Documentation Verification Report

Basic

๐Ÿ“ Source: Mathlib/Algebra/Algebra/Subalgebra/Basic.lean

Statistics

MetricCount
DefinitionsofInjective, ofInjectiveField, ofLeftInverse, subalgebraMap, codRestrict, equalizer, fintypeRange, range, rangeRestrict, subalgebraMap, toSubalgebra, algebra, algebra', center, centralizer, comap, copy, equivMapOfInjective, equivOfEq, inclusion, instCommRingSubtypeMemCenter, instCommSemiringSubtypeMemCenter, instDistribMulActionSubtypeMem, instInhabitedSubtypeMem, instModuleSubtypeMem, instMulActionSubtypeMem, instMulActionWithZeroSubtypeMem, instPartialOrder, instSMulSubtypeMem, instSMulWithZeroSubtypeMem, instSetLike, map, module', moduleLeft, ofClass, toAddSubmonoid, toAlgebra, toCommRing, toCommSemiring, toNonUnitalSubalgebra, toRing, toSemiring, toSubmodule, toSubmoduleEquiv, toSubring, toSubsemiring, val, toAlgebra, val, toSubalgebra, subalgebraOfSubring, subalgebraOfSubsemiring
52
TheoremsofInjective_apply, ofLeftInverse_apply, ofLeftInverse_symm_apply, subalgebraMap_apply_coe, subalgebraMap_symm_apply_coe, coe_codRestrict, coe_equalizer, coe_range, equalizer_toSubmodule, equalizer_toSubsemiring, injective_codRestrict, le_equalizer, mem_equalizer, mem_range, mem_range_self, rangeRestrict_surjective, range_comp, range_comp_le_range, range_toSubsemiring, subalgebraMap_coe_apply, subalgebraMap_surjective, val_comp_codRestrict, val_comp_rangeRestrict, toSubalgebra_toNonUnitalSubalgebra, algebraMap_mem_center, algebraMap_mem_centralizer, add_mem, algebraMap_apply, algebraMap_def, algebraMap_eq, algebraMap_mem, algebraMap_mem', algebraMap_mk, center_le_centralizer, center_toSubring, center_toSubsemiring, centralizer_centralizer_centralizer, centralizer_le, centralizer_univ, coe_add, coe_algebraMap, coe_center, coe_centralizer, coe_comap, coe_copy, coe_eq_one, coe_eq_zero, coe_equivMapOfInjective_apply, coe_inclusion, coe_map, coe_mk, coe_mul, coe_neg, coe_ofClass, coe_one, coe_pow, coe_smul, coe_sub, coe_toAddSubmonoid, coe_toSubmodule, coe_toSubring, coe_toSubsemiring, coe_val, coe_zero, comap_map_eq_self_of_injective, comap_toSubsemiring, copy_eq, copy_toSubsemiring, equivOfEq_apply, equivOfEq_rfl, equivOfEq_symm, equivOfEq_trans, ext, ext_iff, gc_map_comap, faithfulSMul, isScalarTower_left, isScalarTower_right, inclusion_inclusion, inclusion_injective, inclusion_mk, inclusion_right, inclusion_self, instCanLiftSetCoeAndForallForallForallMemForallHAddForallForallForallForallHMulForallCoeRingHomAlgebraMap, instFaithfulSMulSubtypeMem, instIsScalarTowerSubtypeMem, instIsTorsionFree, instIsTorsionFree', instSMulMemClass, instSubringClass, instSubsemiringClass, intCast_mem, isDomain, isScalarTower_left, isScalarTower_mid, isScalarTower_right, le_centralizer_centralizer, list_prod_mem, list_sum_mem, map_id, map_injective, map_le, map_map, map_mono, map_toSubmodule, map_toSubsemiring, mem_carrier, mem_center_iff, mem_centralizer_iff, mem_comap, mem_map, mem_mk, mem_toSubmodule, mem_toSubring, mem_toSubsemiring, mk_algebraMap, mul_mem, multiset_prod_mem, multiset_sum_mem, natCast_mem, neg_mem, noZeroDivisors, nsmul_mem, one_mem, one_mem_toNonUnitalSubalgebra, pow_mem, prod_mem, rangeS_algebraMap, rangeS_le, range_algebraMap, range_comp_val, range_le, range_subset, range_val, setRange_algebraMap, smulCommClass_left, smulCommClass_right, smul_def, smul_mem, sub_mem, subsingleton_of_subsingleton, sum_mem, toNonUnitalSubalgebra_toSubalgebra, toSubmodule_injective, toSubmodule_toSubalgebra, toSubring_inj, toSubring_injective, toSubring_subtype, toSubring_toSubsemiring, toSubsemiring_inj, toSubsemiring_injective, toSubsemiring_subtype, val_apply, val_comp_inclusion, zero_mem, zsmul_mem, coe_algebraMap, coe_val, coe_toSubalgebra, mem_toSubalgebra, toSubalgebra_mk, toSubalgebra_toSubmodule, toSubalgebra_toSubsemiring, algebraMap_mem, mem_subalgebraOfSubring, mem_subalgebraOfSubsemiring, subalgebraOfSubring_toSubsemiring, subalgebraOfSubsemiring_toSubsemiring
168
Total220

AlgEquiv

Definitions

NameCategoryTheorems
ofInjective ๐Ÿ“–CompOp
2 mathmath: StarAlgEquiv.ofInjective_symm_apply, ofInjective_apply
ofInjectiveField ๐Ÿ“–CompOpโ€”
ofLeftInverse ๐Ÿ“–CompOp
2 mathmath: ofLeftInverse_apply, ofLeftInverse_symm_apply
subalgebraMap ๐Ÿ“–CompOp
2 mathmath: subalgebraMap_apply_coe, subalgebraMap_symm_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
ofInjective_apply ๐Ÿ“–mathematicalDFunLike.coe
AlgHom
AlgHom.funLike
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
AlgHom.range
AlgEquiv
Subalgebra.toSemiring
Subalgebra.algebra
instFunLike
ofInjective
โ€”โ€”
ofLeftInverse_apply ๐Ÿ“–mathematicalDFunLike.coe
AlgHom
AlgHom.funLike
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
AlgHom.range
AlgEquiv
Subalgebra.toSemiring
Subalgebra.algebra
instFunLike
ofLeftInverse
โ€”โ€”
ofLeftInverse_symm_apply ๐Ÿ“–mathematicalDFunLike.coe
AlgHom
AlgHom.funLike
AlgEquiv
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
AlgHom.range
Subalgebra.toSemiring
Subalgebra.algebra
instFunLike
symm
ofLeftInverse
โ€”โ€”
subalgebraMap_apply_coe ๐Ÿ“–mathematicalโ€”Set
Set.instMembership
Set.image
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
EquivLike.toEquiv
AddEquiv
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddEquiv.instEquivLike
RingEquiv.toAddEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
toRingEquiv
SetLike.coe
AddSubmonoid
AddSubmonoid.instSetLike
Subsemiring.toAddSubmonoid
Subalgebra.toSubsemiring
AlgEquiv
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.map
AlgHomClass.toAlgHom
instFunLike
AlgEquivClass.toAlgHomClass
instEquivLike
instAlgEquivClass
Subalgebra.toSemiring
Subalgebra.algebra
subalgebraMap
โ€”AlgEquivClass.toAlgHomClass
instAlgEquivClass
subalgebraMap_symm_apply_coe ๐Ÿ“–mathematicalโ€”Set
Set.instMembership
SetLike.coe
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddSubmonoid.instSetLike
Subsemiring.toAddSubmonoid
Subalgebra.toSubsemiring
DFunLike.coe
AlgEquiv
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.map
AlgHomClass.toAlgHom
instFunLike
AlgEquivClass.toAlgHomClass
instEquivLike
instAlgEquivClass
Subalgebra.toSemiring
Subalgebra.algebra
symm
subalgebraMap
AddEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
AddEquivClass.toAddEquiv
RingEquiv
Distrib.toMul
RingEquiv.instEquivLike
RingEquivClass.toAddEquivClass
RingEquiv.instRingEquivClass
RingEquivClass.toRingEquiv
AlgEquivClass.toRingEquivClass
Set.image
โ€”AlgEquivClass.toAlgHomClass
instAlgEquivClass

AlgHom

Definitions

NameCategoryTheorems
codRestrict ๐Ÿ“–CompOp
5 mathmath: IntermediateField.algHomEquivAlgHomOfSplits_symm_apply, val_comp_codRestrict, ContinuousAlgHom.coe_codRestrict, coe_codRestrict, injective_codRestrict
equalizer ๐Ÿ“–CompOp
16 mathmath: equalizer_eq_top, polynomialFunctions.le_equalizer, le_equalizer, coe_tensorEqualizer, CommRingCat.Under.tensorProdEqualizer_ฮน, equalizer_toSubsemiring, tensorEqualizerEquiv_apply, equalizer_same, adjoin_le_equalizer, CommRingCat.Under.equalizerFork_ฮน, coe_equalizer, mem_equalizer, ContinuousAlgHom.instCompleteSpaceSubtypeMemSubalgebraEqualizerOfT2SpaceOfContinuousMapClass, equalizer_toSubmodule, CommRingCat.Under.equalizer_comp, CommRingCat.Under.equalizerFork'_ฮน
fintypeRange ๐Ÿ“–CompOpโ€”
range ๐Ÿ“–CompOp
94 mathmath: Algebra.range_ofId, mem_range_self, Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_right, StarAlgEquiv.ofInjective_symm_apply, Polynomial.mem_lifts_iff_mem_alg, Subalgebra.LinearDisjoint.include_range, Localization.isFractionRing_range_mapToFractionRing, DualNumber.range_lift, rangeRestrict_surjective, Localization.isLocalization_range_mapToFractionRing, AlgEquiv.ofInjective_apply, CliffordAlgebra.range_lift, Subalgebra.centralizer_coe_map_includeLeft_eq_center_tensorProduct, RingCon.quotientKerEquivRangeโ‚_comp_mkโ‚, RingCon.coe_comapQuotientEquivRangeโ‚_mk, coe_range, IsScalarTower.adjoin_range_toAlgHom, Algebra.TensorProduct.algEquivIncludeRange_symm_tmul, val_comp_rangeRestrict, Algebra.TensorProduct.linearEquivIncludeRange_toLinearMap, range_comp_le_range, Localization.subalgebra.mem_range_mapToFractionRing_iff_ofField, NonUnitalSubalgebra.unitization_range, IsDedekindDomain.range_sup_range_eq_top_of_isCoprime_differentIdeal, fieldRange_toSubalgebra, Subalgebra.centralizer_coe_image_includeRight_eq_center_tensorProduct, IntermediateField.linearDisjoint_iff, IntermediateField.range_val, Polynomial.adjoin_rootSet_eq_range, Polynomial.Splits.adjoin_rootSet_eq_range, IsFractionRing.algHom_fieldRange_eq_of_comp_eq, Subalgebra.LinearDisjoint.exists_field_of_isDomain_of_injective, ker_rangeRestrict, IsIntegral.mem_range_algHom_of_minpoly_splits, Algebra.adjoin_singleton_eq_range_aeval, Subalgebra.centralizer_coe_map_includeRight_eq_center_tensorProduct, mem_range, Subalgebra.range_val, AlgEquiv.ofLeftInverse_apply, Algebra.adjoin_range_eq_range_freeAlgebra_lift, PolynomialLaw.exists_range_ฯ†_eq_of_fg, Complex.range_liftAux, Algebra.TensorProduct.productMap_range, Unitization.lift_range, range_eq_top, Subalgebra.centralizer_tensorProduct_eq_center_tensorProduct_left, Algebra.adjoin_range_eq_range_aeval, RingCon.kerLiftโ‚_range_eq, RingCon.coe_comapQuotientEquivRangeโ‚_symm_mk, Algebra.TensorProduct.linearEquivIncludeRange_symm_tmul, Algebra.TensorProduct.algEquivIncludeRange_tmul, Algebra.TensorProduct.map_range, RingCon.comapQuotientEquivRangeโ‚_mk, Submodule.range_valA, Algebra.adjoin_eq_range, TensorAlgebra.range_lift, Algebra.TensorProduct.algEquivIncludeRange_toAlgHom, DualNumber.range_inlAlgHom_sup_adjoin_eps, NonUnitalSubring.unitization_range, AlgEquiv.ofLeftInverse_symm_apply, RingCon.quotientKerEquivRangeโ‚_mkโ‚, Subalgebra.mulMap_range, Subalgebra.centralizer_coe_range_includeLeft_eq_center_tensorProduct, Algebra.TensorProduct.linearEquivIncludeRange_symm_toLinearMap, Subalgebra.range_comp_val, RingCon.liftโ‚_range, PolynomialLaw.range_ฯ†, ContinuousAlgHom.coe_rangeRestrict, NonUnitalSubsemiring.unitization_range, Algebra.adjoin_eq_range_freeAlgebra_lift, Subalgebra.map_comap_eq, Unitization.lift_range_le, RingCon.range_mkโ‚, Algebra.map_top, Algebra.TensorProduct.algEquivIncludeRange_symm_toAlgHom, Submodule.iSup_eq_toSubmodule_range, QuaternionAlgebra.Basis.range_liftHom, Subalgebra.centralizer_coe_image_includeLeft_eq_center_tensorProduct, IsFractionRing.liftAlgHom_fieldRange, MvPolynomial.range_mapAlgHom, isNoetherianRing_range, Polynomial.IsSplittingField.adjoin_rootSet_eq_range, MvPolynomial.supported_eq_range_rename, range_comp, Algebra.range_id, TrivSqZeroExt.range_inlAlgHom_sup_adjoin_range_inr, range_toSubsemiring, RingCon.coe_quotientKerEquivRangeโ‚_mkโ‚, Algebra.TensorProduct.linearEquivIncludeRange_tmul, Subalgebra.centralizer_range_includeRight_eq_center_tensorProduct, TrivSqZeroExt.range_liftAux, Localization.mem_range_mapToFractionRing_iff, Subalgebra.LinearDisjoint.of_isField', Algebra.Subalgebra.restrictScalars_adjoin
rangeRestrict ๐Ÿ“–CompOp
8 mathmath: rangeRestrict_surjective, RingCon.quotientKerEquivRangeโ‚_comp_mkโ‚, val_comp_rangeRestrict, ker_rangeRestrict, Algebra.TensorProduct.algEquivIncludeRange_tmul, Algebra.TensorProduct.algEquivIncludeRange_toAlgHom, ContinuousAlgHom.coe_rangeRestrict, Algebra.TensorProduct.linearEquivIncludeRange_tmul
subalgebraMap ๐Ÿ“–CompOp
3 mathmath: Subalgebra.mulMap_map_comp_eq, subalgebraMap_coe_apply, subalgebraMap_surjective

Theorems

NameKindAssumesProvesValidatesDepends On
coe_codRestrict ๐Ÿ“–mathematicalSubalgebra
SetLike.instMembership
Subalgebra.instSetLike
DFunLike.coe
AlgHom
funLike
Subalgebra.toSemiring
Subalgebra.algebra
codRestrict
โ€”โ€”
coe_equalizer ๐Ÿ“–mathematicalโ€”SetLike.coe
Subalgebra
Subalgebra.instSetLike
equalizer
setOf
DFunLike.coe
โ€”โ€”
coe_range ๐Ÿ“–mathematicalโ€”SetLike.coe
Subalgebra
Subalgebra.instSetLike
range
Set.range
DFunLike.coe
AlgHom
funLike
โ€”โ€”
equalizer_toSubmodule ๐Ÿ“–mathematicalโ€”DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
equalizer
LinearMap.eqLocus
RingHom.id
NonUnitalAlgHomClass.instLinearMapClass
instNonUnitalAlgHomClassOfAlgHomClass
โ€”โ€”
equalizer_toSubsemiring ๐Ÿ“–mathematicalโ€”Subalgebra.toSubsemiring
equalizer
Semiring.toNonAssocSemiring
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MulOne.toMul
MulOneClass.toMulOne
setOf
DFunLike.coe
โ€”โ€”
injective_codRestrict ๐Ÿ“–mathematicalSubalgebra
SetLike.instMembership
Subalgebra.instSetLike
DFunLike.coe
AlgHom
funLike
Subalgebra.toSemiring
Subalgebra.algebra
codRestrict
โ€”โ€”
le_equalizer ๐Ÿ“–mathematicalโ€”Subalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
equalizer
Set.EqOn
DFunLike.coe
SetLike.coe
Subalgebra.instSetLike
โ€”โ€”
mem_equalizer ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
equalizer
DFunLike.coe
โ€”โ€”
mem_range ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
range
DFunLike.coe
AlgHom
funLike
โ€”RingHom.mem_rangeS
mem_range_self ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
range
DFunLike.coe
AlgHom
funLike
โ€”mem_range
rangeRestrict_surjective ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
range
DFunLike.coe
AlgHom
Subalgebra.toSemiring
Subalgebra.algebra
funLike
rangeRestrict
โ€”SetCoe.ext
range_comp ๐Ÿ“–mathematicalโ€”range
comp
Subalgebra.map
โ€”SetLike.coe_injective
Set.range_comp
range_comp_le_range ๐Ÿ“–mathematicalโ€”Subalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
range
comp
โ€”SetLike.coe_mono
instIsConcreteLE
Set.range_comp_subset_range
range_toSubsemiring ๐Ÿ“–mathematicalโ€”Subalgebra.toSubsemiring
range
RingHom.rangeS
Semiring.toNonAssocSemiring
RingHomClass.toRingHom
AlgHom
funLike
AlgHomClass.toRingHomClass
algHomClass
โ€”โ€”
subalgebraMap_coe_apply ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.map
DFunLike.coe
AlgHom
Subalgebra.toSemiring
Subalgebra.algebra
funLike
subalgebraMap
โ€”โ€”
subalgebraMap_surjective ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.map
DFunLike.coe
AlgHom
Subalgebra.toSemiring
Subalgebra.algebra
funLike
subalgebraMap
โ€”AddMonoidHom.addSubmonoidMap_surjective
val_comp_codRestrict ๐Ÿ“–mathematicalSubalgebra
SetLike.instMembership
Subalgebra.instSetLike
DFunLike.coe
AlgHom
funLike
comp
Subalgebra.toSemiring
Subalgebra.algebra
Subalgebra.val
codRestrict
โ€”ext
val_comp_rangeRestrict ๐Ÿ“–mathematicalโ€”comp
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
range
Subalgebra.toSemiring
Subalgebra.algebra
Subalgebra.val
rangeRestrict
โ€”val_comp_codRestrict
mem_range_self

