Documentation Verification Report

Lattice

πŸ“ Source: Mathlib/Algebra/Algebra/Subalgebra/Lattice.lean

Statistics

MetricCount
Definitionsadjoin, adjoinCommRingOfComm, adjoinCommSemiringOfComm, botEquiv, botEquivOfInjective, gi, instCompleteLatticeSubalgebra, instInhabitedSubalgebra, instSubtypeMemSubalgebraMin, instSubtypeMemSubalgebraMin_1, toTop, instUnique, saturation, topEquiv, closureEquivAdjoinInt, closureEquivAdjoinNat
16
Theoremssubsingleton_left, subsingleton_right, adjoin_ext, adjoin_le_equalizer, eqOn_adjoin_iff, eqOn_sup, equalizer_eq_top, equalizer_same, ext_of_adjoin_eq_top, ext_of_eq_adjoin, ext_on_codisjoint, map_adjoin, map_adjoin_singleton, range_eq_top, subsingleton, adjoin_adjoin_coe_preimage, adjoin_attach_biUnion, adjoin_empty, adjoin_eq, adjoin_eq_of_le, adjoin_eq_ring_closure, adjoin_eq_sInf, adjoin_eq_span, adjoin_eq_span_of_subset, adjoin_iUnion, adjoin_image, adjoin_induction, adjoin_inductionβ‚‚, adjoin_insert_adjoin, adjoin_insert_algebraMap, adjoin_insert_intCast, adjoin_insert_natCast, adjoin_insert_one, adjoin_insert_zero, adjoin_int, adjoin_le, adjoin_le_centralizer_centralizer, adjoin_le_iff, adjoin_mono, adjoin_nat, adjoin_nonUnitalSubalgebra, adjoin_singleton_algebraMap, adjoin_singleton_intCast, adjoin_singleton_le, adjoin_singleton_natCast, adjoin_singleton_one, adjoin_singleton_zero, adjoin_span, adjoin_toSubmodule_le, adjoin_toSubsemiring, adjoin_union, adjoin_union_coe_submodule, adjoin_univ, bijective_algebraMap_iff, botEquiv_symm_apply, coe_bot, coe_iInf, coe_inf, coe_sInf, coe_top, comap_top, commute_of_mem_adjoin_of_forall_mem_commute, commute_of_mem_adjoin_self, commute_of_mem_adjoin_singleton_of_commute, eq_top_iff, forall_mem_adjoin_smul_eq_self_iff, gc, iInf_toSubmodule, iInf_toSubsemiring, iSup_induction, iSup_induction', iSup_toSubsemiring, inf_toSubmodule, inf_toSubsemiring, map_bot, map_iInf, map_inf, map_sup, map_top, mem_adjoin_iff, mem_adjoin_of_map_mul, mem_adjoin_of_mem, mem_bot, mem_iInf, mem_iSup_of_mem, mem_inf, mem_sInf, mem_sup_left, mem_sup_right, mem_top, mul_mem_sup, range_id, range_ofId, sInf_toSubmodule, sInf_toSubsemiring, sSup_def, sSup_toSubsemiring, self_mem_adjoin_singleton, span_le_adjoin, subset_adjoin, sup_def, sup_toSubsemiring, surjective_algebraMap_iff, toSubmodule_bot, toSubmodule_eq_top, toSubring_bot, toSubring_eq_top, toSubsemiring_eq_top, top_toSubmodule, top_toSubring, top_toSubsemiring, adjoin_le_algebra_adjoin, adjoin_eq_span_of_eq_span, center_eq_top, centralizer_eq_top_iff_subset, comap_map_eq, comap_map_eq_self, le_saturation, map_comap_eq, map_comap_eq_self, map_comap_eq_self_of_surjective, mem_saturation_iff, mem_saturation_of_mul_mem_left, mem_saturation_of_mul_mem_right, saturation_saturation, topEquiv_apply, topEquiv_symm_apply_coe, adjoin_eq_span_of_eq_span
128
Total144

AlgEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
subsingleton_left πŸ“–mathematicalβ€”AlgEquivβ€”ext
AlgHom.ext_iff
AlgHom.subsingleton
subsingleton_right πŸ“–mathematicalβ€”AlgEquivβ€”symm_symm
subsingleton_left

AlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_ext πŸ“–β€”DFunLike.coe
AlgHom
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Subalgebra.toSemiring
Subalgebra.algebra
funLike
Algebra.subset_adjoin
β€”β€”Algebra.subset_adjoin
ext
Algebra.adjoin_induction
algebraMap_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
Subalgebra.instSMulMemClass
commutes
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
instNonUnitalAlgHomClassOfAlgHomClass
algHomClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
adjoin_le_equalizer πŸ“–mathematicalSet.EqOn
DFunLike.coe
AlgHom
funLike
Subalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Algebra.adjoin
equalizer
algHomClass
β€”Algebra.adjoin_le
algHomClass
eqOn_adjoin_iff πŸ“–mathematicalβ€”Set.EqOn
DFunLike.coe
AlgHom
funLike
SetLike.coe
Subalgebra
Subalgebra.instSetLike
Algebra.adjoin
β€”algHomClass
instIsConcreteLE
eqOn_sup πŸ“–mathematicalSet.EqOn
DFunLike.coe
SetLike.coe
Subalgebra
Subalgebra.instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Algebra.instCompleteLatticeSubalgebra
β€”le_equalizer
sup_le
equalizer_eq_top πŸ“–mathematicalβ€”equalizer
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”β€”
equalizer_same πŸ“–mathematicalβ€”equalizer
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”equalizer_eq_top
ext_of_adjoin_eq_top πŸ“–β€”Algebra.adjoin
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.EqOn
DFunLike.coe
AlgHom
funLike
β€”β€”ext
adjoin_le_equalizer
ext_of_eq_adjoin πŸ“–β€”Algebra.adjoin
DFunLike.coe
AlgHom
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.toSemiring
Subalgebra.algebra
funLike
Eq.ge
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Algebra.subset_adjoin
β€”β€”Eq.ge
Algebra.subset_adjoin
adjoin_ext
ext_on_codisjoint πŸ“–β€”Codisjoint
Subalgebra
Subalgebra.instPartialOrder
BoundedOrder.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Algebra.instCompleteLatticeSubalgebra
Set.EqOn
DFunLike.coe
SetLike.coe
Subalgebra.instSetLike
β€”β€”DFunLike.ext
eqOn_sup
Codisjoint.eq_top
map_adjoin πŸ“–mathematicalβ€”Subalgebra.map
Algebra.adjoin
Set.image
DFunLike.coe
AlgHom
funLike
β€”Algebra.adjoin_image
map_adjoin_singleton πŸ“–mathematicalβ€”Subalgebra.map
Algebra.adjoin
Set
Set.instSingletonSet
DFunLike.coe
AlgHom
funLike
β€”map_adjoin
Set.image_singleton
range_eq_top πŸ“–mathematicalβ€”range
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
DFunLike.coe
AlgHom
funLike
β€”Algebra.eq_top_iff
subsingleton πŸ“–mathematicalβ€”AlgHomβ€”ext
Algebra.mem_top
Set.mem_range
Algebra.mem_bot
commutes

