra/RestrictScalars.lean

Statistics

MetricCount
DefinitionsaddEquiv, algebra, lsmul, moduleOrig, opModule, ringEquiv, instAddCommGroupRestrictScalars, instAddCommMonoidRestrictScalars, instCommRingRestrictScalars, instCommSemiringRestrictScalars, instInhabitedRestrictScalars, instRingRestrictScalars, instSemiringRestrictScalars
13
TheoremsaddEquiv_map_smul, addEquiv_symm_map_algebraMap_smul, addEquiv_symm_map_smul_smul, isCentralScalar, isScalarTower, lsmul_apply_apply, ringEquiv_algebraMap, ringEquiv_map_smul, smul_def
9
Total22

RestrictScalars

Definitions

NameCategoryTheorems
addEquiv πŸ“–CompOp
8 mathmath: Representation.smul_ofModule_asModule, Representation.ofModule_asModule_act, lsmul_apply_apply, addEquiv_symm_map_smul_smul, Representation.ofModule_asAlgebraHom_apply_apply, addEquiv_symm_map_algebraMap_smul, smul_def, addEquiv_map_smul
algebra πŸ“–CompOp
1 mathmath: ringEquiv_algebraMap
lsmul πŸ“–CompOp
1 mathmath: lsmul_apply_apply
moduleOrig πŸ“–CompOp
1 mathmath: isScalarTower
opModule πŸ“–CompOp
1 mathmath: isCentralScalar
ringEquiv πŸ“–CompOp
2 mathmath: ringEquiv_algebraMap, ringEquiv_map_smul

Theorems

NameKindAssumesProvesValidatesDepends On
addEquiv_map_smul πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
RestrictScalars
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoidRestrictScalars
EquivLike.toFunLike
AddEquiv.instEquivLike
addEquiv
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
module
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”β€”
addEquiv_symm_map_algebraMap_smul πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
RestrictScalars
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoidRestrictScalars
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
addEquiv
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
module
β€”β€”
addEquiv_symm_map_smul_smul πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
RestrictScalars
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
instAddCommMonoidRestrictScalars
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
addEquiv
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
CommSemiring.toSemiring
module
β€”Algebra.smul_def
SemigroupAction.mul_smul
isCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
RestrictScalars
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidRestrictScalars
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
module
MulOpposite
MulOpposite.instMonoid
MulOpposite.instSemiring
opModule
β€”IsCentralScalar.op_smul_eq_smul
isScalarTower πŸ“–mathematicalβ€”IsScalarTower
RestrictScalars
Algebra.toSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidRestrictScalars
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
moduleOrig
CommSemiring.toSemiring
module
β€”Algebra.smul_def
SemigroupAction.mul_smul
lsmul_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
Module.End
RestrictScalars
CommSemiring.toSemiring
instAddCommMonoidRestrictScalars
module
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
AlgHom
Module.End.instSemiring
Module.End.instAlgebra
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.funLike
lsmul
AddEquiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
addEquiv
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
β€”smulCommClass_self
IsScalarTower.left
ringEquiv_algebraMap πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
RestrictScalars
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringRestrictScalars
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
ringEquiv
RingHom
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
algebra
β€”β€”
ringEquiv_map_smul πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
RestrictScalars
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringRestrictScalars
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
ringEquiv
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
instAddCommMonoidRestrictScalars
NonUnitalNonAssocSemiring.toAddCommMonoid
module
Algebra.toModule
Algebra.toSMul
RingHom
RingHom.instFunLike
algebraMap
β€”β€”
smul_def πŸ“–mathematicalβ€”RestrictScalars
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoidRestrictScalars
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
module
DFunLike.coe
AddEquiv
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
addEquiv
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”β€”

(root)

Definitions

NameCategoryTheorems
instAddCommGroupRestrictScalars πŸ“–CompOpβ€”
instAddCommMonoidRestrictScalars πŸ“–CompOp
18 mathmath: ContinuousLinearMap.norm_extendToπ•œ, Representation.smul_ofModule_asModule, Subrepresentation.mem_asSubmodule'_iff, LinearMap.extendToπ•œ_apply, Subrepresentation.submoduleSubrepresentationOrderIso_apply, Representation.ofModule_asModule_act, ContinuousLinearMap.extendToπ•œ_apply, RestrictScalars.ringEquiv_map_smul, RestrictScalars.lsmul_apply_apply, RestrictScalars.addEquiv_symm_map_smul_smul, RestrictScalars.isScalarTower, Representation.ofModule_asAlgebraHom_apply_apply, Subrepresentation.mem_ofSubmodule_iff, RestrictScalars.isCentralScalar, RestrictScalars.addEquiv_symm_map_algebraMap_smul, RestrictScalars.smul_def, Subrepresentation.submoduleSubrepresentationOrderIso_symm_apply, RestrictScalars.addEquiv_map_smul
instCommRingRestrictScalars πŸ“–CompOpβ€”
instCommSemiringRestrictScalars πŸ“–CompOpβ€”
instInhabitedRestrictScalars πŸ“–CompOpβ€”
instRingRestrictScalars πŸ“–CompOpβ€”
instSemiringRestrictScalars πŸ“–CompOp
2 mathmath: RestrictScalars.ringEquiv_algebraMap, RestrictScalars.ringEquiv_map_smul

---

← Back to Index