NonUnitalSubalgebra

Definitions

NameCategoryTheorems
toSubalgebra ๐Ÿ“–CompOp
2 mathmath: toSubalgebra_toNonUnitalSubalgebra, Subalgebra.toNonUnitalSubalgebra_toSubalgebra

Theorems

NameKindAssumesProvesValidatesDepends On
toSubalgebra_toNonUnitalSubalgebra ๐Ÿ“–mathematicalNonUnitalSubalgebra
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SetLike.instMembership
instSetLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Subalgebra.toNonUnitalSubalgebra
toSubalgebra
โ€”โ€”

Set

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_mem_center ๐Ÿ“–mathematicalโ€”Set
instMembership
center
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
โ€”Algebra.commutes
Zero.instNonempty
algebraMap_mem_centralizer ๐Ÿ“–mathematicalโ€”Set
instMembership
centralizer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
โ€”Algebra.commutes

Subalgebra

Definitions

NameCategoryTheorems
algebra ๐Ÿ“–CompOp
245 mathmath: mulMap_comm, inclusion_right, minpoly.ToAdjoin.injective, centralizer_tensorProduct_eq_center_tensorProduct_right, Localization.subalgebra.isLocalization_subalgebra, StarAlgEquiv.ofInjective_symm_apply, AlgEquiv.coe_adjoinSingletonEquivAdjoinRootMinpoly_symm, Algebra.FiniteType.adjoin_of_finite, algebraicIndependent_adjoin, ValuationSubring.integralClosure_algebraMap_injective, AlgHom.val_comp_codRestrict, Algebra.adjoin_algebraMap_image_union_eq_adjoin_adjoin, TensorProduct.toIntegralClosure_bijective_of_isLocalization, integralClosure.AlgebraIsIntegral, equivOfEq_apply, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_apply, AlgHom.rangeRestrict_surjective, Algebra.IsIntegral.adjoin, Localization.isLocalization_range_mapToFractionRing, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C, AlgHom.coe_mapIntegralClosure, AlgebraicIndependent.repr_ker, AlgEquiv.ofInjective_apply, centralizer_coe_map_includeLeft_eq_center_tensorProduct, MvPolynomial.supportedEquivMvPolynomial_symm_X, aeval_coe, Polynomial.lift_of_splits, mulMap_toLinearMap, RingCon.quotientKerEquivRangeโ‚_comp_mkโ‚, RingCon.coe_comapQuotientEquivRangeโ‚_mk, algebra_isAlgebraic_bot_right, val_apply, inclusion.isScalarTower_left, comm_trans_rTensorBot, mulMap_map_comp_eq, Algebra.EssFiniteType.adjoin_mem_finset, IsScalarTower.adjoin_range_toAlgHom, TensorProduct.toIntegralClosure_bijective_of_smooth, AlgebraicGeometry.Scheme.Hom.toNormalization_app_preimage, Algebra.TensorProduct.algEquivIncludeRange_symm_tmul, AlgEquiv.adjoinSingletonEquivAdjoinRootMinpoly_symm_toAlgHom, AdjoinRoot.Minpoly.toAdjoin.surjective, AlgHom.val_comp_rangeRestrict, LinearDisjoint.linearIndependent_left_op_of_flat, AlgebraicIndependent.aeval_comp_repr, Algebra.QuasiFiniteAt.exists_fg_and_exists_notMem_and_awayMap_bijective, range_isScalarTower_toAlgHom, IsPrimitiveRoot.adjoinEquivRingOfIntegers_symm_apply, Field.Emb.Cardinal.succEquiv_coherence, AlgebraicGeometry.Scheme.Hom.ฮน_toNormalization, prod_mem_ideal_map_of_mem_conductor, Polynomial.aeval_subalgebra_coe, mopAlgEquivOp_symm_apply, inclusion_inclusion, LinearDisjoint.mulMapLeftOfSupEqTop_symm_apply, TensorProduct.Algebra.exists_of_fg, centralizer_coe_image_includeRight_eq_center_tensorProduct, lTensorBot_one_tmul, Matrix.isRepresentation.toEnd_represents, mulMap_bot_left_eq, IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply, CliffordAlgebra.coe_toEven_reverse_involute, Algebra.isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot, AlgHom.coe_tensorEqualizer, isSeparable_iff, TensorProduct.toIntegralClosure_mvPolynomial_bijective, valA_apply, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C', ContinuousAlgHom.coe_codRestrict, Algebra.adjoin.powerBasis_dim, AlgHom.ker_rangeRestrict, mvPolynomial_aeval_coe, AdjoinRoot.Minpoly.coe_toAdjoin, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_some, CommRingCat.Under.tensorProdEqualizer_ฮน, topEquiv_apply, centralizer_coe_map_includeRight_eq_center_tensorProduct, isCyclotomicExtension_iff_eq_adjoin, range_val, AlgEquiv.ofLeftInverse_apply, MvPolynomial.rename_esymmAlgHom, CliffordAlgebra.even.lift_ฮน, mulMap'_surjective, coe_equivMapOfInjective_apply, Algebra.adjoin.powerBasis'_dim, LinearDisjoint.trace_algebraMap, Matrix.isRepresentation.toEnd_exists_mem_ideal, CliffordAlgebra.even.algHom_ext_iff, Submodule.lTensorOne'_tmul, Localization.subalgebra.isLocalization_ofField, AlgEquiv.coe_mapIntegralClosure, CliffordAlgebra.toEven_comp_ofEven, le_integralClosure_iff_isIntegral, Submodule.rTensorOne'_tmul, ContinuousAlgHom.coe_codRestrict_apply, MvPolynomial.esymmAlgHom_fin_surjective, NonUnitalSubalgebra.unitizationAlgEquiv_apply_coe, quotAdjoinEquivQuotMap_apply_mk, LinearDisjoint.mulRightMap_ker_eq_bot_iff_linearIndependent, equivOfEq_rfl, fg_iff_finiteType, Submodule.rTensorOne_tmul, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, instIsInvariantSubtypeMemSubalgebraSubalgebraSubgroupQuotient, inclusion_mk, inclusion_injective, Algebra.adjoin.powerBasis_gen, centralizer_tensorProduct_eq_center_tensorProduct_left, AlgebraicIndependent.algebraMap_aevalEquiv, AdjoinRoot.Minpoly.coe_toAdjoin_mk_X, rTensorBot_tmul_one, algebraMap_eq, AlgHom.tensorEqualizerEquiv_apply, ValuationSubring.isIntegral_of_mem_ringOfIntegers', CliffordAlgebra.evenToNeg_ฮน, inclusion.isScalarTower_right, RingCon.coe_comapQuotientEquivRangeโ‚_symm_mk, coe_val, mulMap_bot_right_eq, Algebra.TensorProduct.algEquivIncludeRange_tmul, Algebra.Smooth.exists_subalgebra_finiteType, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_symm_apply, LinearDisjoint.linearIndependent_right_of_flat, lTensorBot_symm_apply, coe_valA, inclusion_self, inclusion.faithfulSMul, RingCon.comapQuotientEquivRangeโ‚_mk, Submodule.range_valA, isCyclotomicExtension_singleton_iff_eq_adjoin, ValuationSubring.isIntegral_of_mem_ringOfIntegers, AlgebraicIndependent.aeval_repr, algEquivOpMop_apply, Algebra.adjoin_adjoin_coe_preimage, CliffordAlgebra.ofEven_comp_toEven, MvPolynomial.renameSymmetricSubalgebra_symm_apply_coe, AlgEquiv.subalgebraMap_apply_coe, AlgebraicGeometry.Scheme.Hom.ฮน_toNormalization_assoc, AlgebraicGeometry.Scheme.Hom.fromNormalization_app_assoc, Algebra.TensorProduct.algEquivIncludeRange_toAlgHom, Polynomial.coe_aeval_mk_apply, FunctionField.ringOfIntegers.algebraMap_injective, AlgHom.subalgebraMap_coe_apply, Algebra.essFiniteType_iff_exists_subalgebra, Submodule.exists_fg_of_baseChange_eq_zero, IsCyclotomicExtension.union_left, MvPolynomial.esymmAlgHom_fin_injective, CliffordAlgebra.even.lift_symm_apply_bilin, CliffordAlgebra.evenEquivEvenNeg_apply, linearDisjoint_iff_injective, fg_top, Ideal.IntegralClosure.comap_lt_comap, CliffordAlgebra.toEven_ฮน, Algebra.restrictScalars_adjoin, lTensorBot_tmul, topEquiv_symm_apply_coe, Algebra.isIntegral_iSup, TensorProduct.toIntegralClosure_injective_of_flat, isAlgebraic_iff_isAlgebraic_val, Algebra.isIntegral_sup, Matrix.isRepresentation.toEnd_surjective, Algebra.adjoin_restrictScalars, AlgEquiv.ofLeftInverse_symm_apply, LinearDisjoint.val_mulMap_tmul, minpoly.equivAdjoin_toAlgHom, RingCon.quotientKerEquivRangeโ‚_mkโ‚, MvPolynomial.esymmAlgHom_apply, mulMap_range, centralizer_coe_range_includeLeft_eq_center_tensorProduct, AlgebraicIndependent.aevalEquiv_apply_coe, rTensorBot_symm_apply, AlgHom.subalgebraMap_surjective, LinearDisjoint.mulMapLeftOfSupEqTop_tmul, range_comp_val, Matrix.isRepresentation.eq_toEnd_of_represents, Algebra.mem_ideal_map_adjoin, LinearDisjoint.linearIndependent_left_of_flat_of_commute, minpoly.coe_equivAdjoin, Algebra.adjoin.powerBasis'_minpoly_gen, Algebra.instFiniteTypeSubtypeMemSubalgebraSubalgebra, ContinuousAlgHom.coe_rangeRestrict, CliffordAlgebra.even.lift.aux_ฮน, CommRingCat.Under.equalizerFork_ฮน, IsLocalization.integralClosure, Algebra.TensorProduct.algEquivIncludeRange_symm_toAlgHom, Submodule.lTensorOne_tmul, comm_trans_lTensorBot, CliffordAlgebra.evenEquivEvenNeg_symm_apply, ContinuousMap.polynomial_comp_attachBound, IsPrimitiveRoot.adjoin_isCyclotomicExtension, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_aux, CliffordAlgebra.ofEven_ฮน, instSMulCommClassSubtypeMemSubalgebraIntegralClosure, toSubring_subtype, integralClosure.isIntegral, val_comp_inclusion, LinearDisjoint.linearIndependent_left_of_flat, centralizer_coe_image_includeLeft_eq_center_tensorProduct, IsScalarTower.subalgebra', MvPolynomial.esymmAlgHom_fin_bijective, AlgHom.coe_codRestrict, instFiniteTypeSubtypePolynomialMemSubalgebraReesAlgebraOfIsNoetherianRing, MvPolynomial.esymmAlgEquiv_apply, val_mulMap'_tmul, LinearDisjoint.norm_algebraMap, isAlgebraic_iff, Algebra.adjoin_union_eq_adjoin_adjoin, Algebra.adjoin.powerBasis'_gen, LinearDisjoint.isDomain, AlgHom.injective_codRestrict, toSubsemiring_subtype, equivOfEq_symm, isIntegral_iff, LinearDisjoint.leftMulMatrix_basisOfBasisRight_algebraMap, mulMap_tmul, AlgEquiv.subalgebraMap_symm_apply_coe, MvPolynomial.supportedEquivMvPolynomial_symm_C, AlgebraicGeometry.Scheme.Hom.normalizationObjIso_hom_val, CliffordAlgebra.evenToNeg_comp_evenToNeg, mopAlgEquivOp_apply_coe, instIsAlgebraicSubtypeMemSubalgebraAlgebraicClosure, IsLocalization.Away.integralClosure, LinearDisjoint.mulLeftMap_ker_eq_bot_iff_linearIndependent_op, algEquivOpMop_symm_apply_coe, rTensorBot_tmul, instSMulCommClassQuotientSubgroupSubtypeMemSubalgebraSubalgebra, mk_algebraMap, IsCyclotomicExtension.lcm_sup, coe_valA', AlgebraicGeometry.Scheme.Hom.fromNormalization_app, Algebra.botEquiv_symm_apply, RingCon.coe_quotientKerEquivRangeโ‚_mkโ‚, Algebra.TensorProduct.linearEquivIncludeRange_tmul, MvPolynomial.esymmAlgHom_surjective, CommRingCat.Under.equalizer_comp, centralizer_range_includeRight_eq_center_tensorProduct, MvPolynomial.esymmAlgEquiv_symm_apply, equivOfEq_trans, CommRingCat.Under.equalizerFork'_ฮน, coe_inclusion, MvPolynomial.esymmAlgHom_injective, comap_map_eq_map_adjoin_of_coprime_conductor, MvPolynomial.renameSymmetricSubalgebra_apply_coe, CliffordAlgebra.even.lift.aux_algebraMap, Algebra.ZariskisMainProperty.exists_fg_and_exists_notMem_and_awayMap_bijective
algebra' ๐Ÿ“–CompOp
2 mathmath: coe_algebraMap, IntermediateField.isAlgebraic_adjoin_iff_bot
center ๐Ÿ“–CompOp
19 mathmath: centralizer_tensorProduct_eq_center_tensorProduct_right, Algebra.TensorProduct.includeLeft_map_center_le, center_toSubsemiring, coe_center, mem_center_iff, center_eq_top, Algebra.TensorProduct.includeRight_map_center_le, centralizer_tensorProduct_eq_center_tensorProduct_left, centralizer_eq_top_iff_subset, Algebra.IsCentral.mem_center_iff, center_le_centralizer, centralizer_coe_range_includeLeft_eq_center_tensorProduct, Algebra.IsCentral.center_eq_bot, Matrix.subalgebraCenter_eq_scalarAlgHom_map, center_toSubring, centralizer_univ, Algebra.IsCentral.out, Module.End.mem_subalgebraCenter_iff, centralizer_range_includeRight_eq_center_tensorProduct
centralizer ๐Ÿ“–CompOp
23 mathmath: centralizer_tensorProduct_eq_center_tensorProduct_right, centralizer_coe_map_includeLeft_eq_center_tensorProduct, centralizer_coe_iSup, le_centralizer_iff, centralizer_coe_image_includeRight_eq_center_tensorProduct, Algebra.elemental.le_centralizer_centralizer, le_centralizer_centralizer, centralizer_coe_map_includeRight_eq_center_tensorProduct, StarSubalgebra.centralizer_toSubalgebra, centralizer_centralizer_centralizer, centralizer_tensorProduct_eq_center_tensorProduct_left, centralizer_eq_top_iff_subset, centralizer_le, Algebra.adjoin_le_centralizer_centralizer, center_le_centralizer, centralizer_coe_range_includeLeft_eq_center_tensorProduct, centralizer_coe_sup, centralizer_coe_image_includeLeft_eq_center_tensorProduct, centralizer_univ, coe_centralizer, topologicalClosure_adjoin_le_centralizer_centralizer, centralizer_range_includeRight_eq_center_tensorProduct, mem_centralizer_iff
comap ๐Ÿ“–CompOp
16 mathmath: comap_map_eq, comap_map_eq_self_of_injective, map_comap_eq_self, gc_map_comap, map_le, comap_toSubsemiring, mem_comap, map_comap_eq_self_of_surjective, coe_comap, Algebra.comap_top, map_comap_eq, comap_map_eq_self, topologicalClosure_comap_homeomorph, SeparatesPoints.rclike_to_real, RCLike.restrict_toContinuousMap_eq_toContinuousMapStar_restrict, polynomialFunctions.comap_compRightAlgHom_iccHomeoI
copy ๐Ÿ“–CompOp
3 mathmath: copy_eq, copy_toSubsemiring, coe_copy
equivMapOfInjective ๐Ÿ“–CompOp
1 mathmath: coe_equivMapOfInjective_apply
equivOfEq ๐Ÿ“–CompOp
4 mathmath: equivOfEq_apply, equivOfEq_rfl, equivOfEq_symm, equivOfEq_trans
inclusion ๐Ÿ“–CompOp
13 mathmath: inclusion_right, inclusion.isScalarTower_left, Field.Emb.Cardinal.succEquiv_coherence, inclusion_inclusion, TensorProduct.Algebra.eq_of_fg_of_subtype_eq, inclusion_mk, inclusion_injective, TensorProduct.Algebra.eq_of_fg_of_subtype_eq', inclusion.isScalarTower_right, inclusion_self, inclusion.faithfulSMul, val_comp_inclusion, coe_inclusion
instCommRingSubtypeMemCenter ๐Ÿ“–CompOpโ€”
instCommSemiringSubtypeMemCenter ๐Ÿ“–CompOpโ€”
instDistribMulActionSubtypeMem ๐Ÿ“–CompOpโ€”
instInhabitedSubtypeMem ๐Ÿ“–CompOpโ€”
instModuleSubtypeMem ๐Ÿ“–CompOp
104 mathmath: mulMap_comm, Submodule.rTensorOne_symm_apply, adjoin_rank_le, Submodule.comm_trans_lTensorOne, LinearDisjoint.sup_free_of_free, CliffordAlgebra.even.lift.aux_mul, Algebra.finite_adjoin_simple_of_isIntegral, Submodule.mulMap_one_right_eq, finrank_sup_eq_finrank_right_mul_finrank_of_free, TensorProduct.toIntegralClosure_bijective_of_isLocalization, rank_sup_eq_rank_left_mul_rank_of_free, LinearDisjoint.adjoin_rank_eq_rank_left, mulMap_toLinearMap, mulMap_map_comp_eq, TensorProduct.toIntegralClosure_bijective_of_smooth, Algebra.TensorProduct.algEquivIncludeRange_symm_tmul, Algebra.TensorProduct.linearEquivIncludeRange_toLinearMap, range_isScalarTower_toAlgHom, LinearDisjoint.mulMapLeftOfSupEqTop_symm_apply, instIsTorsionFree, LinearDisjoint.rank_sup_of_free, finrank_toSubmodule, lTensorBot_one_tmul, mulMap_bot_left_eq, AlgHom.coe_tensorEqualizer, TensorProduct.toIntegralClosure_mvPolynomial_bijective, finrank_right_dvd_finrank_sup_of_free, FiniteDimensional.of_subalgebra_toSubmodule, isNoetherian_adjoin_finset, linearEquivOp_apply_coe, LinearDisjoint.algebraMap_basisOfBasisRight_repr_apply, mulMap'_surjective, Submodule.comm_trans_rTensorOne, adjoin_eq_span_basis, LinearDisjoint.algebraMap_basisOfBasisRight_apply, finrank_left_dvd_finrank_sup_of_free, Submodule.lTensorOne'_tmul, Submodule.rTensorOne'_tmul_one, Submodule.rTensorOne'_tmul, IntermediateField.finrank_eq_finrank_subalgebra, Submodule.rTensorOne_tmul, rTensorBot_tmul_one, LinearDisjoint.rank_eq_one_of_commute_of_flat_of_self_of_inj, AlgHom.tensorEqualizerEquiv_apply, Algebra.finite_adjoin_of_finite_of_isIntegral, finrank_sup_eq_finrank_left_mul_finrank_of_free, finrank_sup_le_of_free, Submodule.rTensorOne_tmul_one, finite_sup, mulMap_bot_right_eq, Algebra.TensorProduct.linearEquivIncludeRange_symm_tmul, Algebra.TensorProduct.algEquivIncludeRange_tmul, rank_sup_eq_rank_right_mul_rank_of_free, lTensorBot_symm_apply, finiteDimensional_toSubmodule, Submodule.mulMap_one_left_eq, LinearDisjoint.rank_inf_eq_one_of_flat_left_of_inj, FiniteDimensional.finiteDimensional_subalgebra, LinearDisjoint.finrank_sup_of_free, Algebra.TensorProduct.algEquivIncludeRange_toAlgHom, linearDisjoint_iff_injective, lTensorBot_tmul, rank_sup_le_of_free, TensorProduct.toIntegralClosure_injective_of_flat, LinearDisjoint.val_mulMap_tmul, mulMap_range, LinearDisjoint.basisOfBasisLeft_apply, rTensorBot_symm_apply, LinearDisjoint.mulMapLeftOfSupEqTop_tmul, LinearDisjoint.rank_inf_eq_one_of_flat_right_of_inj, Algebra.TensorProduct.linearEquivIncludeRange_symm_toLinearMap, Submodule.lTensorOne_symm_apply, instIsScalarTowerSubtypeMem, Submodule.lTensorOne'_one_tmul, CliffordAlgebra.even.lift.aux_apply, CliffordAlgebra.even.lift.aux_ฮน, rank_eq_one_iff, FunctionField.ringOfIntegers.instIsNoetherianPolynomialSubtypeMemSubalgebraOfIsSeparableRatFunc, subalgebra_top_finrank_eq_submodule_top_finrank, linearEquivOp_symm_apply_coe, Algebra.TensorProduct.algEquivIncludeRange_symm_toAlgHom, Submodule.lTensorOne_tmul, LinearDisjoint.rank_inf_eq_one_of_commute_of_flat_left_of_inj, IntermediateField.rank_eq_rank_subalgebra, val_mulMap'_tmul, LinearDisjoint.isDomain, Submodule.lTensorOne_one_tmul, mulMap_tmul, finrank_bot, LinearDisjoint.rank_inf_eq_one_of_commute_of_flat_right_of_inj, LinearDisjoint.adjoin_rank_eq_rank_right, LinearDisjoint.basisOfBasisLeft_repr_apply, rTensorBot_tmul, LinearDisjoint.rank_eq_one_of_flat_of_self_of_inj, rank_bot, rank_toSubmodule, rank_top, Algebra.TensorProduct.linearEquivIncludeRange_tmul, finrank_eq_one_iff, subalgebra_top_rank_eq_submodule_top_rank, CliffordAlgebra.even.lift.aux_one, finite_bot, Algebra.rank_adjoin_le, CliffordAlgebra.even.lift.aux_algebraMap