Algebra

Definitions

NameCategoryTheorems
adjoin πŸ“–CompOp
284 mathmath: IsCyclotomicExtension.adjoin_primitive_root_eq_top, IsUnramifiedAt.exists_primesOver_under_adjoin_eq_singleton_and_residueField_bijective, minpoly.ToAdjoin.injective, NonUnitalAlgebra.adjoin_le_algebra_adjoin, RingHom.adjoin_algebraMap_apply, lift_cardinalMk_adjoin_le, IntermediateField.adjoin_eq_top_iff_of_isAlgebraic, polynomialFunctions.eq_adjoin_X, Subalgebra.adjoin_rank_le, AlgebraicIndependent.transcendental_adjoin_iff, AlgEquiv.coe_adjoinSingletonEquivAdjoinRootMinpoly_symm, FiniteType.adjoin_of_finite, algebraicIndependent_adjoin, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime_pow, IntermediateField.adjoin_intermediateField_toSubalgebra_of_isAlgebraic, adjoin_algebraMap_image_union_eq_adjoin_adjoin, adjoin_singleton_intCast, AlgebraicIndependent.isTranscendenceBasis_iff_isAlgebraic, jacobiSum_mem_algebraAdjoin_of_pow_eq_one, GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous_ne_zero, finite_adjoin_simple_of_isIntegral, MulChar.apply_mem_algebraAdjoin_of_pow_eq_one, Subalgebra.comap_map_eq, Subalgebra.finrank_sup_eq_finrank_right_mul_finrank_of_free, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_apply, TensorAlgebra.adjoin_range_ΞΉ, DualNumber.range_lift, AlgebraicIndependent.transcendental_adjoin, Subalgebra.star_adjoin_comm, IsIntegral.adjoin, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C, adjoin_le_integralClosure, sSup_def, AlgebraicIndependent.repr_ker, isAlgebraic_adjoin_iff, CliffordAlgebra.range_lift, AlgebraicIndependent.aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin, adjoin_singleton_algebraMap, NumberField.adjoin_eq_top_of_infinitePlace_lt, Subalgebra.rank_sup_eq_rank_left_mul_rank_of_free, AlgebraicIndependent.iff_adjoin_image_compl, MulChar.apply_mem_algebraAdjoin, adjoin_insert_natCast, Subalgebra.LinearDisjoint.adjoin_rank_eq_rank_left, Polynomial.lift_of_splits, mem_adjoin_iff, MvPolynomial.supported_eq_adjoin_X, MonoidAlgebra.mem_adjoin_support, IntermediateField.algebraAdjoinAdjoin.instIsAlgebraicSubtypeMemSubalgebraAdjoinAdjoin, Submonoid.adjoin_eq_span_of_eq_span, adjoin_monomial_eq_reesAlgebra, IsCyclotomicExtension.adjoin_roots_cyclotomic_eq_adjoin_root_cyclotomic, AlgebraicIndependent.matroid_isBasis_iff, EssFiniteType.adjoin_mem_finset, IsScalarTower.adjoin_range_toAlgHom, adjoin_attach_biUnion, Polynomial.IsSplittingField.adjoin_rootSet, adjoin_span, IntermediateField.isAlgebraic_adjoin_iff_top, AlgEquiv.adjoinSingletonEquivAdjoinRootMinpoly_symm_toAlgHom, AdjoinRoot.Minpoly.toAdjoin.surjective, AlgebraicIndependent.aeval_comp_repr, span_le_adjoin, adjoin_adjoin_of_tower, AlgebraicIndependent.adjoin_iff_disjoint, IsPrimitiveRoot.powerBasis_gen_mem_adjoin_zeta_sub_one, adjoin_union, IntermediateField.isAlgebraic_adjoin_iff, AlgebraicIndependent.matroid_spanning_iff, Polynomial.SplittingFieldAux.adjoin_rootSet, IsPrimitiveRoot.adjoinEquivRingOfIntegers_symm_apply, prod_mem_ideal_map_of_mem_conductor, mem_adjoin_map_integralClosure_of_isStandardEtale, adjoin_singleton_zero, NonUnitalSubalgebra.unitization_range, IsPrimitiveRoot.adjoin_pair_eq, monomial_mem_adjoin_monomial, subset_adjoin, Subalgebra.op_adjoin, MvPolynomial.adjoin_range_X, isAlgebraic_adjoin_singleton_iff, adjoin_eq_top_of_conductor_eq_top, adjoin_insert_one, AlgebraicIndependent.sumElim_iff, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime, span_coeff_minpolyDiv, IntermediateField.adjoin_simple_toSubalgebra_of_integral, IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply, Subalgebra.fg_adjoin_finset, isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot, Polynomial.adjoin_rootSet_eq_range, AlgebraicIndependent.adjoin_of_disjoint, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C', essFiniteType_cond_iff, CliffordAlgebra.adjoin_range_ΞΉ, instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetCoeRingHomAlgebraMap, Polynomial.Splits.adjoin_rootSet_eq_range, adjoin.powerBasis_dim, GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous, adjoin_eq_ring_closure, adjoin_singleton_le, AdjoinRoot.Minpoly.coe_toAdjoin, mem_conductor_iff, FractionalIdeal.adjoinIntegral_coe, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_some, adjoin_nonUnitalSubalgebra_eq_span, adjoin_insert_algebraMap, isNoetherian_adjoin_finset, adjoin_singleton_eq_range_aeval, IntermediateField.adjoin_simple_eq_top_iff_of_isAlgebraic, isCyclotomicExtension_iff_eq_adjoin, FractionalIdeal.isFractional_adjoin_integral, Subalgebra.fg_def, PowerBasis.adjoin_gen_eq_top, adjoin_range_eq_range_freeAlgebra_lift, coeff_minpolyDiv_mem_adjoin, Complex.range_liftAux, Subalgebra.adjoin_eq_span_basis, adjoin.powerBasis'_dim, AlgebraicIndependent.isAlgebraic_adjoin_iff_of_matroid_isBasis, IntermediateField.mem_adjoin_iff_div, ContinuousAlgHom.eqOn_closure_adjoin, conductor_subset_adjoin, exists_jacobiSum_eq_neg_one_add, Derivation.eqOn_adjoin, adjoin_toSubmodule_le, adjoin_eq_top_of_primitive_element, Presentation.instHasCoeffsSubtypeMemSubalgebraAdjoin, NonUnitalSubalgebra.unitizationAlgEquiv_apply_coe, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_none, MonoidAlgebra.exists_finset_adjoin_eq_top, Polynomial.IsSplittingField.adjoin_rootSet', AlgHom.map_adjoin, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, adjoin.powerBasis_gen, Unitization.lift_range, AlgebraicIndependent.option_iff_transcendental, adjoin_singleton_one, adjoin_eq_span_of_subset, discr_mul_isIntegral_mem_adjoin, AlgebraicIndependent.algebraMap_aevalEquiv, AdjoinRoot.Minpoly.coe_toAdjoin_mk_X, IsCyclotomicExtension.iff_singleton, adjoin_range_eq_range_aeval, MvPolynomial.aeval_toPolynomialAdjoinImageCompl_eq_zero, adjoin_inl_union_inr_eq_prod, finite_adjoin_of_finite_of_isIntegral, adjoin_insert_intCast, Subalgebra.finrank_sup_eq_finrank_left_mul_finrank_of_free, Polynomial.IsWeaklyEisensteinAt.exists_mem_adjoin_mul_eq_pow_natDegree, adjoin_insert_adjoin, IntermediateField.isTranscendenceBasis_adjoin_iff, IntermediateField.adjoin_intermediateField_toSubalgebra_of_isAlgebraic_left, small_adjoin, Submodule.span_range_natDegree_eq_adjoin, adjoin_eq_exists_aeval, adjoin_nonUnitalSubalgebra, AlgebraicIndepOn.insert_iff, adjoin_singleton_natCast, Subalgebra.unop_adjoin, AddMonoidAlgebra.exists_finset_adjoin_eq_top, adjoin_image, Subalgebra.rank_sup_eq_rank_right_mul_rank_of_free, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_symm_apply, IntermediateField.adjoin_simple_toSubalgebra_of_isAlgebraic, Module.End.exists_isNilpotent_isSemisimple_of_separable_of_dvd_pow, FreeAlgebra.adjoin_range_ΞΉ, isAlgebraic_iff_exists_isTranscendenceBasis_subset, adjoin_union_coe_submodule, isCyclotomicExtension_singleton_iff_eq_adjoin, AlgebraicIndependent.aeval_repr, AlgHom.eqOn_adjoin_iff, adjoin_adjoin_coe_preimage, fg_adjoin_of_finite, adjoin_top, adjoin_le_centralizer_centralizer, adjoin_root_eq_top_of_isSplittingField