instMulActionSubtypeMem ๐Ÿ“–CompOpโ€”
instMulActionWithZeroSubtypeMem ๐Ÿ“–CompOpโ€”
instPartialOrder ๐Ÿ“–CompOp
119 mathmath: integralClosure_le_span_dualBasis, toSubmodule_injective, Algebra.TensorProduct.includeLeft_map_center_le, mem_subalgebraEquivIntermediateField, integralClosure_le_completeIntegralClosure, Submodule.mulMap_one_right_eq, adjoin_le_integralClosure, UnitAddTorus.mFourierSubalgebra_coe, polynomialFunctions.le_equalizer, mulMap_toLinearMap, Algebra.elemental.le_iff_mem, AlgHom.le_equalizer, Submonoid.adjoin_eq_span_of_eq_span, Algebra.span_le_adjoin, AlgHom.range_comp_le_range, Algebra.QuasiFiniteAt.exists_fg_and_exists_notMem_and_awayMap_bijective, mem_toSubmodule, range_isScalarTower_toAlgHom, Algebra.toSubmodule_bot, Algebra.sInf_toSubmodule, le_centralizer_iff, finrank_toSubmodule, isIdempotentElem_toSubmodule, Algebra.TensorProduct.includeRight_map_center_le, StarAlgebra.adjoin_nonUnitalStarSubalgebra_eq_span, isSimpleOrder_of_finrank, span_coeff_minpolyDiv, separatesPoints_monotone, Algebra.top_toSubmodule, Algebra.elemental.le_centralizer_centralizer, integralClosure_le_algebraicClosure, mem_subalgebraEquivIntermediateField_symm, instCovariantClassHSMulLe, Algebra.adjoin_singleton_le, Submodule.toSubalgebra_toSubmodule, le_centralizer_centralizer, traceForm_dualSubmodule_adjoin, FractionalIdeal.adjoinIntegral_coe, mul_toSubmodule, Algebra.adjoin_nonUnitalSubalgebra_eq_span, gc_map_comap, FractionalIdeal.isFractional_adjoin_integral, mem_integralClosure_iff_mem_fg, adjoin_eq_span_basis, le_integralClosure_iff_isIntegral, topologicalClosure_map_le, mul_toSubmodule_le, unop_le_unop_iff, Module.Flat.instSubalgebraToSubmodule, Algebra.adjoin_toSubmodule_le, MvPolynomial.supported_strictMono, LinearDisjoint.mulRightMap_ker_eq_bot_iff_linearIndependent, starClosure_le_iff, MvPolynomial.supported_mono, Algebra.inf_toSubmodule, Algebra.adjoin_eq_span_of_subset, linearDisjoint_iff, map_le, map_toSubmodule, Submodule.span_range_natDegree_eq_adjoin, centralizer_le, op_le_iff, Algebra.iInf_toSubmodule, fourierSubalgebra_coe, inclusion_self, finiteDimensional_toSubmodule, toSubmodule_toSubalgebra, StarSubalgebra.toSubalgebra_le_iff, Algebra.adjoin_union_coe_submodule, Submodule.mulMap_one_left_eq, le_topologicalClosure, fg_adjoin_of_finite, IsCyclotomicExtension.le_of_dvd, Algebra.adjoin_le_centralizer_centralizer, Algebra.adjoin_eq_span, CliffordAlgebra.even_toSubmodule, Algebra.toSubmodule_eq_top, center_le_centralizer, pi_toSubsemiring, Algebra.adjoin_mono, Algebra.adjoin_le_iff, MvPolynomial.supported_le_supported_iff, Algebra.adjoin_prod_le, AlgHom.adjoin_le_equalizer, map_topologicalClosure_le, coe_pi, Algebra.adjoin_le, le_saturation, coe_toSubmodule, IntermediateField.toSubalgebra_lt_toSubalgebra, opEquiv_symm_apply, Unitization.lift_range_le, restrictScalars_toSubmodule, StarAlgebra.adjoin_eq_span, Submodule.iSup_eq_toSubmodule_range, isSimpleOrder_of_finrank_prime, IntermediateField.toSubalgebra_strictMono, IsIntegral.fg_adjoin_singleton, MvPolynomial.range_mapAlgHom, IntermediateField.le_sup_toSubalgebra, FiniteDimensional.subalgebra_toSubmodule, IntermediateField.toSubalgebra_le_toSubalgebra, pointwise_smul_toSubmodule, prod_toSubmodule, le_op_iff, Algebra.elemental.le_of_mem, Algebra.IsCentral.out, star_mono, LinearDisjoint.mulLeftMap_ker_eq_bot_iff_linearIndependent_op, AlgHom.equalizer_toSubmodule, pi_toSubmodule, op_le_op_iff, topologicalClosure_adjoin_le_centralizer_centralizer, Algebra.gc, rank_toSubmodule, fg_bot_toSubmodule, opEquiv_apply, IntermediateField.algebra_adjoin_le_adjoin, Algebra.ZariskisMainProperty.exists_fg_and_exists_notMem_and_awayMap_bijective
instSMulSubtypeMem ๐Ÿ“–CompOp
14 mathmath: instSMulDistribClassSubtypeMemSubalgebraIntegralClosure, Algebra.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetCoeRingHomAlgebraMap, smulCommClass_right, IsScalarTower.subalgebra, isScalarTower_left, instFaithfulSMulSubtypeMem, isScalarTower_mid, smulCommClass_left, minpoly.instIsScalarTowerSubtypeMemSubringSubalgebraIntegralClosure, continuousSMul, IsScalarTower.subalgebra', smul_def, IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1, IntermediateField.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap
instSMulWithZeroSubtypeMem ๐Ÿ“–CompOpโ€”
instSetLike ๐Ÿ“–CompOp
634 mathmath: IsPrimitiveRoot.subOneIntegralPowerBasis_gen_prime, mem_restrictScalars, Algebra.IsUnramifiedAt.exists_primesOver_under_adjoin_eq_singleton_and_residueField_bijective, exists_fg_and_mem_baseChange, StarSubalgebra.mem_toSubalgebra, mulMap_comm, AlgHom.mem_range_self, Submodule.rTensorOne_symm_apply, minpoly.ToAdjoin.injective, Algebra.RingHom.adjoin_algebraMap_apply, Ideal.Filtration.submodule_closure_single, centralizer_tensorProduct_eq_center_tensorProduct_right, Localization.subalgebra.isLocalization_subalgebra, Ideal.Filtration.submodule_eq_span_le_iff_stable_ge, Algebra.lift_cardinalMk_adjoin_le, StarAlgEquiv.ofInjective_symm_apply, Polynomial.mem_lifts_iff_mem_alg, adjoin_rank_le, AlgebraicIndependent.transcendental_adjoin_iff, AlgEquiv.coe_adjoinSingletonEquivAdjoinRootMinpoly_symm, Algebra.mem_iInf, coe_iSup_of_directed, Algebra.FiniteType.adjoin_of_finite, algebraicIndependent_adjoin, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime_pow, ContinuousMap.abs_mem_subalgebra_closure, ValuationSubring.integralClosure_algebraMap_injective, IsCyclotomicExtension.mem_of_pow_eq_one, Submodule.comm_trans_lTensorOne, spinGroup.mem_even, mem_op, Algebra.adjoin_algebraMap_image_union_eq_adjoin_adjoin, mem_reesAlgebra_iff_support, LinearDisjoint.sup_free_of_free, mem_subalgebraEquivIntermediateField, AlgebraicIndependent.isTranscendenceBasis_iff_isAlgebraic, jacobiSum_mem_algebraAdjoin_of_pow_eq_one, Algebra.mem_top, CliffordAlgebra.even.lift.aux_mul, Algebra.finite_adjoin_simple_of_isIntegral, MulChar.apply_mem_algebraAdjoin_of_pow_eq_one, Submodule.mulMap_one_right_eq, Localization.isFractionRing_range_mapToFractionRing, finrank_sup_eq_finrank_right_mul_finrank_of_free, TensorProduct.toIntegralClosure_bijective_of_isLocalization, integralClosure.AlgebraIsIntegral, equivOfEq_apply, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_apply, AlgebraicIndependent.transcendental_adjoin, AlgHom.rangeRestrict_surjective, mem_algebraicClosure, Algebra.IsIntegral.adjoin, topologicalClosure_coe, Localization.isLocalization_range_mapToFractionRing, coe_center, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C, AlgHom.coe_mapIntegralClosure, Algebra.sSup_def, AlgebraicIndependent.repr_ker, Set.unitEquivUnitsInteger_symm_apply_coe, ContinuousMap.continuousMap_mem_subalgebra_closure_of_separatesPoints, AlgEquiv.ofInjective_apply, centralizer_coe_map_includeLeft_eq_center_tensorProduct, AlgebraicIndependent.aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin, Algebra.mem_sInf, integralClosure.isIntegrallyClosedOfFiniteExtension, SeparatesPoints.strongly, centralizer_coe_iSup, rank_sup_eq_rank_left_mul_rank_of_free, mem_center_iff, IsPrimitiveRoot.subOneIntegralPowerBasis_gen, AlgebraicIndependent.iff_adjoin_image_compl, MulChar.apply_mem_algebraAdjoin, coe_one, MvPolynomial.supportedEquivMvPolynomial_symm_X, Submodule.coe_toSubalgebra, aeval_coe, LinearDisjoint.adjoin_rank_eq_rank_left, Polynomial.lift_of_splits, mulMap_toLinearMap, Ideal.Filtration.mem_submodule, Algebra.mem_adjoin_iff, Algebra.elemental.le_iff_mem, AlgHom.le_equalizer, instIsTorsionFree', MonoidAlgebra.mem_adjoin_support, RingCon.quotientKerEquivRangeโ‚_comp_mkโ‚, IntermediateField.algebraAdjoinAdjoin.instIsAlgebraicSubtypeMemSubalgebraAdjoinAdjoin, coe_pointwise_smul, RingCon.coe_comapQuotientEquivRangeโ‚_mk, algebra_isAlgebraic_bot_right, FunctionField.ringOfIntegers.instIsIntegralClosureSubtypeMemSubalgebraPolynomial, val_apply, AlgebraicIndependent.matroid_isBasis_iff, AlgHom.coe_range, inclusion.isScalarTower_left, mem_subalgebraOfSubsemiring, comm_trans_rTensorBot, mulMap_map_comp_eq, algebra_isAlgebraic_bot_left_iff, Algebra.elemental.isClosedEmbedding_coe, Algebra.EssFiniteType.adjoin_mem_finset, IsScalarTower.adjoin_range_toAlgHom, TensorProduct.toIntegralClosure_bijective_of_smooth, AlgebraicGeometry.Scheme.Hom.toNormalization_app_preimage, spinGroup.mem_iff, IntermediateField.isAlgebraic_adjoin_iff_top, Algebra.TensorProduct.algEquivIncludeRange_symm_tmul, AlgEquiv.adjoinSingletonEquivAdjoinRootMinpoly_symm_toAlgHom, AdjoinRoot.Minpoly.toAdjoin.surjective, AlgHom.val_comp_rangeRestrict, AlgebraicIndependent.aeval_comp_repr, integralClosure_idem, Algebra.adjoin_adjoin_of_tower, AlgebraicIndependent.adjoin_iff_disjoint, Algebra.mem_bot, Algebra.TensorProduct.linearEquivIncludeRange_toLinearMap, IsPrimitiveRoot.powerBasis_gen_mem_adjoin_zeta_sub_one, Algebra.coe_iInf, IntermediateField.isAlgebraic_adjoin_iff, Algebra.QuasiFiniteAt.exists_fg_and_exists_notMem_and_awayMap_bijective, mem_toSubmodule, Localization.subalgebra.mem_range_mapToFractionRing_iff_ofField, AlgebraicIndependent.matroid_spanning_iff, zero_mem, range_isScalarTower_toAlgHom, coe_sub, integralClosure.isDedekindDomain, IsPrimitiveRoot.adjoinEquivRingOfIntegers_symm_apply, instSMulDistribClassSubtypeMemSubalgebraIntegralClosure, IntermediateField.coe_toSubalgebra, Field.Emb.Cardinal.succEquiv_coherence, AlgebraicGeometry.Scheme.Hom.ฮน_toNormalization, prod_mem_ideal_map_of_mem_conductor, mem_adjoin_map_integralClosure_of_isStandardEtale, Polynomial.aeval_subalgebra_coe, Algebra.coe_bot, mopAlgEquivOp_symm_apply, inclusion_inclusion, monomial_mem_adjoin_monomial, Algebra.elemental.instCompleteSpaceSubtypeMemSubalgebra, Algebra.subset_adjoin, LinearDisjoint.mulMapLeftOfSupEqTop_symm_apply, IsPrimitiveRoot.subOneIntegralPowerBasis'_gen_prime, TensorProduct.Algebra.exists_of_fg, continuousMap_mem_polynomialFunctions_closure, FunctionField.classNumber_eq_one_iff, le_centralizer_iff, coe_mul, centralizer_coe_image_includeRight_eq_center_tensorProduct, instIsTorsionFree, MvPolynomial.transcendental_supported_X_iff, LinearDisjoint.rank_sup_of_free, finrank_toSubmodule, algebraMap_def, Algebra.coe_top, AlgebraicIndependent.sumElim_iff, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime, lTensorBot_one_tmul, Matrix.isRepresentation.toEnd_represents, mulMap_bot_left_eq, IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply, isScalarTower_right, CliffordAlgebra.coe_toEven_reverse_involute, Algebra.isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot, coe_op, integralClosure.isFractionRing_of_finite_extension, AlgHom.coe_tensorEqualizer, isSeparable_iff, TensorProduct.toIntegralClosure_mvPolynomial_bijective, AlgebraicIndependent.adjoin_of_disjoint, valA_apply, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C', Algebra.essFiniteType_cond_iff, Algebra.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetCoeRingHomAlgebraMap, Algebra.elemental.le_centralizer_centralizer, IsFractionRing.algHom_fieldRange_eq_of_comp_eq, Set.coe_integer, Algebra.Presentation.coeffs_subset_core, mem_subalgebraEquivIntermediateField_symm, Algebra.adjoin.powerBasis_dim, Algebra.Presentation.coeffs_relation_subset_core, AlgHom.ker_rangeRestrict, mvPolynomial_aeval_coe, mem_starClosure, AdjoinRoot.Minpoly.coe_toAdjoin, le_centralizer_centralizer, mem_conductor_iff, finrank_right_dvd_finrank_sup_of_free, FiniteDimensional.of_subalgebra_toSubmodule, IsIntegral.mem_range_algHom_of_minpoly_splits, AlgebraicIndependent.subalgebraAlgebraicClosure, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_some, isNoetherian_adjoin_finset, ContinuousMap.sup_mem_closed_subalgebra, IsPrimitiveRoot.subOneIntegralPowerBasis'_gen, mem_completeIntegralClosure, FunctionField.ringOfIntegers.instIsDomainSubtypeMemSubalgebraPolynomial, linearEquivOp_apply_coe, roots_mem_integralClosure, CommRingCat.Under.tensorProdEqualizer_ฮน, topEquiv_apply, mem_carrier, LinearDisjoint.algebraMap_basisOfBasisRight_repr_apply, NumberField.house.exists_ne_zero_int_vec_house_le, centralizer_coe_map_includeRight_eq_center_tensorProduct, mem_saturation_iff, isCyclotomicExtension_iff_eq_adjoin, AlgHom.mem_range, range_val, AlgEquiv.ofLeftInverse_apply, MvPolynomial.mem_supported, MvPolynomial.rename_esymmAlgHom, mem_integralClosure_iff_mem_fg, CliffordAlgebra.even.lift_ฮน, coeff_minpolyDiv_mem_adjoin, mem_subalgebraOfSubring, ContinuousMap.exists_mem_subalgebra_near_continuousMap_of_separatesPoints, mulMap'_surjective, Submodule.comm_trans_rTensorOne, coe_equivMapOfInjective_apply, mem_map, adjoin_eq_span_basis, isField_of_algebraic, LinearDisjoint.algebraMap_basisOfBasisRight_apply, FunctionField.ringOfIntegers.instIsIntegrallyClosedSubtypeMemSubalgebraPolynomial, Algebra.adjoin.powerBasis'_dim, LinearDisjoint.trace_algebraMap, AlgebraicIndependent.isAlgebraic_adjoin_iff_of_matroid_isBasis, Matrix.isRepresentation.toEnd_exists_mem_ideal, instIsNoetherianRingSubtypePolynomialMemSubalgebraReesAlgebra, coe_algebraMap, IntermediateField.mem_adjoin_iff_div, CliffordAlgebra.even.algHom_ext_iff, finrank_left_dvd_finrank_sup_of_free, Submodule.lTensorOne'_tmul, Localization.subalgebra.isLocalization_ofField, Submodule.rTensorOne'_tmul_one, AlgEquiv.coe_mapIntegralClosure, CliffordAlgebra.toEven_comp_ofEven, le_integralClosure_iff_isIntegral, reesAlgebra.monomial_mem, Ideal.Filtration.inf_submodule, Submodule.rTensorOne'_tmul, MvPolynomial.esymmAlgHom_fin_surjective, integralClosure.isNoetherianRing, IntermediateField.finrank_eq_finrank_subalgebra, smulCommClass_right, ContinuousAlgHom.eqOn_closure_adjoin, ContinuousMap.sup_mem_subalgebra_closure, conductor_subset_adjoin, exists_jacobiSum_eq_neg_one_add, Derivation.eqOn_adjoin, starClosure_eq_adjoin, Algebra.Presentation.instHasCoeffsSubtypeMemSubalgebraAdjoin, NonUnitalSubalgebra.unitizationAlgEquiv_apply_coe, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_none, Set.val_unitEquivUnitsInteger_apply_coe, LinearDisjoint.mulRightMap_ker_eq_bot_iff_linearIndependent, ContinuousMap.inf_mem_subalgebra_closure, IsScalarTower.subalgebra, equivOfEq_rfl, ContinuousMap.inf_mem_closed_subalgebra, Ideal.Filtration.submodule_span_single, Algebra.EssFiniteType.isLocalization, fg_iff_finiteType, Submodule.rTensorOne_tmul, isScalarTower_left, ContinuousMap.exists_mem_subalgebra_near_continuous_of_isCompact_of_separatesPoints, intCast_mem, Algebra.elemental.self_mem, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, instIsInvariantSubtypeMemSubalgebraSubalgebraSubgroupQuotient, toIsStrictOrderedRing, noZeroDivisors, inclusion_injective, Algebra.adjoin.powerBasis_gen, NumberField.RingOfIntegers.mk_zero, coe_matrix, coe_star, MvPolynomial.mem_supported_vars, AlgebraicIndependent.option_iff_transcendental, mem_mk, centralizer_tensorProduct_eq_center_tensorProduct_left, Algebra.discr_mul_isIntegral_mem_adjoin, Ideal.IntegralClosure.isMaximal_of_isMaximal_comap, coe_restrictScalars, AlgebraicIndependent.algebraMap_aevalEquiv, AdjoinRoot.Minpoly.coe_toAdjoin_mk_X, IsCyclotomicExtension.iff_singleton, centralizer_eq_top_iff_subset, rTensorBot_tmul_one, MvPolynomial.aeval_toPolynomialAdjoinImageCompl_eq_zero, algebraMap_eq, instIsIntegrallyClosedInSubtypeMemSubalgebraIntegralClosure, exists_subalgebra_of_fg, AlgHom.tensorEqualizerEquiv_apply, mem_integralClosure_iff, Algebra.finite_adjoin_of_finite_of_isIntegral, finrank_sup_eq_finrank_left_mul_finrank_of_free, Polynomial.IsWeaklyEisensteinAt.exists_mem_adjoin_mul_eq_pow_natDegree, Algebra.adjoin_insert_adjoin, finrank_sup_le_of_free, ValuationSubring.isIntegral_of_mem_ringOfIntegers', coe_ofClass, mem_unop, IntermediateField.isTranscendenceBasis_adjoin_iff, CliffordAlgebra.evenToNeg_ฮน, Submodule.rTensorOne_tmul_one, coe_toSubsemiring, integralClosure.isFractionRing_of_algebraic, Algebra.small_adjoin, Ring.DimensionLEOne.integralClosure, inclusion.isScalarTower_right, Algebra.adjoin_eq_exists_aeval, coe_smul, instFaithfulSMulSubtypeMem, AlgebraicIndepOn.insert_iff, RingCon.coe_comapQuotientEquivRangeโ‚_symm_mk, finite_sup, coe_eq_one, coe_val, mulMap_bot_right_eq, Algebra.TensorProduct.linearEquivIncludeRange_symm_tmul, Algebra.TensorProduct.algEquivIncludeRange_tmul, Algebra.Smooth.exists_subalgebra_finiteType, coe_map, rank_sup_eq_rank_right_mul_rank_of_free, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_symm_apply, lTensorBot_symm_apply, Module.End.exists_isNilpotent_isSemisimple_of_separable_of_dvd_pow, Algebra.Etale.exists_subalgebra_fg, coe_valA, inclusion_self, inclusion.faithfulSMul, finiteDimensional_toSubmodule, NumberField.RingOfIntegers.mk_one, isScalarTower_mid, RingCon.comapQuotientEquivRangeโ‚_mk, Submodule.range_valA, StarSubalgebra.coe_mk, isAlgebraic_iff_exists_isTranscendenceBasis_subset, FunctionField.ringOfIntegers.instIsDedekindDomainSubtypeMemSubalgebraPolynomialOfIsSeparableRatFunc, isCyclotomicExtension_singleton_iff_eq_adjoin, Submodule.mulMap_one_left_eq, AlgebraicIndependent.aeval_repr, algEquivOpMop_apply, coe_neg, instIsTopologicalSemiringSubtypeMemSubalgebra, Algebra.IsCentral.mem_center_iff, AlgHom.eqOn_adjoin_iff, Algebra.adjoin_adjoin_coe_preimage, LinearDisjoint.rank_inf_eq_one_of_flat_left_of_inj, CliffordAlgebra.ofEven_comp_toEven, minpoly.ofSubring, Algebra.adjoin_top, instSMulMemClass, MvPolynomial.renameSymmetricSubalgebra_symm_apply_coe, Algebra.adjoin_le_centralizer_centralizer, AlgEquiv.subalgebraMap_apply_coe, FiniteDimensional.finiteDimensional_subalgebra, AlgebraicGeometry.Scheme.Hom.ฮน_toNormalization_assoc, LinearDisjoint.finrank_sup_of_free, Algebra.mem_adjoin_of_mem, AlgebraicGeometry.Scheme.Hom.fromNormalization_app_assoc, mem_comap, Algebra.TensorProduct.algEquivIncludeRange_toAlgHom, Localization.subalgebra.isFractionRing, FunctionField.ringOfIntegers.algebraMap_injective, AlgHom.subalgebraMap_coe_apply, AddMonoidAlgebra.mem_adjoin_support, Algebra.essFiniteType_iff_exists_subalgebra, Submodule.exists_fg_of_baseChange_eq_zero, coe_zero, IsCyclotomicExtension.union_left, MvPolynomial.X_mem_supported, MvPolynomial.esymmAlgHom_fin_injective, IntermediateField.algebraAdjoinAdjoin.instIsFractionRingSubtypeMemSubalgebraAdjoinAdjoin, Algebra.adjoin_le_iff, polynomialFunctions_coe, CliffordAlgebra.even.lift_symm_apply_bilin, CliffordAlgebra.evenEquivEvenNeg_apply, linearDisjoint_iff_injective, fg_top, mem_toSubsemiring, Polynomial.IsWeaklyEisensteinAt.exists_mem_adjoin_mul_eq_pow_natDegree_le, CliffordAlgebra.toEven_ฮน, IntermediateField.mem_toSubalgebra, smulCommClass_left, instSubringClass, Algebra.restrictScalars_adjoin, integralClosure.coe_smul, IntermediateField.topEquiv_symm_apply_coe, Transcendental.subalgebraAlgebraicClosure, lTensorBot_tmul, AlgCat.instSmallSubtypeForallCarrierObjMemSubalgebraSectionsSubalgebra, topEquiv_symm_apply_coe, coe_comap, star_mem_star_iff, Algebra.isIntegral_iSup, rank_sup_le_of_free, TensorProduct.toIntegralClosure_injective_of_flat, isAlgebraic_iff_isAlgebraic_val, rangeS_algebraMap, IntermediateField.topEquiv_apply, Algebra.isIntegral_sup, Matrix.isRepresentation.toEnd_surjective, coe_pi, Localization.subalgebra.isFractionRing_ofField, FunctionField.ringOfIntegers.instIsFractionRingSubtypeMemSubalgebraPolynomial, ContinuousMap.comp_attachBound_mem_closure, Algebra.adjoin_restrictScalars, mem_coeSubmodule_conductor, isCyclotomicExtension_iff, AlgEquiv.ofLeftInverse_symm_apply, range_subset, LinearDisjoint.val_mulMap_tmul, minpoly.equivAdjoin_toAlgHom, RingCon.quotientKerEquivRangeโ‚_mkโ‚, MvPolynomial.esymmAlgHom_apply, mulMap_range, LinearDisjoint.basisOfBasisLeft_apply, MvPolynomial.irreducible_toPolynomialAdjoinImageCompl, Algebra.elemental.isClosed, centralizer_coe_range_includeLeft_eq_center_tensorProduct, AlgebraicIndependent.aevalEquiv_apply_coe, rTensorBot_symm_apply, AlgHom.subalgebraMap_surjective, LinearDisjoint.mulMapLeftOfSupEqTop_tmul, LinearDisjoint.rank_inf_eq_one_of_flat_right_of_inj, Algebra.RingHom.adjoin_algebraMap_surjective, adjoin_eq_span_of_eq_span, IsAlgebraic.exists_nonzero_eq_adjoin_mul, instSubsemiringClass, Algebra.TensorProduct.linearEquivIncludeRange_symm_toLinearMap, range_comp_val, centralizer_coe_sup, Submodule.lTensorOne_symm_apply, coe_eq_zero, coe_starClosure, AlgebraicIndependent.option_iff, IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin, Algebra.mem_ideal_map_adjoin, coe_unop, instIsScalarTowerSubtypeMem, Algebra.adjoin_eq, JacobsonNoether.exists_separable_and_not_isCentral', IsPowMul.restriction, Submodule.lTensorOne'_one_tmul, AlgebraicIndependent.matroid_closure_eq, minpoly.coe_equivAdjoin, AlgebraicIndependent.integralClosure, Algebra.adjoin.powerBasis'_minpoly_gen, Algebra.instFiniteTypeSubtypeMemSubalgebraSubalgebra, ContinuousAlgHom.coe_rangeRestrict, toIsOrderedRing, CliffordAlgebra.even.lift.aux_apply, CliffordAlgebra.even.lift.aux_ฮน, Algebra.eq_top_iff, rank_eq_one_iff, mem_reesAlgebra_iff, FunctionField.ringOfIntegers.instIsNoetherianPolynomialSubtypeMemSubalgebraOfIsSeparableRatFunc, IsPrimitiveRoot.subOneIntegralPowerBasisOfPrimePow_gen, coe_toSubmodule, FG.small, subalgebra_top_finrank_eq_submodule_top_finrank, CommRingCat.Under.equalizerFork_ฮน, IsLocalization.integralClosure, Algebra.adjoin_eq_sInf, AlgebraicIndependent.matroid_isFlat_iff, natCast_mem, algebraMap_mem, linearEquivOp_symm_apply_coe, mem_star_iff, Localization.localRingHom_bijective_of_saturated_inf_eq_top, mem_adjoin_of_dvd_coeff_of_dvd_aeval, Algebra.TensorProduct.algEquivIncludeRange_symm_toAlgHom, IsPrimitiveRoot.self_sub_one_pow_dvd_order, coe_add, Submodule.lTensorOne_tmul, Algebra.coe_inf, comm_trans_lTensorBot, AlgHom.coe_equalizer, IsPrimitiveRoot.coe_toInteger, CliffordAlgebra.evenEquivEvenNeg_symm_apply, minpoly.instIsScalarTowerSubtypeMemSubringSubalgebraIntegralClosure, integralClosure.isDedekindDomain_fractionRing, ContinuousMap.polynomial_comp_attachBound, IsPrimitiveRoot.adjoin_isCyclotomicExtension, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_aux, IntermediateField.coe_type_toSubalgebra, CliffordAlgebra.ofEven_ฮน, isAlgebraic_bot_iff, AlgebraicIndependent.iff_adjoin_image, instSMulCommClassSubtypeMemSubalgebraIntegralClosure, toSubring_subtype, IntermediateField.algebraicIndependent_adjoin_iff, instIsDomainSubtypeMemSubalgebraIntegralClosure, integralClosure.isIntegral, IntermediateField.rank_eq_rank_subalgebra, MvPolynomial.mem_symmetricSubalgebra, instCanLiftSetCoeAndForallForallForallMemForallHAddForallForallForallForallHMulForallCoeRingHomAlgebraMap, val_comp_inclusion, Set.integer_valuation_le_one, continuousSMul, setRange_algebraMap, centralizer_coe_image_includeLeft_eq_center_tensorProduct, IsScalarTower.subalgebra', Algebra.cardinalMk_adjoin_le, algebraMap_apply, smul_def, integralClosure.isIntegralClosure, MvPolynomial.esymmAlgHom_fin_bijective, IsCyclotomicExtension.adjoin_roots, instFiniteTypeSubtypePolynomialMemSubalgebraReesAlgebraOfIsNoetherianRing, MvPolynomial.esymmAlgEquiv_apply, IsFractionRing.liftAlgHom_fieldRange, val_mulMap'_tmul, mem_pi, IntermediateField.algebraAdjoinAdjoin.instFaithfulSMulSubtypeMemSubalgebraAdjoinAdjoin, LinearDisjoint.norm_algebraMap, IntermediateField.equivOfEq_apply, ContinuousMap.polynomial_comp_attachBound_mem, isAlgebraic_iff, IntermediateField.isAlgebraic_adjoin_iff_bot, Algebra.adjoin_union_eq_adjoin_adjoin, Localization.localRingHom_bijective_of_not_conductor_le, IsTranscendenceBasis.isAlgebraic, StarSubalgebra.coe_toSubalgebra, AlgHom.isNoetherianRing_range, Polynomial.aeval_mem_adjoin_singleton, IntermediateField.transcendental_adjoin_iff, mem_prod, IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1, mem_perfectClosure_iff, Algebra.adjoin.powerBasis'_gen, MvPolynomial.transcendental_supported_polynomial_aeval_X_iff, range_le, AlgHom.mem_equalizer, isDomain, LinearDisjoint.isDomain, ContinuousAlgHom.instCompleteSpaceSubtypeMemSubalgebraEqualizerOfT2SpaceOfContinuousMapClass, mem_toSubring, isNoetherianRing_of_fg, IsAlgClosed.isAlgClosure_of_transcendence_basis, Submodule.lTensorOne_one_tmul, Submodule.mem_toSubalgebra, IsCyclotomicExtension.union_right, toSubsemiring_subtype, IntermediateField.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap, IsIntegral.inv_mem_adjoin, equivOfEq_symm, Algebra.essFiniteType_iff, coe_centralizer, Algebra.EssFiniteType.cond, ContinuousMap.exists_mem_subalgebra_near_continuous_of_separatesPoints, isIntegral_iff, LinearDisjoint.leftMulMatrix_basisOfBasisRight_algebraMap, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton, mulMap_tmul, AlgEquiv.subalgebraMap_symm_apply_coe, coe_toSubring, Algebra.mem_inf, one_mem, coe_pow, finrank_bot, MvPolynomial.supportedEquivMvPolynomial_symm_C, Algebra.coe_sInf, Algebra.sup_def, LinearDisjoint.adjoin_rank_eq_rank_right, LinearDisjoint.basisOfBasisLeft_repr_apply, AlgebraicGeometry.Scheme.Hom.normalizationObjIso_hom_val, CliffordAlgebra.evenToNeg_comp_evenToNeg, MvPolynomial.isAlgebraic_of_mem_vars_of_forall_totalDegree_le, Algebra.exists_notMem_and_isIntegral_forall_mem_of_ne_of_liesOver, mopAlgEquivOp_apply_coe, instIsAlgebraicSubtypeMemSubalgebraAlgebraicClosure, MvPolynomial.transcendental_supported_X, coe_mk, IsLocalization.Away.integralClosure, isClosed_topologicalClosure, LinearDisjoint.mulLeftMap_ker_eq_bot_iff_linearIndependent_op, algEquivOpMop_symm_apply_coe, CyclotomicRing.eq_adjoin_primitive_root, rTensorBot_tmul, LinearDisjoint.rank_eq_one_of_flat_of_self_of_inj, range_algebraMap, AlgebraicIndependent.iff_transcendental_adjoin_image, Module.End.exists_isNilpotent_isSemisimple, isTranscendenceBasis_iff_algebraicIndependent_isAlgebraic, instSMulCommClassQuotientSubgroupSubtypeMemSubalgebraSubalgebra, integralClosure.mem_lifts_of_monic_of_dvd_map, IsCyclotomicExtension.lcm_sup, topologicalClosure_adjoin_le_centralizer_centralizer, rank_bot, coe_valA', MvPolynomial.supported_eq_vars_subset, AlgebraicGeometry.Scheme.Hom.fromNormalization_app, notMem_iff_exists_ne_and_isConjRoot, Algebra.gc, rank_toSubmodule, Transcendental.integralClosure, Algebra.botEquiv_symm_apply, RingCon.coe_quotientKerEquivRangeโ‚_mkโ‚, Ideal.Filtration.submodule_fg_iff_stable, Module.End.mem_subalgebraCenter_iff, rank_top, Algebra.TensorProduct.linearEquivIncludeRange_tmul, Algebra.Smooth.exists_subalgebra_fg, finrank_eq_one_iff, MvPolynomial.esymmAlgHom_surjective, CommRingCat.Under.equalizer_comp, centralizer_range_includeRight_eq_center_tensorProduct, subalgebra_top_rank_eq_submodule_top_rank, MvPolynomial.esymmAlgEquiv_symm_apply, equivOfEq_trans, Localization.mem_range_mapToFractionRing_iff, CommRingCat.Under.equalizerFork'_ฮน, coe_inclusion, Algebra.IsStandardSmoothOfRelativeDimension.exists_subalgebra_fg, FunctionField.ringOfIntegers.not_isField, CliffordAlgebra.even.lift.aux_one, finite_bot, MvPolynomial.esymmAlgHom_injective, Algebra.self_mem_adjoin_singleton, ext_iff, coe_prod, Algebra.rank_adjoin_le, MvPolynomial.renameSymmetricSubalgebra_apply_coe, CliffordAlgebra.even.lift.aux_algebraMap, MvPolynomial.transcendental_supported_polynomial_aeval_X, Localization.subalgebra.instIsFractionRingSubtypeMemSubalgebra, Algebra.ZariskisMainProperty.exists_fg_and_exists_notMem_and_awayMap_bijective, mem_centralizer_iff
map ๐Ÿ“–CompOp
51 mathmath: map_mono, Algebra.TensorProduct.includeLeft_map_center_le, topologicalClosure_map, comap_map_eq, centralizer_coe_map_includeLeft_eq_center_tensorProduct, integralClosure_map_algEquiv, Algebra.map_sup, mulMap_map_comp_eq, comap_map_eq_self_of_injective, map_comap_eq_self, Algebra.map_bot, mem_adjoin_map_integralClosure_of_isStandardEtale, IntermediateField.toSubalgebra_map, Algebra.TensorProduct.includeRight_map_center_le, Algebra.map_inf, gc_map_comap, centralizer_coe_map_includeRight_eq_center_tensorProduct, FG.map, coe_equivMapOfInjective_apply, mem_map, topologicalClosure_map_le, LinearDisjoint.map, DenseRange.topologicalClosure_map_subalgebra, AlgHom.map_adjoin, StarSubalgebra.map_toSubalgebra, map_le, map_toSubmodule, map_injective, map_id, Algebra.adjoin_image, coe_map, AlgEquiv.subalgebraMap_apply_coe, map_comap_eq_self_of_surjective, AlgHom.subalgebraMap_coe_apply, Algebra.EssFiniteType.aux, map_topologicalClosure_le, Algebra.adjoin_restrictScalars, AlgHom.subalgebraMap_surjective, range_comp_val, Matrix.subalgebraCenter_eq_scalarAlgHom_map, map_comap_eq, Algebra.map_top, Algebra.adjoin_algebraMap, AlgHom.map_adjoin_singleton, Algebra.map_iInf, comap_map_eq_self, AlgEquiv.subalgebraMap_symm_apply_coe, map_toSubsemiring, AlgHom.range_comp, map_map, RCLike.restrict_toContinuousMap_eq_toContinuousMapStar_restrict
module' ๐Ÿ“–CompOp
1 mathmath: instIsScalarTowerSubtypeMem
moduleLeft ๐Ÿ“–CompOp
22 mathmath: Ideal.Filtration.submodule_closure_single, Ideal.Filtration.submodule_eq_span_le_iff_stable_ge, Ideal.Filtration.mem_submodule, instIsTorsionFree', LinearDisjoint.linearIndependent_left_op_of_flat, LinearDisjoint.algebraMap_basisOfBasisRight_repr_apply, LinearDisjoint.algebraMap_basisOfBasisRight_apply, Ideal.Filtration.inf_submodule, LinearDisjoint.mulRightMap_ker_eq_bot_iff_linearIndependent, Ideal.Filtration.submodule_span_single, exists_subalgebra_of_fg, Algebra.Smooth.exists_subalgebra_finiteType, LinearDisjoint.linearIndependent_right_of_flat, Algebra.Etale.exists_subalgebra_fg, LinearDisjoint.basisOfBasisLeft_apply, LinearDisjoint.linearIndependent_left_of_flat_of_commute, LinearDisjoint.linearIndependent_left_of_flat, LinearDisjoint.basisOfBasisLeft_repr_apply, LinearDisjoint.mulLeftMap_ker_eq_bot_iff_linearIndependent_op, Ideal.Filtration.submodule_fg_iff_stable, Algebra.Smooth.exists_subalgebra_fg, Algebra.IsStandardSmoothOfRelativeDimension.exists_subalgebra_fg