, mem_adjoin_of_mem, adjoin_eq_range, adjoin_eq_span, TensorAlgebra.range_lift, IntermediateField.adjoin_toSubalgebra, DualNumber.range_inlAlgHom_sup_adjoin_eps, AddMonoidAlgebra.mem_adjoin_support, adjoin_univ, IsCyclotomicExtension.union_left, adjoin_mono, IntermediateField.algebraAdjoinAdjoin.instIsFractionRingSubtypeMemSubalgebraAdjoinAdjoin, adjoin_le_iff, StarAlgebra.adjoin_toSubalgebra, Polynomial.IsWeaklyEisensteinAt.exists_mem_adjoin_mul_eq_pow_natDegree_le, adjoin_prod_le, AlgHom.adjoin_le_equalizer, restrictScalars_adjoin, adjoin_restrictScalars, mem_coeSubmodule_conductor, isCyclotomicExtension_iff, minpoly.equivAdjoin_toAlgHom, adjoin_le, MvPolynomial.irreducible_toPolynomialAdjoinImageCompl, IntermediateField.adjoin_toSubalgebra_of_isAlgebraic_right, RingOfIntegers.exponent_eq_one_iff, AlgebraicIndependent.aevalEquiv_apply_coe, RingHom.adjoin_algebraMap_surjective, Subalgebra.adjoin_eq_span_of_eq_span, IsAlgebraic.exists_nonzero_eq_adjoin_mul, IsCyclotomicExtension.iff_adjoin_eq_top, AlgebraicIndependent.option_iff, IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin, mem_ideal_map_adjoin, adjoin_eq, PolynomialLaw.range_Ο†, AlgebraicIndependent.matroid_closure_eq, minpoly.coe_equivAdjoin, adjoin.powerBasis'_minpoly_gen, adjoin_eq_range_freeAlgebra_lift, adjoin_iUnion, IntermediateField.adjoin_toSubalgebra_of_isAlgebraic_left, IntermediateField.adjoin_eq_top_iff, IsCyclotomicExtension.Rat.adjoin_singleton_eq_top, IsUnramifiedAt.exists_notMem_forall_ne_mem_and_adjoin_eq_top, adjoin_eq_sInf, adjoin_algebraMap, mem_adjoin_of_dvd_coeff_of_dvd_aeval, IsPrimitiveRoot.self_sub_one_pow_dvd_order, adjoin_eq_top_of_intermediateField, IsPrimitiveRoot.adjoin_isCyclotomicExtension, conductor_eq_top_iff_adjoin_eq_top, AlgebraicIndependent.iff_adjoin_image, AlgHom.map_adjoin_singleton, AdjoinRoot.adjoinRoot_eq_top, QuaternionAlgebra.Basis.range_liftHom, IntermediateField.algebraicIndependent_adjoin_iff, IsIntegral.fg_adjoin_singleton, cardinalMk_adjoin_le, Complex.adjoin_I, IsCyclotomicExtension.adjoin_roots, IntermediateField.algebraAdjoinAdjoin.instFaithfulSMulSubtypeMemSubalgebraAdjoinAdjoin, IntermediateField.isAlgebraic_adjoin_iff_bot, adjoin_union_eq_adjoin_adjoin, IsTranscendenceBasis.isAlgebraic, adjoin_toSubsemiring, Polynomial.aeval_mem_adjoin_singleton, IntermediateField.transcendental_adjoin_iff, IntermediateField.adjoin_toSubalgebra_of_isAlgebraic, IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1, adjoin.powerBasis'_gen, IntermediateField.adjoin_intermediateField_toSubalgebra_of_isAlgebraic_right, isAlgebraic_adjoin_of_nonempty, IsAlgClosed.isAlgClosure_of_transcendence_basis, IsCyclotomicExtension.union_right, IsCyclotomicExtension.adjoin_roots_cyclotomic_eq_adjoin_nth_roots, Polynomial.IsSplittingField.adjoin_rootSet_eq_range, IntermediateField.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap, IsIntegral.inv_mem_adjoin, essFiniteType_iff, EssFiniteType.cond, TensorProduct.adjoin_tmul_eq_top, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton, sup_def, Subalgebra.LinearDisjoint.adjoin_rank_eq_rank_right, restrictScalars_adjoin_of_algEquiv, IntermediateField.adjoin_algebraic_toSubalgebra, MvPolynomial.isAlgebraic_of_mem_vars_of_forall_totalDegree_le, IsAdjoinRoot.adjoin_root_eq_top, CyclotomicRing.eq_adjoin_primitive_root, adjoin_insert_zero, Polynomial.SplittingField.adjoin_rootSet, AlgebraicIndependent.iff_transcendental_adjoin_image, TrivSqZeroExt.range_inlAlgHom_sup_adjoin_range_inr, Polynomial.adjoin_X, adjoin_int, Module.End.exists_isNilpotent_isSemisimple, isTranscendenceBasis_iff_algebraicIndependent_isAlgebraic, StarAlgebra.adjoin_eq_starClosure_adjoin, Subalgebra.topologicalClosure_adjoin_le_centralizer_centralizer, gc, adjoin_empty, IntermediateField.algebra_adjoin_le_adjoin, TrivSqZeroExt.range_liftAux, adjoin_nat, Subalgebra.restrictScalars_adjoin, self_mem_adjoin_singleton, rank_adjoin_le
adjoinCommRingOfComm πŸ“–CompOpβ€”
adjoinCommSemiringOfComm πŸ“–CompOpβ€”
botEquiv πŸ“–CompOp
1 mathmath: botEquiv_symm_apply
botEquivOfInjective πŸ“–CompOpβ€”
gi πŸ“–CompOpβ€”
instCompleteLatticeSubalgebra πŸ“–CompOp
266 mathmath: IsCyclotomicExtension.adjoin_primitive_root_eq_top, range_ofId, Subalgebra.LinearDisjoint.inf_eq_bot, Submodule.rTensorOne_symm_apply, IntermediateField.adjoin_eq_top_iff_of_isAlgebraic, mem_iInf, Subalgebra.coe_iSup_of_directed, Submodule.comm_trans_lTensorOne, IsDedekindDomain.HeightOneSpectrum.iInf_localization_eq_bot, adjoin_singleton_intCast, Subalgebra.LinearDisjoint.sup_free_of_free, Subalgebra.pi_top, GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous_ne_zero, mem_top, Submodule.mulMap_one_right_eq, Subalgebra.comap_map_eq, Subalgebra.finrank_sup_eq_finrank_right_mul_finrank_of_free, Subalgebra.op_sSup, TensorAlgebra.adjoin_range_ΞΉ, AlgHom.equalizer_eq_top, DualNumber.range_lift, Subalgebra.op_sInf, StarSubalgebra.inf_toSubalgebra, sSup_def, toSubsemiring_eq_top, Subalgebra.op_bot, mem_sInf, adjoin_singleton_algebraMap, Subalgebra.centralizer_coe_iSup, toSubring_eq_top, NumberField.adjoin_eq_top_of_infinitePlace_lt, Subalgebra.rank_sup_eq_rank_left_mul_rank_of_free, Polynomial.IsSplittingField.splits_iff, StarSubalgebra.bot_toSubalgebra, toSubring_bot, integralClosure_eq_top_iff, map_sup, Subalgebra.algebra_isAlgebraic_bot_right, Subalgebra.unop_sup, Subalgebra.comm_trans_rTensorBot, Subalgebra.algebra_isAlgebraic_bot_left_iff, EssFiniteType.adjoin_mem_finset, adjoin_attach_biUnion, Polynomial.IsSplittingField.adjoin_rootSet, Subalgebra.prod_inf_prod, IntermediateField.inf_toSubalgebra, Subalgebra.center_eq_top, IsIntegrallyClosedIn.integralClosure_eq_bot, integralClosure_idem, mem_bot, adjoin_union, coe_iInf, Polynomial.SplittingFieldAux.adjoin_rootSet, IntermediateField.bot_toSubalgebra, toSubmodule_bot, map_bot, IntermediateField.sup_toSubalgebra_of_isAlgebraic_left, adjoin_singleton_zero, coe_bot, sInf_toSubsemiring, sInf_toSubmodule, MvPolynomial.adjoin_range_X, IsDedekindDomain.integer_empty, adjoin_eq_top_of_conductor_eq_top, Subalgebra.eq_bot_of_finrank_one, Subalgebra.LinearDisjoint.rank_sup_of_free, coe_top, Subalgebra.unop_top, Subalgebra.lTensorBot_one_tmul, Subalgebra.isSimpleOrder_of_finrank, Subalgebra.mulMap_bot_left_eq, Subalgebra.op_inf, Polynomial.adjoin_rootSet_eq_range, IntermediateField.sup_toSubalgebra_of_isAlgebraic, top_toSubmodule, Subalgebra.fg_of_submodule_fg, CliffordAlgebra.adjoin_range_ΞΉ, Polynomial.Splits.adjoin_rootSet_eq_range, IntermediateField.sInf_toSubalgebra, map_inf, sup_toSubsemiring, GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous, Subalgebra.mem_starClosure, Subalgebra.finrank_right_dvd_finrank_sup_of_free, PrimeSpectrum.iInf_localization_eq_bot, Subalgebra.mul_toSubmodule, Subalgebra.unop_bot, bijective_algebraMap_iff, Subalgebra.topEquiv_apply, IntermediateField.adjoin_simple_eq_top_iff_of_isAlgebraic, iSup_toSubsemiring, PowerBasis.adjoin