ofClass ๐Ÿ“–CompOp
1 mathmath: coe_ofClass
toAddSubmonoid ๐Ÿ“–CompOp
1 mathmath: coe_toAddSubmonoid
toAlgebra ๐Ÿ“–CompOp
102 mathmath: AlgebraicIndependent.transcendental_adjoin_iff, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime_pow, Algebra.adjoin_algebraMap_image_union_eq_adjoin_adjoin, AlgebraicIndependent.isTranscendenceBasis_iff_isAlgebraic, Localization.isFractionRing_range_mapToFractionRing, finrank_sup_eq_finrank_right_mul_finrank_of_free, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_apply, AlgebraicIndependent.transcendental_adjoin, AlgebraicIndependent.aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin, rank_sup_eq_rank_left_mul_rank_of_free, AlgebraicIndependent.iff_adjoin_image_compl, LinearDisjoint.adjoin_rank_eq_rank_left, FunctionField.ringOfIntegers.instIsIntegralClosureSubtypeMemSubalgebraPolynomial, AlgebraicIndependent.matroid_isBasis_iff, algebra_isAlgebraic_bot_left_iff, IsScalarTower.adjoin_range_toAlgHom, IntermediateField.isAlgebraic_adjoin_iff_top, IsIntegrallyClosedIn.exists_algebraMap_eq_of_pow_mem_subalgebra, integralClosure_idem, AlgebraicIndependent.adjoin_iff_disjoint, IntermediateField.isAlgebraic_adjoin_iff, AlgebraicIndependent.matroid_spanning_iff, range_isScalarTower_toAlgHom, IsPrimitiveRoot.adjoinEquivRingOfIntegers_symm_apply, algebraMap_mk, prod_mem_ideal_map_of_mem_conductor, LinearDisjoint.mulMapLeftOfSupEqTop_symm_apply, MvPolynomial.transcendental_supported_X_iff, algebraMap_def, AlgebraicIndependent.sumElim_iff, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime, IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply, integralClosure.isFractionRing_of_finite_extension, AlgebraicIndependent.adjoin_of_disjoint, Algebra.essFiniteType_cond_iff, IsIntegrallyClosed.exists_algebraMap_eq_of_pow_mem_subalgebra, AlgebraicIndependent.subalgebraAlgebraicClosure, LinearDisjoint.algebraMap_basisOfBasisRight_repr_apply, LinearDisjoint.algebraMap_basisOfBasisRight_apply, LinearDisjoint.trace_algebraMap, AlgebraicIndependent.isAlgebraic_adjoin_iff_of_matroid_isBasis, Algebra.Presentation.instHasCoeffsSubtypeMemSubalgebraAdjoin, Algebra.EssFiniteType.isLocalization, AlgebraicIndependent.option_iff_transcendental, AlgebraicIndependent.algebraMap_aevalEquiv, MvPolynomial.aeval_toPolynomialAdjoinImageCompl_eq_zero, algebraMap_eq, instIsIntegrallyClosedInSubtypeMemSubalgebraIntegralClosure, finrank_sup_eq_finrank_left_mul_finrank_of_free, IntermediateField.isTranscendenceBasis_adjoin_iff, integralClosure.isFractionRing_of_algebraic, AlgebraicIndepOn.insert_iff, Algebra.Smooth.exists_subalgebra_finiteType, rank_sup_eq_rank_right_mul_rank_of_free, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_symm_apply, Algebra.Etale.exists_subalgebra_fg, isAlgebraic_iff_exists_isTranscendenceBasis_subset, Algebra.adjoin_top, Localization.subalgebra.isFractionRing, Algebra.essFiniteType_iff_exists_subalgebra, Algebra.restrictScalars_adjoin, Transcendental.subalgebraAlgebraicClosure, rangeS_algebraMap, Localization.subalgebra.isFractionRing_ofField, FunctionField.ringOfIntegers.instIsFractionRingSubtypeMemSubalgebraPolynomial, Algebra.adjoin_restrictScalars, LinearDisjoint.basisOfBasisLeft_apply, LinearDisjoint.mulMapLeftOfSupEqTop_tmul, AlgebraicIndependent.option_iff, AlgebraicIndependent.matroid_closure_eq, AlgebraicIndependent.integralClosure, Localization.localRingHom_bijective_of_saturated_inf_eq_top, isAlgebraic_bot_iff, AlgebraicIndependent.iff_adjoin_image, IntermediateField.algebraicIndependent_adjoin_iff, setRange_algebraMap, algebraMap_apply, integralClosure.isIntegralClosure, LinearDisjoint.norm_algebraMap, Algebra.adjoin_union_eq_adjoin_adjoin, Localization.localRingHom_bijective_of_not_conductor_le, IsTranscendenceBasis.isAlgebraic, IntermediateField.transcendental_adjoin_iff, MvPolynomial.transcendental_supported_polynomial_aeval_X_iff, IsAlgClosed.isAlgClosure_of_transcendence_basis, IsCyclotomicExtension.union_right, Algebra.EssFiniteType.cond, LinearDisjoint.leftMulMatrix_basisOfBasisRight_algebraMap, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton, LinearDisjoint.adjoin_rank_eq_rank_right, LinearDisjoint.basisOfBasisLeft_repr_apply, MvPolynomial.isAlgebraic_of_mem_vars_of_forall_totalDegree_le, MvPolynomial.transcendental_supported_X, range_algebraMap, AlgebraicIndependent.iff_transcendental_adjoin_image, isTranscendenceBasis_iff_algebraicIndependent_isAlgebraic, integralClosure.mem_lifts_of_monic_of_dvd_map, Transcendental.integralClosure, Algebra.Smooth.exists_subalgebra_fg, Algebra.IsStandardSmoothOfRelativeDimension.exists_subalgebra_fg, MvPolynomial.transcendental_supported_polynomial_aeval_X, Localization.subalgebra.instIsFractionRingSubtypeMemSubalgebra
toCommRing ๐Ÿ“–CompOp
97 mathmath: AlgebraicIndependent.transcendental_adjoin_iff, algebraicIndependent_adjoin, AlgebraicIndependent.isTranscendenceBasis_iff_isAlgebraic, finrank_sup_eq_finrank_right_mul_finrank_of_free, TensorProduct.toIntegralClosure_bijective_of_isLocalization, AlgebraicIndependent.transcendental_adjoin, integralClosure.isIntegrallyClosedOfFiniteExtension, rank_sup_eq_rank_left_mul_rank_of_free, AlgebraicIndependent.iff_adjoin_image_compl, LinearDisjoint.adjoin_rank_eq_rank_left, IntermediateField.algebraAdjoinAdjoin.instIsAlgebraicSubtypeMemSubalgebraAdjoinAdjoin, AlgebraicIndependent.matroid_isBasis_iff, algebra_isAlgebraic_bot_left_iff, TensorProduct.toIntegralClosure_bijective_of_smooth, AlgebraicGeometry.Scheme.Hom.toNormalization_app_preimage, IntermediateField.isAlgebraic_adjoin_iff_top, integralClosure_idem, AlgebraicIndependent.adjoin_iff_disjoint, IntermediateField.isAlgebraic_adjoin_iff, AlgebraicIndependent.matroid_spanning_iff, integralClosure.isDedekindDomain, AlgebraicGeometry.Scheme.Hom.ฮน_toNormalization, MvPolynomial.transcendental_supported_X_iff, LinearDisjoint.rank_sup_of_free, NumberField.RingOfIntegers.mk_mul_mk, AlgebraicIndependent.sumElim_iff, Algebra.isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot, AlgHom.coe_tensorEqualizer, TensorProduct.toIntegralClosure_mvPolynomial_bijective, AlgebraicIndependent.adjoin_of_disjoint, finrank_right_dvd_finrank_sup_of_free, AlgebraicIndependent.subalgebraAlgebraicClosure, isNoetherian_adjoin_finset, CommRingCat.Under.tensorProdEqualizer_ฮน, isCyclotomicExtension_iff_eq_adjoin, NumberField.RingOfIntegers.mk_add_mk, FunctionField.ringOfIntegers.instIsIntegrallyClosedSubtypeMemSubalgebraPolynomial, LinearDisjoint.trace_algebraMap, AlgebraicIndependent.isAlgebraic_adjoin_iff_of_matroid_isBasis, finrank_left_dvd_finrank_sup_of_free, IntermediateField.finrank_eq_finrank_subalgebra, Algebra.Presentation.instHasCoeffsSubtypeMemSubalgebraAdjoin, AlgebraicIndependent.option_iff_transcendental, instIsIntegrallyClosedInSubtypeMemSubalgebraIntegralClosure, AlgHom.tensorEqualizerEquiv_apply, Algebra.finite_adjoin_of_finite_of_isIntegral, finrank_sup_eq_finrank_left_mul_finrank_of_free, finrank_sup_le_of_free, IntermediateField.isTranscendenceBasis_adjoin_iff, Ring.DimensionLEOne.integralClosure, AlgebraicIndepOn.insert_iff, Algebra.Smooth.exists_subalgebra_finiteType, rank_sup_eq_rank_right_mul_rank_of_free, Algebra.Etale.exists_subalgebra_fg, isAlgebraic_iff_exists_isTranscendenceBasis_subset, FunctionField.ringOfIntegers.instIsDedekindDomainSubtypeMemSubalgebraPolynomialOfIsSeparableRatFunc, isCyclotomicExtension_singleton_iff_eq_adjoin, LinearDisjoint.rank_inf_eq_one_of_flat_left_of_inj, AlgebraicGeometry.Scheme.Hom.ฮน_toNormalization_assoc, LinearDisjoint.finrank_sup_of_free, AlgebraicGeometry.Scheme.Hom.fromNormalization_app_assoc, IsCyclotomicExtension.union_left, Transcendental.subalgebraAlgebraicClosure, rank_sup_le_of_free, TensorProduct.toIntegralClosure_injective_of_flat, LinearDisjoint.rank_inf_eq_one_of_flat_right_of_inj, AlgebraicIndependent.option_iff, AlgebraicIndependent.matroid_closure_eq, AlgebraicIndependent.integralClosure, FunctionField.ringOfIntegers.instIsNoetherianPolynomialSubtypeMemSubalgebraOfIsSeparableRatFunc, CommRingCat.Under.equalizerFork_ฮน, integralClosure.isDedekindDomain_fractionRing, isAlgebraic_bot_iff, AlgebraicIndependent.iff_adjoin_image, IntermediateField.algebraicIndependent_adjoin_iff, IntermediateField.rank_eq_rank_subalgebra, LinearDisjoint.norm_algebraMap, IsTranscendenceBasis.isAlgebraic, IntermediateField.transcendental_adjoin_iff, MvPolynomial.transcendental_supported_polynomial_aeval_X_iff, IsAlgClosed.isAlgClosure_of_transcendence_basis, IsCyclotomicExtension.union_right, LinearDisjoint.adjoin_rank_eq_rank_right, AlgebraicGeometry.Scheme.Hom.normalizationObjIso_hom_val, MvPolynomial.isAlgebraic_of_mem_vars_of_forall_totalDegree_le, MvPolynomial.transcendental_supported_X, LinearDisjoint.rank_eq_one_of_flat_of_self_of_inj, AlgebraicIndependent.iff_transcendental_adjoin_image, isTranscendenceBasis_iff_algebraicIndependent_isAlgebraic, IsCyclotomicExtension.lcm_sup, AlgebraicGeometry.Scheme.Hom.fromNormalization_app, Transcendental.integralClosure, Algebra.Smooth.exists_subalgebra_fg, CommRingCat.Under.equalizer_comp, CommRingCat.Under.equalizerFork'_ฮน, Algebra.IsStandardSmoothOfRelativeDimension.exists_subalgebra_fg, MvPolynomial.transcendental_supported_polynomial_aeval_X
toCommSemiring ๐Ÿ“–CompOp
66 mathmath: Localization.subalgebra.isLocalization_subalgebra, Algebra.adjoin_algebraMap_image_union_eq_adjoin_adjoin, Localization.isFractionRing_range_mapToFractionRing, finrank_sup_eq_finrank_right_mul_finrank_of_free, Localization.isLocalization_range_mapToFractionRing, AlgebraicIndependent.aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin, rank_sup_eq_rank_left_mul_rank_of_free, LinearDisjoint.adjoin_rank_eq_rank_left, FunctionField.ringOfIntegers.instIsIntegralClosureSubtypeMemSubalgebraPolynomial, IsScalarTower.adjoin_range_toAlgHom, IsIntegrallyClosedIn.exists_algebraMap_eq_of_pow_mem_subalgebra, Algebra.QuasiFiniteAt.exists_fg_and_exists_notMem_and_awayMap_bijective, range_isScalarTower_toAlgHom, algebraMap_mk, LinearDisjoint.mulMapLeftOfSupEqTop_symm_apply, algebraMap_def, integralClosure.isFractionRing_of_finite_extension, Algebra.essFiniteType_cond_iff, IsIntegrallyClosed.exists_algebraMap_eq_of_pow_mem_subalgebra, mvPolynomial_aeval_coe, LinearDisjoint.algebraMap_basisOfBasisRight_repr_apply, LinearDisjoint.algebraMap_basisOfBasisRight_apply, LinearDisjoint.trace_algebraMap, Localization.subalgebra.isLocalization_ofField, Algebra.EssFiniteType.isLocalization, AlgebraicIndependent.algebraMap_aevalEquiv, MvPolynomial.aeval_toPolynomialAdjoinImageCompl_eq_zero, algebraMap_eq, finrank_sup_eq_finrank_left_mul_finrank_of_free, integralClosure.isFractionRing_of_algebraic, Algebra.Smooth.exists_subalgebra_finiteType, rank_sup_eq_rank_right_mul_rank_of_free, Algebra.Etale.exists_subalgebra_fg, Algebra.adjoin_top, Localization.subalgebra.isFractionRing, Algebra.essFiniteType_iff_exists_subalgebra, IntermediateField.algebraAdjoinAdjoin.instIsFractionRingSubtypeMemSubalgebraAdjoinAdjoin, Algebra.restrictScalars_adjoin, rangeS_algebraMap, Localization.subalgebra.isFractionRing_ofField, FunctionField.ringOfIntegers.instIsFractionRingSubtypeMemSubalgebraPolynomial, Algebra.adjoin_restrictScalars, LinearDisjoint.basisOfBasisLeft_apply, LinearDisjoint.mulMapLeftOfSupEqTop_tmul, IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin, IsLocalization.integralClosure, Localization.localRingHom_bijective_of_saturated_inf_eq_top, setRange_algebraMap, algebraMap_apply, integralClosure.isIntegralClosure, IntermediateField.algebraAdjoinAdjoin.instFaithfulSMulSubtypeMemSubalgebraAdjoinAdjoin, LinearDisjoint.norm_algebraMap, Algebra.adjoin_union_eq_adjoin_adjoin, Localization.localRingHom_bijective_of_not_conductor_le, IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1, Algebra.EssFiniteType.cond, LinearDisjoint.leftMulMatrix_basisOfBasisRight_algebraMap, LinearDisjoint.adjoin_rank_eq_rank_right, LinearDisjoint.basisOfBasisLeft_repr_apply, IsLocalization.Away.integralClosure, range_algebraMap, integralClosure.mem_lifts_of_monic_of_dvd_map, Algebra.Smooth.exists_subalgebra_fg, Algebra.IsStandardSmoothOfRelativeDimension.exists_subalgebra_fg, Localization.subalgebra.instIsFractionRingSubtypeMemSubalgebra, Algebra.ZariskisMainProperty.exists_fg_and_exists_notMem_and_awayMap_bijective
toNonUnitalSubalgebra ๐Ÿ“–CompOp
5 mathmath: NonUnitalAlgebra.adjoin_le_algebra_adjoin, NonUnitalSubalgebra.toSubalgebra_toNonUnitalSubalgebra, Unitization.lift_range_le, one_mem_toNonUnitalSubalgebra, toNonUnitalSubalgebra_toSubalgebra
toRing ๐Ÿ“–CompOp
49 mathmath: CliffordAlgebra.even.lift.aux_mul, integralClosure.AlgebraIsIntegral, Algebra.IsIntegral.adjoin, algebra_isAlgebraic_bot_right, instSMulDistribClassSubtypeMemSubalgebraIntegralClosure, isSeparable_iff, Algebra.adjoin.powerBasis_dim, FiniteDimensional.of_subalgebra_toSubmodule, CliffordAlgebra.even.lift_ฮน, Algebra.adjoin.powerBasis'_dim, CliffordAlgebra.even.algHom_ext_iff, le_integralClosure_iff_isIntegral, quotAdjoinEquivQuotMap_apply_mk, Algebra.adjoin.powerBasis_gen, LinearDisjoint.rank_eq_one_of_commute_of_flat_of_self_of_inj, ValuationSubring.isIntegral_of_mem_ringOfIntegers', CliffordAlgebra.evenToNeg_ฮน, finiteDimensional_toSubmodule, ValuationSubring.isIntegral_of_mem_ringOfIntegers, minpoly.ofSubring, FiniteDimensional.finiteDimensional_subalgebra, CliffordAlgebra.even.lift_symm_apply_bilin, integralClosure.coe_smul, Algebra.isIntegral_iSup, isAlgebraic_iff_isAlgebraic_val, Algebra.isIntegral_sup, Algebra.adjoin.powerBasis'_minpoly_gen, CliffordAlgebra.even.lift.aux_apply, CliffordAlgebra.even.lift.aux_ฮน, rank_eq_one_iff, LinearDisjoint.rank_inf_eq_one_of_commute_of_flat_left_of_inj, CliffordAlgebra.ofEven_ฮน, instSMulCommClassSubtypeMemSubalgebraIntegralClosure, integralClosure.isIntegral, LinearDisjoint.norm_algebraMap, isAlgebraic_iff, IntermediateField.isAlgebraic_adjoin_iff_bot, Algebra.adjoin.powerBasis'_gen, isIntegral_iff, finrank_bot, LinearDisjoint.rank_inf_eq_one_of_commute_of_flat_right_of_inj, instIsAlgebraicSubtypeMemSubalgebraAlgebraicClosure, range_algebraMap, instSMulCommClassQuotientSubgroupSubtypeMemSubalgebraSubalgebra, rank_bot, finrank_eq_one_iff, CliffordAlgebra.even.lift.aux_one, Algebra.rank_adjoin_le, CliffordAlgebra.even.lift.aux_algebraMap
toSemiring ๐Ÿ“–CompOp