_gen_eq_top, Subalgebra.mulMap'_surjective, Submodule.comm_trans_rTensorOne, mem_sup_left, top_toSubring, IntermediateField.top_toSubalgebra, Subalgebra.finrank_left_dvd_finrank_sup_of_free, Submodule.lTensorOne'_tmul, Submodule.rTensorOne'_tmul_one, Subalgebra.unop_sSup, Submodule.rTensorOne'_tmul, Subalgebra.mul_toSubmodule_le, adjoin_eq_top_of_primitive_element, zariskisMainProperty_iff_exists_saturation_eq_top, MonoidAlgebra.exists_finset_adjoin_eq_top, sSup_toSubsemiring, IsIntegrallyClosed.iInf, TensorProduct.productMap_range, PowerBasis.adjoin_eq_top_of_gen_mem_adjoin, IsIntegrallyClosed.integralClosure_eq_bot, IsIntegrallyClosed.integralClosure_eq_bot_iff, Polynomial.IsSplittingField.adjoin_rootSet', Submodule.rTensorOne_tmul, Subalgebra.unop_iInf, inf_toSubmodule, AlgHom.range_eq_top, adjoin_singleton_one, iInf_toSubsemiring, Subalgebra.centralizer_eq_top_iff_subset, Subalgebra.unop_inf, top_toSubsemiring, Subalgebra.rTensorBot_tmul_one, Subalgebra.LinearDisjoint.rank_inf_eq_one_of_flat_of_inj, Subalgebra.finrank_sup_eq_finrank_left_mul_finrank_of_free, IsIntegrallyClosedIn.integralClosure_eq_bot_iff, Subalgebra.finrank_sup_le_of_free, Subalgebra.starClosure_toSubalgebra, Submodule.rTensorOne_tmul_one, Subalgebra.op_top, adjoin_singleton_natCast, Subalgebra.finite_sup, Subalgebra.op_iInf, Subalgebra.bot_eq_top_iff_finrank_eq_one, Subalgebra.mulMap_bot_right_eq, AddMonoidAlgebra.exists_finset_adjoin_eq_top, iInf_toSubmodule, Subalgebra.rank_sup_eq_rank_right_mul_rank_of_free, isAlgebraic_iff, Subalgebra.lTensorBot_symm_apply, FreeAlgebra.adjoin_range_ΞΉ, ContinuousMap.subalgebra_topologicalClosure_eq_top_of_separatesPoints, TensorProduct.map_range, IntermediateField.sup_toSubalgebra_of_left, StarSubalgebra.toSubalgebra_eq_top, Submodule.mulMap_one_left_eq, adjoin_adjoin_coe_preimage, Subalgebra.LinearDisjoint.rank_inf_eq_one_of_flat_left_of_inj, adjoin_top, Subalgebra.FG.sup, adjoin_root_eq_top_of_isSplittingField, Subalgebra.LinearDisjoint.finrank_sup_of_free, surjective_algebraMap_iff, toSubmodule_eq_top, DualNumber.range_inlAlgHom_sup_adjoin_eps, Subalgebra.fg_bot, adjoin_univ, AlgHom.equalizer_same, Subalgebra.fg_top, EssFiniteType.aux, IntermediateField.topEquiv_symm_apply_coe, Subalgebra.lTensorBot_tmul, Subalgebra.topEquiv_symm_apply_coe, isIntegral_iSup, Subalgebra.rank_sup_le_of_free, IntermediateField.topEquiv_apply, isIntegral_sup, Subalgebra.op_iSup, IsCyclotomicExtension.singleton_one, Subalgebra.op_sup, adjoin_restrictScalars, Subalgebra.LinearDisjoint.val_mulMap_tmul, Subalgebra.mulMap_range, RingOfIntegers.exponent_eq_one_iff, Subalgebra.rTensorBot_symm_apply, comap_top, Subalgebra.LinearDisjoint.rank_inf_eq_one_of_flat_right_of_inj, StarSubalgebra.sInf_toSubalgebra, MaximalSpectrum.iInf_localization_eq_bot, IsCentral.center_eq_bot, mem_iSup_of_mem, Subalgebra.centralizer_coe_sup, Submodule.lTensorOne_symm_apply, MvPolynomial.supported_empty, IsCyclotomicExtension.iff_adjoin_eq_top, Subalgebra.coe_starClosure, JacobsonNoether.exists_separable_and_not_isCentral', IntermediateField.toSubalgebra_iSup_of_directed, Submodule.lTensorOne'_one_tmul, eq_top_iff, adjoin_iUnion, Subalgebra.rank_eq_one_iff, Subalgebra.prod_top, Subalgebra.map_comap_eq, subalgebra_top_finrank_eq_submodule_top_finrank, IntermediateField.adjoin_eq_top_iff, Valuation.Integers.integralClosure, IsCyclotomicExtension.Rat.adjoin_singleton_eq_top, mem_sup_right, IsUnramifiedAt.exists_notMem_forall_ne_mem_and_adjoin_eq_top, polynomialFunctions.topologicalClosure, RingCon.range_mkₐ, adjoin_eq_sInf, map_top, Subalgebra.eq_bot_of_rank_le_one, Submodule.lTensorOne_tmul, coe_inf, Subalgebra.comm_trans_lTensorBot, adjoin_eq_top_of_intermediateField, Subalgebra.bot_eq_top_of_finrank_eq_one, MvPolynomial.supported_univ, conductor_eq_top_iff_adjoin_eq_top, Subalgebra.isAlgebraic_bot_iff, AdjoinRoot.adjoinRoot_eq_top, Subalgebra.isSimpleOrder_of_finrank_prime, mul_mem_sup, Complex.adjoin_I, FiniteType.out, polynomialFunctions_closure_eq_top', Subalgebra.val_mulMap'_tmul, IntermediateField.sup_toSubalgebra_of_right, AlgHom.eqOn_sup, IntermediateField.le_sup_toSubalgebra, IntermediateField.sup_toSubalgebra_of_isAlgebraic_right, Submodule.lTensorOne_one_tmul, map_iInf, TensorProduct.adjoin_tmul_eq_top, IntermediateField.iInf_toSubalgebra, mem_inf, Subalgebra.LinearDisjoint.eq_bot_of_commute_of_self, Subalgebra.finrank_bot, coe_sInf, sup_def, Subalgebra.restrictScalars_top, IsCentral.out, polynomialFunctions_closure_eq_top, IsDedekindDomain.integer_univ, IsAdjoinRoot.adjoin_root_eq_top, Subalgebra.bot_eq_top_iff_rank_eq_one, Subalgebra.rTensorBot_tmul, range_id, Polynomial.SplittingField.adjoin_rootSet, TrivSqZeroExt.range_inlAlgHom_sup_adjoin_range_inr, Polynomial.adjoin_X, inf_toSubsemiring, StarSubalgebra.iInf_toSubalgebra, StarSubalgebra.top_toSubalgebra, IsCyclotomicExtension.lcm_sup, Subalgebra.LinearDisjoint.eq_bot_of_self, Subalgebra.LinearDisjoint.bot_left, Subalgebra.rank_bot, Subalgebra.LinearDisjoint.bot_right, notMem_iff_exists_ne_and_isConjRoot, adjoin_empty, Subalgebra.fg_bot_toSubmodule, botEquiv_symm_apply, Subalgebra.rank_top, Subalgebra.bot_eq_top_of_rank_eq_one, Subalgebra.finrank_eq_one_iff, subalgebra_top_rank_eq_submodule_top_rank, TrivSqZeroExt.range_liftAux, Subalgebra.eq_bot_of_isPurelyInseparable_of_isSeparable, Subalgebra.finite_bot, Subalgebra.restrictScalars_adjoin, Subalgebra.unop_iSup, Subalgebra.unop_sInf
instInhabitedSubalgebra πŸ“–CompOpβ€”
instSubtypeMemSubalgebraMin πŸ“–CompOpβ€”
instSubtypeMemSubalgebraMin_1 πŸ“–CompOpβ€”
toTop πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_adjoin_coe_preimage πŸ“–mathematicalβ€”adjoin
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.toSemiring
Subalgebra.algebra
Set.preimage
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”eq_top_iff
adjoin_induction
subset_adjoin
Subalgebra.algebraMap_mem
Subalgebra.add_mem
Subalgebra.mul_mem
adjoin_attach_biUnion πŸ“–mathematicalβ€”adjoin
SetLike.coe
Finset
Finset.instSetLike
Finset.biUnion
Finset.instMembership
Finset.attach
iSup
Subalgebra
SetLike.instMembership
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
β€”Finset.coe_biUnion
Set.iUnion_congr_Prop
Finset.coe_attach
Set.iUnion_true
adjoin_iUnion
adjoin_empty πŸ“–mathematicalβ€”adjoin
Set
Set.instEmptyCollection
Bot.bot
Subalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”GaloisConnection.l_bot
gc
adjoin_eq πŸ“–mathematicalβ€”adjoin
SetLike.coe
Subalgebra
Subalgebra.instSetLike
β€”adjoin_eq_of_le
Set.Subset.refl
subset_adjoin
adjoin_eq_of_le πŸ“–β€”Set
Set.instHasSubset
SetLike.coe
Subalgebra
Subalgebra.instSetLike
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
adjoin
β€”β€”le_antisymm
adjoin_le
adjoin_eq_ring_closure πŸ“–mathematicalβ€”Subalgebra.toSubring
adjoin
CommRing.toCommSemiring
Ring.toSemiring
Subring.closure
Set
Set.instUnion
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”Subring.closure_eq_of_le