277 mathmath: mulMap_comm, inclusion_right, Submodule.rTensorOne_symm_apply, minpoly.ToAdjoin.injective, Algebra.RingHom.adjoin_algebraMap_apply, Ideal.Filtration.submodule_closure_single, centralizer_tensorProduct_eq_center_tensorProduct_right, Ideal.Filtration.submodule_eq_span_le_iff_stable_ge, StarAlgEquiv.ofInjective_symm_apply, adjoin_rank_le, AlgEquiv.coe_adjoinSingletonEquivAdjoinRootMinpoly_symm, Algebra.FiniteType.adjoin_of_finite, ValuationSubring.integralClosure_algebraMap_injective, Submodule.comm_trans_lTensorOne, AlgHom.val_comp_codRestrict, LinearDisjoint.sup_free_of_free, Submodule.mulMap_one_right_eq, finrank_sup_eq_finrank_right_mul_finrank_of_free, TensorProduct.toIntegralClosure_bijective_of_isLocalization, equivOfEq_apply, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_apply, AlgHom.rangeRestrict_surjective, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C, AlgHom.coe_mapIntegralClosure, AlgebraicIndependent.repr_ker, Set.unitEquivUnitsInteger_symm_apply_coe, AlgEquiv.ofInjective_apply, centralizer_coe_map_includeLeft_eq_center_tensorProduct, AlgebraicIndependent.aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin, rank_sup_eq_rank_left_mul_rank_of_free, MvPolynomial.supportedEquivMvPolynomial_symm_X, aeval_coe, LinearDisjoint.adjoin_rank_eq_rank_left, Polynomial.lift_of_splits, mulMap_toLinearMap, Ideal.Filtration.mem_submodule, instIsTorsionFree', RingCon.quotientKerEquivRangeโ‚_comp_mkโ‚, RingCon.coe_comapQuotientEquivRangeโ‚_mk, val_apply, inclusion.isScalarTower_left, comm_trans_rTensorBot, mulMap_map_comp_eq, Algebra.EssFiniteType.adjoin_mem_finset, TensorProduct.toIntegralClosure_bijective_of_smooth, AlgebraicGeometry.Scheme.Hom.toNormalization_app_preimage, Algebra.TensorProduct.algEquivIncludeRange_symm_tmul, AlgEquiv.adjoinSingletonEquivAdjoinRootMinpoly_symm_toAlgHom, AdjoinRoot.Minpoly.toAdjoin.surjective, AlgHom.val_comp_rangeRestrict, LinearDisjoint.linearIndependent_left_op_of_flat, AlgebraicIndependent.aeval_comp_repr, Algebra.TensorProduct.linearEquivIncludeRange_toLinearMap, Algebra.QuasiFiniteAt.exists_fg_and_exists_notMem_and_awayMap_bijective, range_isScalarTower_toAlgHom, IsPrimitiveRoot.adjoinEquivRingOfIntegers_symm_apply, instSMulDistribClassSubtypeMemSubalgebraIntegralClosure, Field.Emb.Cardinal.succEquiv_coherence, AlgebraicGeometry.Scheme.Hom.ฮน_toNormalization, prod_mem_ideal_map_of_mem_conductor, Polynomial.aeval_subalgebra_coe, mopAlgEquivOp_symm_apply, inclusion_inclusion, LinearDisjoint.mulMapLeftOfSupEqTop_symm_apply, TensorProduct.Algebra.exists_of_fg, FunctionField.classNumber_eq_one_iff, coe_mul, centralizer_coe_image_includeRight_eq_center_tensorProduct, instIsTorsionFree, finrank_toSubmodule, lTensorBot_one_tmul, Matrix.isRepresentation.toEnd_represents, mulMap_bot_left_eq, IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply, CliffordAlgebra.coe_toEven_reverse_involute, AlgHom.coe_tensorEqualizer, TensorProduct.toIntegralClosure_mvPolynomial_bijective, valA_apply, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C', Algebra.essFiniteType_cond_iff, ContinuousAlgHom.coe_codRestrict, Algebra.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetCoeRingHomAlgebraMap, AlgHom.ker_rangeRestrict, AdjoinRoot.Minpoly.coe_toAdjoin, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_some, FunctionField.ringOfIntegers.instIsDomainSubtypeMemSubalgebraPolynomial, linearEquivOp_apply_coe, topEquiv_apply, LinearDisjoint.algebraMap_basisOfBasisRight_repr_apply, centralizer_coe_map_includeRight_eq_center_tensorProduct, range_val, AlgEquiv.ofLeftInverse_apply, MvPolynomial.rename_esymmAlgHom, CliffordAlgebra.even.lift_ฮน, mulMap'_surjective, Submodule.comm_trans_rTensorOne, coe_equivMapOfInjective_apply, adjoin_eq_span_basis, isField_of_algebraic, LinearDisjoint.algebraMap_basisOfBasisRight_apply, LinearDisjoint.trace_algebraMap, Matrix.isRepresentation.toEnd_exists_mem_ideal, instIsNoetherianRingSubtypePolynomialMemSubalgebraReesAlgebra, coe_algebraMap, Submodule.lTensorOne'_tmul, Submodule.rTensorOne'_tmul_one, AlgEquiv.coe_mapIntegralClosure, CliffordAlgebra.toEven_comp_ofEven, Ideal.Filtration.inf_submodule, Submodule.rTensorOne'_tmul, ContinuousAlgHom.coe_codRestrict_apply, MvPolynomial.esymmAlgHom_fin_surjective, integralClosure.isNoetherianRing, NonUnitalSubalgebra.unitizationAlgEquiv_apply_coe, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_none, Set.val_unitEquivUnitsInteger_apply_coe, quotAdjoinEquivQuotMap_apply_mk, LinearDisjoint.mulRightMap_ker_eq_bot_iff_linearIndependent, equivOfEq_rfl, Ideal.Filtration.submodule_span_single, fg_iff_finiteType, Submodule.rTensorOne_tmul, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, instIsInvariantSubtypeMemSubalgebraSubalgebraSubgroupQuotient, toIsStrictOrderedRing, inclusion_mk, noZeroDivisors, inclusion_injective, centralizer_tensorProduct_eq_center_tensorProduct_left, Ideal.IntegralClosure.isMaximal_of_isMaximal_comap, AlgebraicIndependent.algebraMap_aevalEquiv, AdjoinRoot.Minpoly.coe_toAdjoin_mk_X, rTensorBot_tmul_one, algebraMap_eq, exists_subalgebra_of_fg, AlgHom.tensorEqualizerEquiv_apply, finrank_sup_eq_finrank_left_mul_finrank_of_free, CliffordAlgebra.evenToNeg_ฮน, Submodule.rTensorOne_tmul_one, inclusion.isScalarTower_right, RingCon.coe_comapQuotientEquivRangeโ‚_symm_mk, finite_sup, coe_val, mulMap_bot_right_eq, Algebra.TensorProduct.linearEquivIncludeRange_symm_tmul, Algebra.TensorProduct.algEquivIncludeRange_tmul, Algebra.Smooth.exists_subalgebra_finiteType, rank_sup_eq_rank_right_mul_rank_of_free, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_symm_apply, LinearDisjoint.linearIndependent_right_of_flat, lTensorBot_symm_apply, coe_valA, inclusion_self, inclusion.faithfulSMul, RingCon.comapQuotientEquivRangeโ‚_mk, Submodule.range_valA, Submodule.mulMap_one_left_eq, AlgebraicIndependent.aeval_repr, algEquivOpMop_apply, instIsTopologicalSemiringSubtypeMemSubalgebra, Algebra.adjoin_adjoin_coe_preimage, CliffordAlgebra.ofEven_comp_toEven, MvPolynomial.renameSymmetricSubalgebra_symm_apply_coe, AlgEquiv.subalgebraMap_apply_coe, AlgebraicGeometry.Scheme.Hom.ฮน_toNormalization_assoc, Algebra.TensorProduct.algEquivIncludeRange_toAlgHom, Polynomial.coe_aeval_mk_apply, FunctionField.ringOfIntegers.algebraMap_injective, AlgHom.subalgebraMap_coe_apply, Algebra.essFiniteType_iff_exists_subalgebra, Submodule.exists_fg_of_baseChange_eq_zero, MvPolynomial.esymmAlgHom_fin_injective, CliffordAlgebra.even.lift_symm_apply_bilin, CliffordAlgebra.evenEquivEvenNeg_apply, linearDisjoint_iff_injective, fg_top, CliffordAlgebra.toEven_ฮน, integralClosure.coe_smul, lTensorBot_tmul, topEquiv_symm_apply_coe, TensorProduct.toIntegralClosure_injective_of_flat, Matrix.isRepresentation.toEnd_surjective, AlgEquiv.ofLeftInverse_symm_apply, LinearDisjoint.val_mulMap_tmul, minpoly.equivAdjoin_toAlgHom, RingCon.quotientKerEquivRangeโ‚_mkโ‚, MvPolynomial.esymmAlgHom_apply, mulMap_range, LinearDisjoint.basisOfBasisLeft_apply, MvPolynomial.irreducible_toPolynomialAdjoinImageCompl, centralizer_coe_range_includeLeft_eq_center_tensorProduct, AlgebraicIndependent.aevalEquiv_apply_coe, rTensorBot_symm_apply, AlgHom.subalgebraMap_surjective, LinearDisjoint.mulMapLeftOfSupEqTop_tmul, Algebra.RingHom.adjoin_algebraMap_surjective, Algebra.TensorProduct.linearEquivIncludeRange_symm_toLinearMap, range_comp_val, Submodule.lTensorOne_symm_apply, Matrix.isRepresentation.eq_toEnd_of_represents, Algebra.mem_ideal_map_adjoin, instIsScalarTowerSubtypeMem, LinearDisjoint.linearIndependent_left_of_flat_of_commute, Submodule.lTensorOne'_one_tmul, minpoly.coe_equivAdjoin, Algebra.instFiniteTypeSubtypeMemSubalgebraSubalgebra, ContinuousAlgHom.coe_rangeRestrict, toIsOrderedRing, subalgebra_top_finrank_eq_submodule_top_finrank, IsLocalization.integralClosure, linearEquivOp_symm_apply_coe, Algebra.TensorProduct.algEquivIncludeRange_symm_toAlgHom, coe_add, Submodule.lTensorOne_tmul, comm_trans_lTensorBot, CliffordAlgebra.evenEquivEvenNeg_symm_apply, ContinuousMap.polynomial_comp_attachBound, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_aux, CliffordAlgebra.ofEven_ฮน, instSMulCommClassSubtypeMemSubalgebraIntegralClosure, toSubring_subtype, instIsDomainSubtypeMemSubalgebraIntegralClosure, val_comp_inclusion, LinearDisjoint.linearIndependent_left_of_flat, centralizer_coe_image_includeLeft_eq_center_tensorProduct, IsScalarTower.subalgebra', MvPolynomial.esymmAlgHom_fin_bijective, AlgHom.coe_codRestrict, instFiniteTypeSubtypePolynomialMemSubalgebraReesAlgebraOfIsNoetherianRing, MvPolynomial.esymmAlgEquiv_apply, val_mulMap'_tmul, LinearDisjoint.norm_algebraMap, AlgHom.isNoetherianRing_range, isDomain, LinearDisjoint.isDomain, isNoetherianRing_of_fg, Submodule.lTensorOne_one_tmul, AlgHom.injective_codRestrict, toSubsemiring_subtype, equivOfEq_symm, Algebra.EssFiniteType.cond, LinearDisjoint.leftMulMatrix_basisOfBasisRight_algebraMap, mulMap_tmul, AlgEquiv.subalgebraMap_symm_apply_coe, MvPolynomial.supportedEquivMvPolynomial_symm_C, LinearDisjoint.adjoin_rank_eq_rank_right, LinearDisjoint.basisOfBasisLeft_repr_apply, AlgebraicGeometry.Scheme.Hom.normalizationObjIso_hom_val, CliffordAlgebra.evenToNeg_comp_evenToNeg, Algebra.exists_notMem_and_isIntegral_forall_mem_of_ne_of_liesOver, mopAlgEquivOp_apply_coe, IsLocalization.Away.integralClosure, LinearDisjoint.mulLeftMap_ker_eq_bot_iff_linearIndependent_op, algEquivOpMop_symm_apply_coe, rTensorBot_tmul, instSMulCommClassQuotientSubgroupSubtypeMemSubalgebraSubalgebra, mk_algebraMap, coe_valA', rank_toSubmodule, Algebra.botEquiv_symm_apply, RingCon.coe_quotientKerEquivRangeโ‚_mkโ‚, Ideal.Filtration.submodule_fg_iff_stable, rank_top, Algebra.TensorProduct.linearEquivIncludeRange_tmul, MvPolynomial.esymmAlgHom_surjective, centralizer_range_includeRight_eq_center_tensorProduct, subalgebra_top_rank_eq_submodule_top_rank, MvPolynomial.esymmAlgEquiv_symm_apply, equivOfEq_trans, coe_inclusion, FunctionField.ringOfIntegers.not_isField, finite_bot, MvPolynomial.esymmAlgHom_injective, comap_map_eq_map_adjoin_of_coprime_conductor, MvPolynomial.renameSymmetricSubalgebra_apply_coe, CliffordAlgebra.even.lift.aux_algebraMap, Algebra.ZariskisMainProperty.exists_fg_and_exists_notMem_and_awayMap_bijective
toSubmodule ๐Ÿ“–CompOp
61 mathmath: integralClosure_le_span_dualBasis, toSubmodule_injective, Submodule.mulMap_one_right_eq, UnitAddTorus.mFourierSubalgebra_coe, mulMap_toLinearMap, Submonoid.adjoin_eq_span_of_eq_span, Algebra.span_le_adjoin, Algebra.QuasiFiniteAt.exists_fg_and_exists_notMem_and_awayMap_bijective, mem_toSubmodule, range_isScalarTower_toAlgHom, Algebra.toSubmodule_bot, Algebra.sInf_toSubmodule, finrank_toSubmodule, isIdempotentElem_toSubmodule, StarAlgebra.adjoin_nonUnitalStarSubalgebra_eq_span, span_coeff_minpolyDiv, Algebra.top_toSubmodule, Submodule.toSubalgebra_toSubmodule, traceForm_dualSubmodule_adjoin, FractionalIdeal.adjoinIntegral_coe, mul_toSubmodule, Algebra.adjoin_nonUnitalSubalgebra_eq_span, FractionalIdeal.isFractional_adjoin_integral, mem_integralClosure_iff_mem_fg, adjoin_eq_span_basis, mul_toSubmodule_le, Module.Flat.instSubalgebraToSubmodule, Algebra.adjoin_toSubmodule_le, LinearDisjoint.mulRightMap_ker_eq_bot_iff_linearIndependent, Algebra.inf_toSubmodule, Algebra.adjoin_eq_span_of_subset, linearDisjoint_iff, map_toSubmodule, Submodule.span_range_natDegree_eq_adjoin, Algebra.iInf_toSubmodule, fourierSubalgebra_coe, finiteDimensional_toSubmodule, toSubmodule_toSubalgebra, Algebra.adjoin_union_coe_submodule, Submodule.mulMap_one_left_eq, fg_adjoin_of_finite, Algebra.adjoin_eq_span, CliffordAlgebra.even_toSubmodule, Algebra.toSubmodule_eq_top, pi_toSubsemiring, coe_pi, coe_toSubmodule, restrictScalars_toSubmodule, StarAlgebra.adjoin_eq_span, Submodule.iSup_eq_toSubmodule_range, IsIntegral.fg_adjoin_singleton, MvPolynomial.range_mapAlgHom, FiniteDimensional.subalgebra_toSubmodule, pointwise_smul_toSubmodule, prod_toSubmodule, LinearDisjoint.mulLeftMap_ker_eq_bot_iff_linearIndependent_op, AlgHom.equalizer_toSubmodule, pi_toSubmodule, rank_toSubmodule, fg_bot_toSubmodule, Algebra.ZariskisMainProperty.exists_fg_and_exists_notMem_and_awayMap_bijective
toSubmoduleEquiv ๐Ÿ“–CompOpโ€”
toSubring ๐Ÿ“–CompOp
20 mathmath: Algebra.toSubring_eq_top, toSubring_injective, instIsIntegrallyClosedInSubtypeMemSubringToSubringIntegralClosure, Algebra.toSubring_bot, toSubring_toSubsemiring, Subring.integralClosure_subring_le_iff, iInf_valuationSubring_superset, Algebra.adjoin_eq_ring_closure, unop_toSubring, Algebra.top_toSubring, op_toSubring, Subring.integralClosure_le_iff, toSubring_inj, toSubring_subtype, center_toSubring, Set.integer_eq, mem_toSubring, coe_toSubring, range_algebraMap, pointwise_smul_toSubring
toSubsemiring ๐Ÿ“–CompOp
49 mathmath: op_toSubsemiring, coe_toAddSubmonoid, center_toSubsemiring, Submodule.toSubalgebra_toSubsemiring, IntermediateField.mem_carrier, Algebra.toSubsemiring_eq_top, StarSubalgebra.toNonUnitalStarSubalgebra_toStarSubalgebra, toSubring_toSubsemiring, mopAlgEquivOp_symm_apply, Algebra.sInf_toSubsemiring, VonNeumannAlgebra.centralizer_centralizer', Algebra.sup_toSubsemiring, subalgebraOfSubsemiring_toSubsemiring, linearEquivOp_apply_coe, mem_carrier, Algebra.iSup_toSubsemiring, copy_toSubsemiring, AlgHom.equalizer_toSubsemiring, algebraMap_mem', Algebra.sSup_toSubsemiring, subalgebraOfSubring_toSubsemiring, coe_matrix, Algebra.iInf_toSubsemiring, Algebra.top_toSubsemiring, coe_toSubsemiring, StarSubalgebra.rangeS_le, comap_toSubsemiring, StarSubalgebra.mem_carrier, coe_valA, toSubsemiring_injective, algEquivOpMop_apply, AlgEquiv.subalgebraMap_apply_coe, pi_toSubsemiring, toSubsemiring_inj, mem_toSubsemiring, rangeS_algebraMap, unop_toSubsemiring, linearEquivOp_symm_apply_coe, pointwise_smul_toSubsemiring, Algebra.adjoin_toSubsemiring, toSubsemiring_subtype, AlgEquiv.subalgebraMap_symm_apply_coe, map_toSubsemiring, mopAlgEquivOp_apply_coe, algEquivOpMop_symm_apply_coe, rangeS_le, Algebra.inf_toSubsemiring, coe_valA', AlgHom.range_toSubsemiring
val ๐Ÿ“–CompOp
42 mathmath: centralizer_tensorProduct_eq_center_tensorProduct_right, AlgHom.val_comp_codRestrict, centralizer_coe_map_includeLeft_eq_center_tensorProduct, val_apply, AlgebraicGeometry.Scheme.Hom.toNormalization_app_preimage, AlgHom.val_comp_rangeRestrict, LinearDisjoint.linearIndependent_left_op_of_flat, AlgebraicIndependent.aeval_comp_repr, Algebra.QuasiFiniteAt.exists_fg_and_exists_notMem_and_awayMap_bijective, AlgebraicGeometry.Scheme.Hom.ฮน_toNormalization, TensorProduct.Algebra.exists_of_fg, centralizer_coe_image_includeRight_eq_center_tensorProduct, mulMap_bot_left_eq, AlgHom.coe_tensorEqualizer, CommRingCat.Under.tensorProdEqualizer_ฮน, centralizer_coe_map_includeRight_eq_center_tensorProduct, range_val, LinearDisjoint.mulRightMap_ker_eq_bot_iff_linearIndependent, centralizer_tensorProduct_eq_center_tensorProduct_left, algebraMap_eq, coe_val, mulMap_bot_right_eq, LinearDisjoint.linearIndependent_right_of_flat, AlgebraicGeometry.Scheme.Hom.ฮน_toNormalization_assoc, Submodule.exists_fg_of_baseChange_eq_zero, StarSubalgebra.toSubalgebra_subtype, centralizer_coe_range_includeLeft_eq_center_tensorProduct, range_comp_val, LinearDisjoint.linearIndependent_left_of_flat_of_commute, CommRingCat.Under.equalizerFork_ฮน, Algebra.exists_etale_isIdempotentElem_forall_liesOver_eq_aux, toSubring_subtype, val_comp_inclusion, LinearDisjoint.linearIndependent_left_of_flat, centralizer_coe_image_includeLeft_eq_center_tensorProduct, toSubsemiring_subtype, AlgebraicGeometry.Scheme.Hom.normalizationObjIso_hom_val, LinearDisjoint.mulLeftMap_ker_eq_bot_iff_linearIndependent_op, CommRingCat.Under.equalizer_comp, centralizer_range_includeRight_eq_center_tensorProduct, CommRingCat.Under.equalizerFork'_ฮน, Algebra.ZariskisMainProperty.exists_fg_and_exists_notMem_and_awayMap_bijective