Subsemiring.closure_induction
Subring.subset_closure
Subring.zero_mem
Subring.one_mem
Subring.add_mem
Subring.mul_mem
adjoin_eq_sInf πŸ“–mathematicalβ€”adjoin
InfSet.sInf
Subalgebra
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
setOf
Set
Set.instHasSubset
SetLike.coe
Subalgebra.instSetLike
β€”le_antisymm
le_sInf
adjoin_le
sInf_le
subset_adjoin
adjoin_eq_span πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
adjoin
Submodule.span
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
Submonoid.closure
β€”le_antisymm
Subsemiring.mem_closure_iff_exists_list
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
Submodule.add_mem
Submonoid.one_mem'
one_smul
smul_def
RingHom.map_mul
mul_assoc
Submonoid.mul_mem
Submonoid.subset_closure
mul_smul_comm
to_smulCommClass
Submodule.smul_mem
Submodule.subset_span
Submodule.span_le
Submonoid.closure_le
subset_adjoin
adjoin_eq_span_of_subset πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Submonoid.instSetLike
Submonoid.closure
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
toModule
Submodule.setLike
Submodule.span
DFunLike.coe
OrderEmbedding
Subalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
adjoin
β€”le_antisymm
adjoin_toSubmodule_le
span_le_adjoin
adjoin_iUnion πŸ“–mathematicalβ€”adjoin
Set.iUnion
iSup
Subalgebra
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
β€”GaloisConnection.l_iSup
gc
adjoin_image πŸ“–mathematicalβ€”adjoin
Set.image
DFunLike.coe
AlgHom
AlgHom.funLike
Subalgebra.map
β€”le_antisymm
adjoin_le
Set.image_mono
subset_adjoin
Subalgebra.map_le
Set.image_subset_iff
Set.image_id'
adjoin_induction πŸ“–β€”subset_adjoin
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
algebraMap_mem
Subalgebra
Subalgebra.instSetLike
AddSubmonoidWithOneClass.toOneMemClass
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
Subalgebra.instSMulMemClass
adjoin
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
SubsemiringClass.toAddSubmonoidClass
Distrib.toMul
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SubsemiringClass.toSubmonoidClass
SetLike.instMembership
β€”β€”subset_adjoin
algebraMap_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
Subalgebra.instSMulMemClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
RingHom.map_one
RingHom.map_zero
adjoin_le
adjoin_inductionβ‚‚ πŸ“–β€”subset_adjoin
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
algebraMap_mem
Subalgebra
Subalgebra.instSetLike
AddSubmonoidWithOneClass.toOneMemClass
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
Subalgebra.instSMulMemClass
adjoin
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
SubsemiringClass.toAddSubmonoidClass
Distrib.toMul
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SubsemiringClass.toSubmonoidClass
SetLike.instMembership
β€”β€”subset_adjoin
algebraMap_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
Subalgebra.instSMulMemClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
adjoin_induction
adjoin_insert_adjoin πŸ“–mathematicalβ€”adjoin
Set
Set.instInsert
SetLike.coe
Subalgebra
Subalgebra.instSetLike
β€”le_antisymm
adjoin_le
Set.insert_subset_iff
subset_adjoin
Set.mem_insert
adjoin_mono
Set.subset_insert
Set.insert_subset_insert
adjoin_insert_algebraMap πŸ“–mathematicalβ€”adjoin
Set
Set.instInsert
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”Set.insert_eq
adjoin_union
adjoin_singleton_algebraMap
sup_of_le_right
adjoin_insert_intCast πŸ“–mathematicalβ€”adjoin
CommRing.toCommSemiring
Ring.toSemiring
Set
Set.instInsert
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”map_intCast
RingHom.instRingHomClass
adjoin_insert_algebraMap
adjoin_insert_natCast πŸ“–mathematicalβ€”adjoin
Set
Set.instInsert
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”algebraMap.coe_natCast
adjoin_insert_algebraMap
adjoin_insert_one πŸ“–mathematicalβ€”adjoin
Set
Set.instInsert
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”Nat.cast_one
adjoin_insert_natCast
adjoin_insert_zero πŸ“–mathematicalβ€”adjoin
Set
Set.instInsert
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Nat.cast_zero
adjoin_insert_natCast
adjoin_int πŸ“–mathematicalβ€”adjoin
Int.instCommSemiring
Ring.toSemiring
Ring.toIntAlgebra
subalgebraOfSubring
Subring.closure
β€”le_antisymm
adjoin_le
Subring.subset_closure
Subring.closure_le
subset_adjoin
adjoin_le πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Subalgebra
Subalgebra.instSetLike
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
adjoin
β€”GaloisConnection.l_le
gc
adjoin_le_centralizer_centralizer πŸ“–mathematicalβ€”Subalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
adjoin
Subalgebra.centralizer
SetLike.coe
Subalgebra.instSetLike
β€”adjoin_le
Set.subset_centralizer_centralizer
adjoin_le_iff πŸ“–mathematicalβ€”Subalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
adjoin
Set
Set.instHasSubset
SetLike.coe
Subalgebra.instSetLike
β€”gc
adjoin_mono πŸ“–mathematicalSet
Set.instHasSubset
Subalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
adjoin
β€”GaloisConnection.monotone_l
gc
adjoin_nat πŸ“–mathematicalβ€”adjoin
Nat.instCommSemiring
Semiring.toNatAlgebra
subalgebraOfSubsemiring
Subsemiring.closure
Semiring.toNonAssocSemiring
β€”le_antisymm
adjoin_le
Subsemiring.subset_closure
Subsemiring.closure_le
subset_adjoin
adjoin_nonUnitalSubalgebra πŸ“–mathematicalβ€”adjoin
Ring.toSemiring
SetLike.coe
NonUnitalSubalgebra
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toModule
NonUnitalSubalgebra.instSetLike
NonUnitalAlgebra.adjoin
IsScalarTower.right
to_smulCommClass
β€”le_antisymm
IsScalarTower.right
to_smulCommClass
adjoin_le
NonUnitalAlgebra.adjoin_le_algebra_adjoin
HasSubset.Subset.trans
Set.instIsTransSubset
NonUnitalAlgebra.subset_adjoin
subset_adjoin
adjoin_singleton_algebraMap πŸ“–mathematicalβ€”adjoin
Set
Set.instSingletonSet
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
Bot.bot
Subalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”bot_unique
adjoin_singleton_le
Subalgebra.algebraMap_mem
adjoin_singleton_intCast πŸ“–mathematicalβ€”adjoin
CommRing.toCommSemiring
Ring.toSemiring
Set
Set.instSingletonSet
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
Bot.bot
Subalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”map_intCast
RingHom.instRingHomClass
adjoin_singleton_algebraMap
adjoin_singleton_le πŸ“–mathematicalSubalgebra
SetLike.instMembership
Subalgebra.instSetLike
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
adjoin
Set
Set.instSingletonSet
β€”adjoin_le
Set.singleton_subset_iff
adjoin_singleton_natCast πŸ“–mathematicalβ€”adjoin
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Bot.bot
Subalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”map_natCast
RingHom.instRingHomClass
adjoin_singleton_algebraMap
adjoin_singleton_one πŸ“–mathematicalβ€”adjoin
Set
Set.instSingletonSet
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Bot.bot
Subalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Nat.cast_one
adjoin_singleton_natCast
adjoin_singleton_zero πŸ“–mathematicalβ€”adjoin
Set
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Bot.bot
Subalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Nat.cast_zero
adjoin_singleton_natCast
adjoin_span πŸ“–mathematicalβ€”adjoin
SetLike.coe
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
Submodule.setLike
Submodule.span
β€”le_antisymm
adjoin_le
span_le_adjoin
adjoin_mono
Submodule.subset_span
adjoin_toSubmodule_le πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
DFunLike.coe
OrderEmbedding
Subalgebra
Subalgebra.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
adjoin
Set
Set.instHasSubset
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
Submonoid.closure
Submodule.setLike
β€”adjoin_eq_span
Submodule.span_le
adjoin_toSubsemiring πŸ“–mathematicalβ€”Subalgebra.toSubsemiring
adjoin
Subsemiring.closure
Semiring.toNonAssocSemiring
Set
Set.instUnion
Set.range
DFunLike.coe
RingHom
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”β€”
adjoin_union πŸ“–mathematicalβ€”adjoin
Set
Set.instUnion
Subalgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
β€”GaloisConnection.l_sup
gc
adjoin_union_coe_submodule πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Subalgebra
CommSemiring.toSemiring
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
adjoin
Set
Set.instUnion
Submodule.mul
IsScalarTower.right
β€”IsScalarTower.right
adjoin_eq_span
Submodule.span_mul_span
Set.ext
Submonoid.closure_union
adjoin_univ πŸ“–mathematicalβ€”adjoin
Set.univ
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”GaloisInsertion.l_top
bijective_algebraMap_iff πŸ“–mathematicalβ€”Function.Bijective
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Bot.bot
OrderBot.toBot
BoundedOrder.toOrderBot
β€”surjective_algebraMap_iff
RingHom.injective
DivisionRing.isSimpleRing
botEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
SetLike.instMembership
Subalgebra.instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subalgebra.toSemiring
id
Subalgebra.algebra
AlgEquiv.instFunLike
AlgEquiv.symm
botEquiv
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”β€”
coe_bot πŸ“–mathematicalβ€”SetLike.coe
Subalgebra
Subalgebra.instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”β€”
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
Subalgebra
Subalgebra.instSetLike
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Set.iInter
β€”coe_sInf
Set.iInter_congr_Prop
Set.iInter_exists
Set.iInter_iInter_eq'
coe_inf πŸ“–mathematicalβ€”SetLike.coe
Subalgebra
Subalgebra.instSetLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Set
Set.instInter
β€”β€”
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
Subalgebra
Subalgebra.instSetLike
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Set.iInter
Set
Set.instMembership
β€”sInf_image
coe_top πŸ“–mathematicalβ€”SetLike.coe
Subalgebra
Subalgebra.instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.univ
β€”β€”
comap_top πŸ“–mathematicalβ€”Subalgebra.comap
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”eq_top_iff
mem_top
commute_of_mem_adjoin_of_forall_mem_commute πŸ“–β€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
adjoin
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”adjoin_induction
commutes
Commute.add_right
Commute.mul_right
commute_of_mem_adjoin_self πŸ“–mathematicalSubalgebra
SetLike.instMembership
Subalgebra.instSetLike
adjoin
Set
Set.instSingletonSet
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”commute_of_mem_adjoin_singleton_of_commute
commute_of_mem_adjoin_singleton_of_commute πŸ“–β€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
adjoin
Set
Set.instSingletonSet
Commute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”commute_of_mem_adjoin_of_forall_mem_commute
eq_top_iff πŸ“–mathematicalβ€”Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
SetLike.instMembership
Subalgebra.instSetLike
β€”mem_top
Subalgebra.ext
forall_mem_adjoin_smul_eq_self_iff πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MulSemiringAction.toDistribMulAction
β€”AlgHom.eqOn_adjoin_iff
gc πŸ“–mathematicalβ€”GaloisConnection
Set
Subalgebra
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Subalgebra.instPartialOrder
adjoin
SetLike.coe
Subalgebra.instSetLike
β€”le_trans
Set.subset_union_right
Subsemiring.subset_closure
Subsemiring.closure_le
Set.union_subset
Subalgebra.range_subset
iInf_toSubmodule πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Submodule.instInfSet
β€”SetLike.coe_injective
coe_iInf
Submodule.coe_iInf
iInf_toSubsemiring πŸ“–mathematicalβ€”Subalgebra.toSubsemiring
iInf
Subalgebra
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Subsemiring
Semiring.toNonAssocSemiring
Subsemiring.instInfSet
β€”sInf_toSubsemiring
iSup_induction πŸ“–β€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
DFunLike.coe
RingHom
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”β€”RingHom.map_one
RingHom.map_zero
iSup_le_iff
iSup_induction' πŸ“–β€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
mem_iSup_of_mem
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SubsemiringClass.toAddSubmonoidClass
Subalgebra.instSubsemiringClass
Distrib.toMul
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SubsemiringClass.toSubmonoidClass
DFunLike.coe
RingHom
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
Subalgebra.algebraMap_mem
β€”β€”mem_iSup_of_mem
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
Subalgebra.instSubsemiringClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
Subalgebra.algebraMap_mem
iSup_induction
iSup_toSubsemiring πŸ“–mathematicalβ€”Subalgebra.toSubsemiring
iSup
Subalgebra
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Subsemiring
Semiring.toNonAssocSemiring
Subsemiring.instCompleteLattice
β€”sSup_toSubsemiring
inf_toSubmodule πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Submodule.instMin
β€”β€”
inf_toSubsemiring πŸ“–mathematicalβ€”Subalgebra.toSubsemiring
Subalgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Subsemiring
Semiring.toNonAssocSemiring
Subsemiring.instMin
β€”β€”
map_bot πŸ“–mathematicalβ€”Subalgebra.map
Bot.bot
Subalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Subalgebra.toSubmodule_injective
RingHomSurjective.ids
Subalgebra.map_toSubmodule
Submodule.map.congr_simp
toSubmodule_bot
Submodule.map_one
map_iInf πŸ“–mathematicalDFunLike.coe
AlgHom
AlgHom.funLike
Subalgebra.map
iInf
Subalgebra
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
β€”SetLike.coe_injective
coe_iInf
Set.InjOn.image_iInter_eq
Set.injOn_of_injective
map_inf πŸ“–mathematicalDFunLike.coe
AlgHom
AlgHom.funLike
Subalgebra.map
Subalgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
β€”SetLike.coe_injective
Set.image_inter
map_sup πŸ“–mathematicalβ€”Subalgebra.map
Subalgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
β€”GaloisConnection.l_sup
Subalgebra.gc_map_comap