Theorems

NameKindAssumesProvesValidatesDepends On
add_mem ๐Ÿ“–mathematicalSubalgebra
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
โ€”AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
algebraMap_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingHom
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
instSetLike
Semiring.toNonAssocSemiring
toCommSemiring
RingHom.instFunLike
algebraMap
toAlgebra
Algebra.id
โ€”โ€”
algebraMap_def ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingHom
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
instSetLike
Semiring.toNonAssocSemiring
toCommSemiring
RingHom.instFunLike
algebraMap
toAlgebra
โ€”โ€”
algebraMap_eq ๐Ÿ“–mathematicalโ€”algebraMap
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
instSetLike
toCommSemiring
toAlgebra
RingHom.comp
Semiring.toNonAssocSemiring
RingHomClass.toRingHom
AlgHom
toSemiring
algebra
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
val
โ€”โ€”
algebraMap_mem ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
โ€”algebraMap_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
instSubsemiringClass
instSMulMemClass
algebraMap_mem' ๐Ÿ“–mathematicalโ€”Set
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
toSubsemiring
DFunLike.coe
RingHom
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
โ€”โ€”
algebraMap_mk ๐Ÿ“–mathematicalSubalgebra
CommSemiring.toSemiring
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
toCommSemiring
RingHom.instFunLike
algebraMap
toAlgebra
โ€”โ€”
center_le_centralizer ๐Ÿ“–mathematicalโ€”Subalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
center
centralizer
โ€”Set.center_subset_centralizer
center_toSubring ๐Ÿ“–mathematicalโ€”toSubring
center
CommRing.toCommSemiring
Ring.toSemiring
Subring.center
โ€”โ€”
center_toSubsemiring ๐Ÿ“–mathematicalโ€”toSubsemiring
center
Subsemiring.center
Semiring.toNonAssocSemiring
โ€”โ€”
centralizer_centralizer_centralizer ๐Ÿ“–mathematicalโ€”centralizer
Set.centralizer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
โ€”SetLike.coe_injective
Set.centralizer_centralizer_centralizer
centralizer_le ๐Ÿ“–mathematicalSet
Set.instHasSubset
Subalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
โ€”Set.centralizer_subset
centralizer_univ ๐Ÿ“–mathematicalโ€”centralizer
Set.univ
center
โ€”SetLike.ext'
Set.centralizer_univ
coe_add ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toSemiring
โ€”โ€”
coe_algebraMap ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
toSemiring
RingHom.instFunLike
algebraMap
algebra'
โ€”โ€”
coe_center ๐Ÿ“–mathematicalโ€”SetLike.coe
Subalgebra
instSetLike
center
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddSubmonoid.toAddSubsemigroup
NonUnitalSubsemiring.toAddSubmonoid
NonUnitalSubsemiring.center
โ€”โ€”
coe_centralizer ๐Ÿ“–mathematicalโ€”SetLike.coe
Subalgebra
instSetLike
centralizer
Set.centralizer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
โ€”โ€”
coe_comap ๐Ÿ“–mathematicalโ€”SetLike.coe
Subalgebra
instSetLike
comap
Set.preimage
DFunLike.coe
AlgHom
AlgHom.funLike
โ€”โ€”
coe_copy ๐Ÿ“–mathematicalSetLike.coe
Subalgebra
instSetLike
copyโ€”โ€”
coe_eq_one ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
OneMemClass.one
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
instSubsemiringClass
โ€”OneMemClass.coe_eq_one
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
instSubsemiringClass
coe_eq_zero ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ZeroMemClass.zero
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
โ€”ZeroMemClass.coe_eq_zero
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
coe_equivMapOfInjective_apply ๐Ÿ“–mathematicalDFunLike.coe
AlgHom
AlgHom.funLike
Subalgebra
SetLike.instMembership
instSetLike
map
AlgEquiv
toSemiring
algebra
AlgEquiv.instFunLike
equivMapOfInjective
โ€”โ€”
coe_inclusion ๐Ÿ“–mathematicalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
DFunLike.coe
AlgHom
toSemiring
algebra
AlgHom.funLike
inclusion
โ€”โ€”
coe_map ๐Ÿ“–mathematicalโ€”SetLike.coe
Subalgebra
instSetLike
map
Set.image
DFunLike.coe
AlgHom
AlgHom.funLike
โ€”โ€”
coe_mk ๐Ÿ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
DFunLike.coe
RingHom
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
SetLike.coe
Subalgebra
instSetLike
Subsemiring
Subsemiring.instSetLike
โ€”โ€”
coe_mul ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toSemiring
โ€”โ€”
coe_neg ๐Ÿ“–mathematicalโ€”Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
SetLike.instMembership
instSetLike
NegMemClass.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
SubringClass.toNegMemClass
instSubringClass
โ€”SubringClass.toNegMemClass
instSubringClass
coe_ofClass ๐Ÿ“–mathematicalโ€”SetLike.coe
Subalgebra
instSetLike
ofClass
โ€”โ€”
coe_one ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
OneMemClass.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
instSubsemiringClass
โ€”AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
instSubsemiringClass
coe_pow ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
SubmonoidClass.nPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SubsemiringClass.toSubmonoidClass
Semiring.toNonAssocSemiring
instSubsemiringClass
Monoid.toNatPow
โ€”SubmonoidClass.coe_pow
SubsemiringClass.toSubmonoidClass
instSubsemiringClass
coe_smul ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
SetLike.smul'
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
Algebra.toModule
instSMulMemClass
โ€”instSMulMemClass
coe_sub ๐Ÿ“–mathematicalโ€”Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
SetLike.instMembership
instSetLike
AddSubgroupClass.sub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
SubringClass.addSubgroupClass
instSubringClass
SubNegMonoid.toSub
โ€”SubringClass.addSubgroupClass
instSubringClass
coe_toAddSubmonoid ๐Ÿ“–mathematicalโ€”SetLike.coe
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
AddSubmonoid.instSetLike
toAddSubmonoid
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
toSubsemiring
โ€”โ€”
coe_toSubmodule ๐Ÿ“–mathematicalโ€”SetLike.coe
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Submodule.setLike
DFunLike.coe
OrderEmbedding
Subalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
toSubmodule
instSetLike
โ€”โ€”
coe_toSubring ๐Ÿ“–mathematicalโ€”SetLike.coe
Subring
Subring.instSetLike
toSubring
Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
instSetLike
โ€”โ€”
coe_toSubsemiring ๐Ÿ“–mathematicalโ€”SetLike.coe
Subsemiring
Semiring.toNonAssocSemiring
Subsemiring.instSetLike
toSubsemiring
Subalgebra
instSetLike
โ€”โ€”
coe_val ๐Ÿ“–mathematicalโ€”DFunLike.coe
AlgHom
Subalgebra
SetLike.instMembership
instSetLike
toSemiring
algebra
AlgHom.funLike
val
โ€”โ€”
coe_zero ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
ZeroMemClass.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
โ€”AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
comap_map_eq_self_of_injective ๐Ÿ“–mathematicalDFunLike.coe
AlgHom
AlgHom.funLike
comap
map
โ€”SetLike.coe_injective
Set.preimage_image_eq
comap_toSubsemiring ๐Ÿ“–mathematicalโ€”toSubsemiring
comap
Subsemiring.comap
Semiring.toNonAssocSemiring
RingHomClass.toRingHom
AlgHom
AlgHom.funLike
โ€”โ€”
copy_eq ๐Ÿ“–mathematicalSetLike.coe
Subalgebra
instSetLike
copyโ€”SetLike.coe_injective
copy_toSubsemiring ๐Ÿ“–mathematicalSetLike.coe
Subalgebra
instSetLike
toSubsemiring
copy
Semiring.toNonAssocSemiring
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MulOne.toMul
MulOneClass.toMulOne
โ€”โ€”
equivOfEq_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AlgEquiv
Subalgebra
SetLike.instMembership
instSetLike
toSemiring
algebra
AlgEquiv.instFunLike
equivOfEq
โ€”โ€”
equivOfEq_rfl ๐Ÿ“–mathematicalโ€”equivOfEq
Subalgebra
AlgEquiv.refl
SetLike.instMembership
instSetLike
toSemiring
algebra
โ€”AlgEquiv.ext
equivOfEq_symm ๐Ÿ“–mathematicalโ€”AlgEquiv.symm
Subalgebra
SetLike.instMembership
instSetLike
toSemiring
algebra
equivOfEq
โ€”โ€”
equivOfEq_trans ๐Ÿ“–mathematicalโ€”AlgEquiv.trans
Subalgebra
SetLike.instMembership
instSetLike
toSemiring
algebra
equivOfEq
โ€”โ€”
ext ๐Ÿ“–โ€”Subalgebra
SetLike.instMembership
instSetLike
โ€”โ€”SetLike.ext
ext_iff ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
โ€”ext
gc_map_comap ๐Ÿ“–mathematicalโ€”GaloisConnection
Subalgebra
PartialOrder.toPreorder
instPartialOrder
map
comap
โ€”map_le
inclusion_inclusion ๐Ÿ“–mathematicalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
DFunLike.coe
AlgHom
SetLike.instMembership
instSetLike
toSemiring
algebra
AlgHom.funLike
inclusion
le_trans
โ€”le_trans
inclusion_injective ๐Ÿ“–mathematicalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
DFunLike.coe
AlgHom
toSemiring
algebra
AlgHom.funLike
inclusion
โ€”โ€”
inclusion_mk ๐Ÿ“–mathematicalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
DFunLike.coe
AlgHom
toSemiring
algebra
AlgHom.funLike
inclusion
โ€”โ€”
inclusion_right ๐Ÿ“–mathematicalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
DFunLike.coe
AlgHom
toSemiring
algebra
AlgHom.funLike
inclusion
โ€”โ€”
inclusion_self ๐Ÿ“–mathematicalโ€”inclusion
le_refl
Subalgebra
PartialOrder.toPreorder
instPartialOrder
AlgHom.id
SetLike.instMembership
instSetLike
toSemiring
algebra
โ€”AlgHom.ext
le_refl
instCanLiftSetCoeAndForallForallForallMemForallHAddForallForallForallForallHMulForallCoeRingHomAlgebraMap ๐Ÿ“–mathematicalโ€”CanLift
Set
Subalgebra
SetLike.coe
instSetLike
โ€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass
instFaithfulSMulSubtypeMem ๐Ÿ“–mathematicalโ€”FaithfulSMul
Subalgebra
SetLike.instMembership
instSetLike
instSMulSubtypeMem
โ€”Subsemiring.faithfulSMul
instIsScalarTowerSubtypeMem ๐Ÿ“–mathematicalโ€”IsScalarTower
Subalgebra
SetLike.instMembership
instSetLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
toSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instModuleSubtypeMem
module'
โ€”IsScalarTower.left
Submodule.isScalarTower'
instIsTorsionFree ๐Ÿ“–mathematicalโ€”Module.IsTorsionFree
Subalgebra
SetLike.instMembership
instSetLike
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toSemiring
instModuleSubtypeMem
โ€”Submodule.instIsTorsionFree
instIsTorsionFree' ๐Ÿ“–mathematicalโ€”Module.IsTorsionFree
Subalgebra
SetLike.instMembership
instSetLike
toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
moduleLeft
Semiring.toModule
โ€”Module.IsTorsionFree.comap
instIsTorsionFree
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
IsRegular.ne_zero
SubsemiringClass.nontrivial
instSMulMemClass ๐Ÿ“–mathematicalโ€”SMulMemClass
Subalgebra
Algebra.toSMul
instSetLike
โ€”MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
instSubsemiringClass
algebraMap_mem'
Algebra.smul_def
instSubringClass ๐Ÿ“–mathematicalโ€”SubringClass
Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
instSetLike
โ€”instSubsemiringClass
smul_mem
neg_one_smul
instSubsemiringClass ๐Ÿ“–mathematicalโ€”SubsemiringClass
Subalgebra
Semiring.toNonAssocSemiring
instSetLike
โ€”MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
Subsemiring.instSubsemiringClass
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
intCast_mem ๐Ÿ“–mathematicalโ€”Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
SetLike.instMembership
instSetLike
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
โ€”intCast_mem
instSubringClass
isDomain ๐Ÿ“–mathematicalโ€”IsDomain
Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
SetLike.instMembership
instSetLike
toSemiring
โ€”Subring.instIsDomainSubtypeMem
isScalarTower_left ๐Ÿ“–mathematicalโ€”IsScalarTower
Subalgebra
SetLike.instMembership
instSetLike
instSMulSubtypeMem
โ€”Subsemiring.isScalarTower
isScalarTower_mid ๐Ÿ“–mathematicalโ€”IsScalarTower
Subalgebra
SetLike.instMembership
instSetLike
SetLike.smul'
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
Algebra.toModule
instSMulMemClass
instSMulSubtypeMem
โ€”instSMulMemClass
smul_assoc
isScalarTower_right ๐Ÿ“–mathematicalโ€”IsScalarTower
Subalgebra
SetLike.instMembership
instSetLike
SetLike.smul'
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
Algebra.toModule
instSMulMemClass
โ€”instSMulMemClass
smul_assoc
le_centralizer_centralizer ๐Ÿ“–mathematicalโ€”Subalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
SetLike.coe
instSetLike
โ€”Set.subset_centralizer_centralizer
list_prod_mem ๐Ÿ“–mathematicalSubalgebra
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
โ€”list_prod_mem
SubsemiringClass.toSubmonoidClass
instSubsemiringClass
list_sum_mem ๐Ÿ“–mathematicalSubalgebra
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
โ€”list_sum_mem
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
map_id ๐Ÿ“–mathematicalโ€”map
AlgHom.id
โ€”SetLike.coe_injective
Set.image_id
map_injective ๐Ÿ“–mathematicalDFunLike.coe
AlgHom
AlgHom.funLike
Subalgebra
map
โ€”ext
Set.ext_iff
Set.image_injective
Set.ext
SetLike.ext_iff
map_le ๐Ÿ“–mathematicalโ€”Subalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
โ€”Set.image_subset_iff
map_map ๐Ÿ“–mathematicalโ€”map
AlgHom.comp
โ€”SetLike.coe_injective
Set.image_image
map_mono ๐Ÿ“–mathematicalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
mapโ€”Set.image_mono
map_toSubmodule ๐Ÿ“–mathematicalโ€”DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
toSubmodule
map
Submodule.map
RingHom.id
RingHomSurjective.ids
AlgHom.toLinearMap
โ€”SetLike.coe_injective
RingHomSurjective.ids
map_toSubsemiring ๐Ÿ“–mathematicalโ€”toSubsemiring
map
Subsemiring.map
Semiring.toNonAssocSemiring
RingHomClass.toRingHom
AlgHom
AlgHom.funLike
โ€”โ€”
mem_carrier ๐Ÿ“–mathematicalโ€”Set
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
toSubsemiring
Subalgebra
SetLike.instMembership
instSetLike
โ€”โ€”
mem_center_iff ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
center
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
โ€”Subsemigroup.mem_center_iff
mem_centralizer_iff ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
centralizer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
โ€”โ€”
mem_comap ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
comap
DFunLike.coe
AlgHom
AlgHom.funLike
โ€”โ€”
mem_map ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
map
DFunLike.coe
AlgHom
AlgHom.funLike
โ€”Subsemiring.mem_map
mem_mk ๐Ÿ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
DFunLike.coe
RingHom
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
Subalgebra
SetLike.instMembership
instSetLike
Subsemiring
Subsemiring.instSetLike
โ€”โ€”
mem_toSubmodule ๐Ÿ“–mathematicalโ€”Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SetLike.instMembership
Submodule.setLike
DFunLike.coe
OrderEmbedding
Subalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
toSubmodule
instSetLike
โ€”โ€”
mem_toSubring ๐Ÿ“–mathematicalโ€”Subring
SetLike.instMembership
Subring.instSetLike
toSubring
Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
instSetLike
โ€”โ€”
mem_toSubsemiring ๐Ÿ“–mathematicalโ€”Subsemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Subsemiring.instSetLike
toSubsemiring
Subalgebra
instSetLike
โ€”โ€”
mk_algebraMap ๐Ÿ“–mathematicalSubalgebra
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
toSemiring
algebra
โ€”โ€”
mul_mem ๐Ÿ“–mathematicalSubalgebra
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
โ€”MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
instSubsemiringClass
multiset_prod_mem ๐Ÿ“–mathematicalSubalgebra
CommSemiring.toSemiring
SetLike.instMembership
instSetLike
Multiset.prod
CommSemiring.toCommMonoid
โ€”multiset_prod_mem
SubsemiringClass.toSubmonoidClass
instSubsemiringClass
multiset_sum_mem ๐Ÿ“–mathematicalSubalgebra
SetLike.instMembership
instSetLike
Multiset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
โ€”multiset_sum_mem
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
natCast_mem ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
โ€”natCast_mem
SubsemiringClass.addSubmonoidWithOneClass
instSubsemiringClass
neg_mem ๐Ÿ“–mathematicalSubalgebra
CommRing.toCommSemiring
Ring.toSemiring
SetLike.instMembership
instSetLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
โ€”NegMemClass.neg_mem
SubringClass.toNegMemClass
instSubringClass
noZeroDivisors ๐Ÿ“–mathematicalโ€”NoZeroDivisors
Subalgebra
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toSemiring
ZeroMemClass.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
โ€”AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
Subsemiring.instSubsemiringClass
Subsemiring.noZeroDivisors
nsmul_mem ๐Ÿ“–mathematicalSubalgebra
SetLike.instMembership
instSetLike
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
โ€”nsmul_mem
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
one_mem ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
โ€”OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
instSubsemiringClass
one_mem_toNonUnitalSubalgebra ๐Ÿ“–mathematicalโ€”NonUnitalSubalgebra
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SetLike.instMembership
NonUnitalSubalgebra.instSetLike
toNonUnitalSubalgebra
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
โ€”one_mem
pow_mem ๐Ÿ“–mathematicalSubalgebra
SetLike.instMembership
instSetLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
โ€”pow_mem
SubsemiringClass.toSubmonoidClass
instSubsemiringClass
prod_mem ๐Ÿ“–mathematicalSubalgebra
CommSemiring.toSemiring
SetLike.instMembership
instSetLike
Finset.prod
CommSemiring.toCommMonoid
โ€”prod_mem
SubsemiringClass.toSubmonoidClass
instSubsemiringClass
rangeS_algebraMap ๐Ÿ“–mathematicalโ€”RingHom.rangeS
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
instSetLike
Semiring.toNonAssocSemiring
toCommSemiring
algebraMap
toAlgebra
Algebra.id
toSubsemiring
โ€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
algebraMap_eq
Algebra.algebraMap_self
RingHom.id_comp
toSubsemiring_subtype
Subsemiring.rangeS_subtype
rangeS_le ๐Ÿ“–mathematicalโ€”Subsemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
Subsemiring.instPartialOrder
RingHom.rangeS
CommSemiring.toSemiring
algebraMap
toSubsemiring
โ€”algebraMap_mem
range_algebraMap ๐Ÿ“–mathematicalโ€”RingHom.range
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
instSetLike
toRing
CommRing.toRing
algebraMap
toCommSemiring
toAlgebra
Algebra.id
toSubring
โ€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
algebraMap_eq
Algebra.algebraMap_self
RingHom.id_comp
toSubring_subtype
Subring.range_subtype
range_comp_val ๐Ÿ“–mathematicalโ€”AlgHom.range
Subalgebra
SetLike.instMembership
instSetLike
toSemiring
algebra
AlgHom.comp
val
map
โ€”AlgHom.range_comp
range_val
range_le ๐Ÿ“–mathematicalโ€”Set
Set.instLE
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
SetLike.coe
Subalgebra
instSetLike
โ€”range_subset
range_subset ๐Ÿ“–mathematicalโ€”Set
Set.instHasSubset
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
SetLike.coe
Subalgebra
instSetLike
โ€”algebraMap_mem
range_val ๐Ÿ“–mathematicalโ€”AlgHom.range
Subalgebra
SetLike.instMembership
instSetLike
toSemiring
algebra
val
โ€”ext
Set.ext_iff
AlgHom.coe_range
Subtype.range_val
setRange_algebraMap ๐Ÿ“–mathematicalโ€”Set.range
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
toCommSemiring
RingHom.instFunLike
algebraMap
toAlgebra
Algebra.id
SetLike.coe
โ€”SetLike.ext'_iff
rangeS_algebraMap
smulCommClass_left ๐Ÿ“–mathematicalโ€”SMulCommClass
Subalgebra
SetLike.instMembership
instSetLike
instSMulSubtypeMem
โ€”Subsemiring.smulCommClass_left
smulCommClass_right ๐Ÿ“–mathematicalโ€”SMulCommClass
Subalgebra
SetLike.instMembership
instSetLike
instSMulSubtypeMem
โ€”Subsemiring.smulCommClass_right
smul_def ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
instSMulSubtypeMem
โ€”โ€”
smul_mem ๐Ÿ“–mathematicalSubalgebra
SetLike.instMembership
instSetLike
Algebra.toSMulโ€”SMulMemClass.smul_mem
instSMulMemClass
sub_mem ๐Ÿ“–mathematicalSubalgebra
CommRing.toCommSemiring
Ring.toSemiring
SetLike.instMembership
instSetLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
โ€”sub_mem
SubringClass.addSubgroupClass
instSubringClass
subsingleton_of_subsingleton ๐Ÿ“–mathematicalโ€”Subalgebraโ€”ext
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
sum_mem ๐Ÿ“–mathematicalSubalgebra
SetLike.instMembership
instSetLike
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
โ€”sum_mem
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
toNonUnitalSubalgebra_toSubalgebra ๐Ÿ“–mathematicalโ€”NonUnitalSubalgebra.toSubalgebra
toNonUnitalSubalgebra
one_mem
โ€”one_mem
toSubmodule_injective ๐Ÿ“–mathematicalโ€”Subalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
DFunLike.coe
OrderEmbedding
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
toSubmodule
โ€”SetLike.ext
SetLike.ext_iff
toSubmodule_toSubalgebra ๐Ÿ“–mathematicalโ€”Submodule.toSubalgebra
DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
toSubmodule
one_mem
mul_mem
โ€”SetLike.coe_injective
one_mem
mul_mem
toSubring_inj ๐Ÿ“–mathematicalโ€”toSubringโ€”toSubring_injective
toSubring_injective ๐Ÿ“–mathematicalโ€”Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
Subring
toSubring
โ€”ext
mem_toSubring
toSubring_subtype ๐Ÿ“–mathematicalโ€”Subring.subtype
toSubring
RingHomClass.toRingHom
AlgHom
Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
SetLike.instMembership
instSetLike
toSemiring
algebra
AlgHom.funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
val
โ€”โ€”
toSubring_toSubsemiring ๐Ÿ“–mathematicalโ€”Subring.toSubsemiring
toSubring
toSubsemiring
CommRing.toCommSemiring
Ring.toSemiring
โ€”โ€”
toSubsemiring_inj ๐Ÿ“–mathematicalโ€”toSubsemiringโ€”toSubsemiring_injective
toSubsemiring_injective ๐Ÿ“–mathematicalโ€”Subalgebra
Subsemiring
Semiring.toNonAssocSemiring
toSubsemiring
โ€”ext
mem_toSubsemiring
toSubsemiring_subtype ๐Ÿ“–mathematicalโ€”Subsemiring.subtype
Semiring.toNonAssocSemiring
toSubsemiring
RingHomClass.toRingHom
AlgHom
Subalgebra
SetLike.instMembership
instSetLike
toSemiring
algebra
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
val
โ€”โ€”
val_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AlgHom
Subalgebra
SetLike.instMembership
instSetLike
toSemiring
algebra
AlgHom.funLike
val
โ€”โ€”
val_comp_inclusion ๐Ÿ“–mathematicalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AlgHom.comp
SetLike.instMembership
instSetLike
toSemiring
algebra
val
inclusion
โ€”โ€”
zero_mem ๐Ÿ“–mathematicalโ€”Subalgebra
SetLike.instMembership
instSetLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
โ€”ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
zsmul_mem ๐Ÿ“–mathematicalSubalgebra
CommRing.toCommSemiring
Ring.toSemiring
SetLike.instMembership
instSetLike
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
โ€”zsmul_mem
SubringClass.addSubgroupClass
instSubringClass

Subalgebra.inclusion

Theorems

NameKindAssumesProvesValidatesDepends On
faithfulSMul ๐Ÿ“–mathematicalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
FaithfulSMul
SetLike.instMembership
Subalgebra.instSetLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Subalgebra.toSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
RingHom.toModule
AlgHom.toRingHom
Subalgebra.algebra
Subalgebra.inclusion
โ€”AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
mul_one
isScalarTower_left ๐Ÿ“–mathematicalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
IsScalarTower
SetLike.instMembership
Subalgebra.instSetLike
SetLike.smul'
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
Algebra.toModule
Subalgebra.instSMulMemClass
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Subalgebra.toSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
RingHom.toModule
AlgHom.toRingHom
Subalgebra.algebra
Subalgebra.inclusion
โ€”Subalgebra.instSMulMemClass
one_smul
smul_assoc
SetLike.instIsScalarTowerSubtypeMem
Algebra.smul_def
mul_assoc
isScalarTower_right ๐Ÿ“–mathematicalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
IsScalarTower
SetLike.instMembership
Subalgebra.instSetLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Subalgebra.toSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
RingHom.toModule
AlgHom.toRingHom
Subalgebra.algebra
Subalgebra.inclusion
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Submonoid.instMulActionSubtypeMem
SubsemiringClass.toSubmonoidClass
Subalgebra.instSubsemiringClass
โ€”SubsemiringClass.toSubmonoidClass
Subalgebra.instSubsemiringClass
SemigroupAction.mul_smul
SubmonoidClass.toMulMemClass

SubalgebraClass

Definitions

NameCategoryTheorems
toAlgebra ๐Ÿ“–CompOp
3 mathmath: coe_val, spectrum.subset_subalgebra, coe_algebraMap
val ๐Ÿ“–CompOp
1 mathmath: coe_val

Theorems

NameKindAssumesProvesValidatesDepends On
coe_algebraMap ๐Ÿ“–mathematicalโ€”SetLike.instMembership
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
SubsemiringClass.toSemiring
RingHom.instFunLike
algebraMap
toAlgebra
โ€”โ€”
coe_val ๐Ÿ“–mathematicalโ€”DFunLike.coe
AlgHom
SetLike.instMembership
SubsemiringClass.toSemiring
toAlgebra
AlgHom.funLike
val
โ€”โ€”

Submodule

Definitions

NameCategoryTheorems
toSubalgebra ๐Ÿ“–CompOp
6 mathmath: toSubalgebra_toSubsemiring, coe_toSubalgebra, toSubalgebra_toSubmodule, toSubalgebra_mk, Subalgebra.toSubmodule_toSubalgebra, mem_toSubalgebra

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toSubalgebra ๐Ÿ“–mathematicalSubmodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SetLike.instMembership
setLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SetLike.coe
Subalgebra
Subalgebra.instSetLike
toSubalgebra
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid.toAddSubsemigroup
toAddSubmonoid
โ€”โ€”
mem_toSubalgebra ๐Ÿ“–mathematicalSubmodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SetLike.instMembership
setLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Subalgebra
Subalgebra.instSetLike
toSubalgebra
โ€”โ€”
toSubalgebra_mk ๐Ÿ“–mathematicalSubmodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SetLike.instMembership
setLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
toSubalgebra
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MulOne.toMul
MulOneClass.toMulOne
SetLike.coe
add_mem
zero_mem
โ€”โ€”
toSubalgebra_toSubmodule ๐Ÿ“–mathematicalSubmodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SetLike.instMembership
setLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DFunLike.coe
OrderEmbedding
Subalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
toSubalgebra
โ€”SetLike.coe_injective
toSubalgebra_toSubsemiring ๐Ÿ“–mathematicalSubmodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SetLike.instMembership
setLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Subalgebra.toSubsemiring
toSubalgebra
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MulOne.toMul
MulOneClass.toMulOne
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid.toAddSubsemigroup
toAddSubmonoid
โ€”โ€”

(root)

Definitions

NameCategoryTheorems
subalgebraOfSubring ๐Ÿ“–CompOp
4 mathmath: mem_subalgebraOfSubring, subalgebraOfSubring_toSubsemiring, NonUnitalSubring.unitization_range, Algebra.adjoin_int
subalgebraOfSubsemiring ๐Ÿ“–CompOp
4 mathmath: mem_subalgebraOfSubsemiring, subalgebraOfSubsemiring_toSubsemiring, NonUnitalSubsemiring.unitization_range, Algebra.adjoin_nat

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_mem ๐Ÿ“–mathematicalโ€”SetLike.instMembership
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
โ€”SMulMemClass.smul_mem
OneMemClass.one_mem
Algebra.algebraMap_eq_smul_one
mem_subalgebraOfSubring ๐Ÿ“–mathematicalโ€”Subalgebra
Int.instCommSemiring
Ring.toSemiring
Ring.toIntAlgebra
SetLike.instMembership
Subalgebra.instSetLike
subalgebraOfSubring
Subring
Subring.instSetLike
โ€”โ€”
mem_subalgebraOfSubsemiring ๐Ÿ“–mathematicalโ€”Subalgebra
Nat.instCommSemiring
Semiring.toNatAlgebra
SetLike.instMembership
Subalgebra.instSetLike
subalgebraOfSubsemiring
Subsemiring
Semiring.toNonAssocSemiring
Subsemiring.instSetLike
โ€”โ€”
subalgebraOfSubring_toSubsemiring ๐Ÿ“–mathematicalโ€”Subalgebra.toSubsemiring
Int.instCommSemiring
Ring.toSemiring
Ring.toIntAlgebra
subalgebraOfSubring
Subring.toSubsemiring
โ€”โ€”
subalgebraOfSubsemiring_toSubsemiring ๐Ÿ“–mathematicalโ€”Subalgebra.toSubsemiring
Nat.instCommSemiring
Semiring.toNatAlgebra
subalgebraOfSubsemiring
โ€”โ€”

---

โ† Back to Index