map_top πŸ“–mathematicalβ€”Subalgebra.map
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
AlgHom.range
β€”SetLike.coe_injective
Set.image_univ
mem_adjoin_iff πŸ“–mathematicalβ€”Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
adjoin
Subring
Subring.instSetLike
Subring.closure
Set
Set.instUnion
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”Subalgebra.mem_toSubring
adjoin_eq_ring_closure
mem_adjoin_of_map_mul πŸ“–mathematicalDFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
toModule
LinearMap.instFunLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
adjoin
Set.image
Set
Set.instUnion
Set.instSingletonSet
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”adjoin_induction
subset_adjoin
Set.subset_union_left
Set.subset_union_right
Set.mem_singleton
algebraMap_eq_smul_one
LinearMap.map_smul
Subalgebra.smul_mem
Set.union_singleton
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
Subalgebra.add_mem
Subalgebra.mul_mem
mem_adjoin_of_mem πŸ“–mathematicalSet
Set.instMembership
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
adjoin
β€”subset_adjoin
mem_bot πŸ“–mathematicalβ€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set
Set.instMembership
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”β€”
mem_iInf πŸ“–mathematicalβ€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
β€”β€”
mem_iSup_of_mem πŸ“–mathematicalSubalgebra
SetLike.instMembership
Subalgebra.instSetLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
β€”le_iSup
mem_inf πŸ“–mathematicalβ€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
β€”β€”
mem_sInf πŸ“–mathematicalβ€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
β€”coe_sInf
mem_sup_left πŸ“–mathematicalSubalgebra
SetLike.instMembership
Subalgebra.instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
β€”le_sup_left
mem_sup_right πŸ“–mathematicalSubalgebra
SetLike.instMembership
Subalgebra.instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
β€”le_sup_right
mem_top πŸ“–mathematicalβ€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Set.mem_univ
mul_mem_sup πŸ“–mathematicalSubalgebra
SetLike.instMembership
Subalgebra.instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Subalgebra.mul_mem
mem_sup_left
mem_sup_right
range_id πŸ“–mathematicalβ€”AlgHom.range
AlgHom.id
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”SetLike.coe_injective
Set.range_id
range_ofId πŸ“–mathematicalβ€”AlgHom.range
CommSemiring.toSemiring
id
ofId
Bot.bot
Subalgebra
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”β€”
sInf_toSubmodule πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Submodule.instInfSet
Set.image
β€”SetLike.coe_injective
coe_sInf
Set.iInter_congr_Prop
Set.iInter_exists
Set.biInter_and'
Set.iInter_iInter_eq_right
sInf_toSubsemiring πŸ“–mathematicalβ€”Subalgebra.toSubsemiring
InfSet.sInf
Subalgebra
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Subsemiring
Semiring.toNonAssocSemiring
Subsemiring.instInfSet
Set.image
β€”SetLike.coe_injective
coe_sInf
Set.iInter_congr_Prop
Set.iInter_exists
Set.biInter_and'
Set.iInter_iInter_eq_right
sSup_def πŸ“–mathematicalβ€”SupSet.sSup
Subalgebra
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
adjoin
Set.sUnion
Set.image
Set
SetLike.coe
Subalgebra.instSetLike
β€”β€”
sSup_toSubsemiring πŸ“–mathematicalSet.Nonempty
Subalgebra
Subalgebra.toSubsemiring
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Subsemiring
Semiring.toNonAssocSemiring
Subsemiring.instCompleteLattice
Set.image
β€”Set.image_image
Set.image_congr
Subsemiring.closure_eq
sSup_image
Subsemiring.closure_sUnion
sSup_def
adjoin_toSubsemiring
Set.union_eq_right
algebraMap_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
Subalgebra.instSMulMemClass
self_mem_adjoin_singleton πŸ“–mathematicalβ€”Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
adjoin
Set
Set.instSingletonSet
β€”subset_adjoin
Set.mem_singleton_iff
span_le_adjoin πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.span
DFunLike.coe
OrderEmbedding
Subalgebra
Subalgebra.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
adjoin
β€”Submodule.span_le
subset_adjoin
subset_adjoin πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Subalgebra
Subalgebra.instSetLike
adjoin
β€”GaloisConnection.le_u_l
gc
sup_def πŸ“–mathematicalβ€”Subalgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
adjoin
Set
Set.instUnion
SetLike.coe
Subalgebra.instSetLike
β€”β€”
sup_toSubsemiring πŸ“–mathematicalβ€”Subalgebra.toSubsemiring
Subalgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLatticeSubalgebra
Subsemiring
Semiring.toNonAssocSemiring
Subsemiring.instCompleteLattice
β€”Subsemiring.closure_eq
Subsemiring.closure_union
Set.union_eq_right
Set.mem_union_left
algebraMap_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
Subalgebra.instSMulMemClass
surjective_algebraMap_iff πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Bot.bot
OrderBot.toBot
BoundedOrder.toOrderBot
β€”eq_bot_iff
Subalgebra.algebraMap_mem
mem_bot
mem_top
toSubmodule_bot πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
Bot.bot
OrderBot.toBot
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Submodule.one
β€”RingHomSurjective.ids
Submodule.one_eq_range
toSubmodule_eq_top πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
Top.top
Submodule.instTop
OrderTop.toTop
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”RelEmbedding.injective
top_toSubmodule
toSubring_bot πŸ“–mathematicalβ€”Subalgebra.toSubring
Subring
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
Subring.toCommRing
ofSubring
id
CommRing.toCommSemiring
Bot.bot
Subalgebra
SubsemiringClass.toCommSemiring
SubringClass.toSubsemiringClass
Subring.instSubringClass
CommSemiring.toSemiring
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Subring.ext
SubringClass.toSubsemiringClass
Subring.instSubringClass
Subalgebra.mem_carrier
toSubring_eq_top πŸ“–mathematicalβ€”Subalgebra.toSubring
Top.top
Subring
Subring.instTop
Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Subalgebra.toSubring_injective
top_toSubring
toSubsemiring_eq_top πŸ“–mathematicalβ€”Subalgebra.toSubsemiring
Top.top
Subsemiring
Semiring.toNonAssocSemiring
Subsemiring.instTop
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Subalgebra.toSubsemiring_injective
top_toSubsemiring
top_toSubmodule πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Subalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
toModule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
Top.top
OrderTop.toTop
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Submodule.instTop
β€”β€”
top_toSubring πŸ“–mathematicalβ€”Subalgebra.toSubring
Top.top
Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Subring
Subring.instTop
β€”β€”
top_toSubsemiring πŸ“–mathematicalβ€”Subalgebra.toSubsemiring
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Subsemiring
Semiring.toNonAssocSemiring
Subsemiring.instTop
β€”β€”

NonUnitalAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_le_algebra_adjoin πŸ“–mathematicalβ€”NonUnitalSubalgebra
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
NonUnitalSubalgebra.instPartialOrder
adjoin
IsScalarTower.right
Algebra.to_smulCommClass
Subalgebra.toNonUnitalSubalgebra
Algebra.adjoin
β€”adjoin_le
IsScalarTower.right
Algebra.to_smulCommClass
Algebra.subset_adjoin

Subalgebra

Definitions

NameCategoryTheorems
instUnique πŸ“–CompOpβ€”
saturation πŸ“–CompOp
4 mathmath: mem_saturation_iff, Algebra.zariskisMainProperty_iff_exists_saturation_eq_top, saturation_saturation, le_saturation
topEquiv πŸ“–CompOp
2 mathmath: topEquiv_apply, topEquiv_symm_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_eq_span_of_eq_span πŸ“–mathematicalDFunLike.coe
OrderEmbedding
Subalgebra
Submodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
toSubmodule
Submodule.span
Algebra.adjoin
SetLike.coe
instSetLike
β€”Submonoid.adjoin_eq_span_of_eq_span
center_eq_top πŸ“–mathematicalβ€”center
CommSemiring.toSemiring
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”SetLike.coe_injective
Set.center_eq_univ
centralizer_eq_top_iff_subset πŸ“–mathematicalβ€”centralizer
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set
Set.instHasSubset
SetLike.coe
instSetLike
center
β€”SetLike.ext'_iff
Set.centralizer_eq_top_iff_subset
comap_map_eq πŸ“–mathematicalβ€”comap
Ring.toSemiring
map
Subalgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Algebra.instCompleteLatticeSubalgebra
Algebra.adjoin
Set.preimage
DFunLike.coe
AlgHom
AlgHom.funLike
Set
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”le_antisymm
mem_map
mem_comap
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
sub_self
Algebra.adjoin_eq
Algebra.adjoin_union
add_sub_cancel
add_mem
Algebra.subset_adjoin
map_le
Algebra.map_sup
AlgHom.map_adjoin
le_of_eq
sup_eq_left
Algebra.adjoin_le_iff
HasSubset.Subset.trans
Set.instIsTransSubset
Set.image_preimage_subset
Set.singleton_subset_iff
zero_mem
comap_map_eq_self πŸ“–mathematicalSet
Set.instHasSubset
Set.preimage
DFunLike.coe
AlgHom
Ring.toSemiring
AlgHom.funLike
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SetLike.coe
Subalgebra
instSetLike
comap
map
β€”left_eq_sup
Algebra.adjoin_le_iff
comap_map_eq
le_saturation πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
Subsemiring.toSubmonoid
toSubsemiring
Subalgebra
instPartialOrder
saturation
β€”OneMemClass.one_mem
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
one_mul
map_comap_eq πŸ“–mathematicalβ€”map
comap
Subalgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Algebra.instCompleteLatticeSubalgebra
AlgHom.range
β€”SetLike.coe_injective
Set.image_preimage_eq_inter_range
map_comap_eq_self πŸ“–mathematicalSubalgebra
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AlgHom.range
map
comap
β€”inf_of_le_left
map_comap_eq
map_comap_eq_self_of_surjective πŸ“–mathematicalDFunLike.coe
AlgHom
AlgHom.funLike
map
comap
β€”map_comap_eq_self
AlgHom.range_eq_top
mem_saturation_iff πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
Subsemiring.toSubmonoid
toSubsemiring
Subalgebra
SetLike.instMembership
instSetLike
saturation
Submonoid.instSetLike
Algebra.toSMul
Algebra.id
β€”β€”
mem_saturation_of_mul_mem_left πŸ“–β€”Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
Subsemiring.toSubmonoid
toSubsemiring
Subalgebra
SetLike.instMembership
instSetLike
saturation
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Submonoid.instSetLike
β€”β€”Eq.le
LE.le.trans
le_saturation
saturation_saturation
mem_saturation_of_mul_mem_right πŸ“–β€”Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
Subsemiring.toSubmonoid
toSubsemiring
Subalgebra
SetLike.instMembership
instSetLike
saturation
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Submonoid.instSetLike
β€”β€”mem_saturation_of_mul_mem_left
mul_comm
saturation_saturation πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
Subsemiring.toSubmonoid
toSubsemiring
saturation
LE.le.trans
le_saturation
β€”LE.le.antisymm'
LE.le.trans
le_saturation
Submonoid.mul_mem
mul_assoc
topEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Subalgebra
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
toSemiring
algebra
AlgEquiv.instFunLike
topEquiv
β€”β€”
topEquiv_symm_apply_coe πŸ“–mathematicalβ€”Subalgebra
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
DFunLike.coe
AlgEquiv
toSemiring
algebra
AlgEquiv.instFunLike
AlgEquiv.symm
topEquiv
β€”β€”

Submonoid

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_eq_span_of_eq_span πŸ“–mathematicalSetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSetLike
Submodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Submodule.setLike
Submodule.span
DFunLike.coe
OrderEmbedding
Subalgebra
CommSemiring.toSemiring
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
Submodule.instPartialOrder
instFunLikeOrderEmbedding
Subalgebra.toSubmodule
Algebra.adjoin
β€”Algebra.adjoin_eq_span
closure_eq
LE.le.antisymm
Submodule.span_le
Submodule.span_subset_span
Submodule.span_mono
Submodule.subset_span

Subring

Definitions

NameCategoryTheorems
closureEquivAdjoinInt πŸ“–CompOpβ€”

Subsemiring

Definitions

NameCategoryTheorems
closureEquivAdjoinNat πŸ“–CompOpβ€”

---

← Back to Index