| Name | Category | Theorems |
adjoin π | CompOp | 284 mathmath: IsCyclotomicExtension.adjoin_primitive_root_eq_top, IsUnramifiedAt.exists_primesOver_under_adjoin_eq_singleton_and_residueField_bijective, minpoly.ToAdjoin.injective, NonUnitalAlgebra.adjoin_le_algebra_adjoin, RingHom.adjoin_algebraMap_apply, lift_cardinalMk_adjoin_le, IntermediateField.adjoin_eq_top_iff_of_isAlgebraic, polynomialFunctions.eq_adjoin_X, Subalgebra.adjoin_rank_le, AlgebraicIndependent.transcendental_adjoin_iff, AlgEquiv.coe_adjoinSingletonEquivAdjoinRootMinpoly_symm, FiniteType.adjoin_of_finite, algebraicIndependent_adjoin, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime_pow, IntermediateField.adjoin_intermediateField_toSubalgebra_of_isAlgebraic, adjoin_algebraMap_image_union_eq_adjoin_adjoin, adjoin_singleton_intCast, AlgebraicIndependent.isTranscendenceBasis_iff_isAlgebraic, jacobiSum_mem_algebraAdjoin_of_pow_eq_one, GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous_ne_zero, finite_adjoin_simple_of_isIntegral, MulChar.apply_mem_algebraAdjoin_of_pow_eq_one, Subalgebra.comap_map_eq, Subalgebra.finrank_sup_eq_finrank_right_mul_finrank_of_free, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_apply, TensorAlgebra.adjoin_range_ΞΉ, DualNumber.range_lift, AlgebraicIndependent.transcendental_adjoin, Subalgebra.star_adjoin_comm, IsIntegral.adjoin, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C, adjoin_le_integralClosure, sSup_def, AlgebraicIndependent.repr_ker, isAlgebraic_adjoin_iff, CliffordAlgebra.range_lift, AlgebraicIndependent.aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin, adjoin_singleton_algebraMap, NumberField.adjoin_eq_top_of_infinitePlace_lt, Subalgebra.rank_sup_eq_rank_left_mul_rank_of_free, AlgebraicIndependent.iff_adjoin_image_compl, MulChar.apply_mem_algebraAdjoin, adjoin_insert_natCast, Subalgebra.LinearDisjoint.adjoin_rank_eq_rank_left, Polynomial.lift_of_splits, mem_adjoin_iff, MvPolynomial.supported_eq_adjoin_X, MonoidAlgebra.mem_adjoin_support, IntermediateField.algebraAdjoinAdjoin.instIsAlgebraicSubtypeMemSubalgebraAdjoinAdjoin, Submonoid.adjoin_eq_span_of_eq_span, adjoin_monomial_eq_reesAlgebra, IsCyclotomicExtension.adjoin_roots_cyclotomic_eq_adjoin_root_cyclotomic, AlgebraicIndependent.matroid_isBasis_iff, EssFiniteType.adjoin_mem_finset, IsScalarTower.adjoin_range_toAlgHom, adjoin_attach_biUnion, Polynomial.IsSplittingField.adjoin_rootSet, adjoin_span, IntermediateField.isAlgebraic_adjoin_iff_top, AlgEquiv.adjoinSingletonEquivAdjoinRootMinpoly_symm_toAlgHom, AdjoinRoot.Minpoly.toAdjoin.surjective, AlgebraicIndependent.aeval_comp_repr, span_le_adjoin, adjoin_adjoin_of_tower, AlgebraicIndependent.adjoin_iff_disjoint, IsPrimitiveRoot.powerBasis_gen_mem_adjoin_zeta_sub_one, adjoin_union, IntermediateField.isAlgebraic_adjoin_iff, AlgebraicIndependent.matroid_spanning_iff, Polynomial.SplittingFieldAux.adjoin_rootSet, IsPrimitiveRoot.adjoinEquivRingOfIntegers_symm_apply, prod_mem_ideal_map_of_mem_conductor, mem_adjoin_map_integralClosure_of_isStandardEtale, adjoin_singleton_zero, NonUnitalSubalgebra.unitization_range, IsPrimitiveRoot.adjoin_pair_eq, monomial_mem_adjoin_monomial, subset_adjoin, Subalgebra.op_adjoin, MvPolynomial.adjoin_range_X, isAlgebraic_adjoin_singleton_iff, adjoin_eq_top_of_conductor_eq_top, adjoin_insert_one, AlgebraicIndependent.sumElim_iff, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime, span_coeff_minpolyDiv, IntermediateField.adjoin_simple_toSubalgebra_of_integral, IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply, Subalgebra.fg_adjoin_finset, isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot, Polynomial.adjoin_rootSet_eq_range, AlgebraicIndependent.adjoin_of_disjoint, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C', essFiniteType_cond_iff, CliffordAlgebra.adjoin_range_ΞΉ, instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetCoeRingHomAlgebraMap, Polynomial.Splits.adjoin_rootSet_eq_range, adjoin.powerBasis_dim, GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous, adjoin_eq_ring_closure, adjoin_singleton_le, AdjoinRoot.Minpoly.coe_toAdjoin, mem_conductor_iff, FractionalIdeal.adjoinIntegral_coe, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_some, adjoin_nonUnitalSubalgebra_eq_span, adjoin_insert_algebraMap, isNoetherian_adjoin_finset, adjoin_singleton_eq_range_aeval, IntermediateField.adjoin_simple_eq_top_iff_of_isAlgebraic, isCyclotomicExtension_iff_eq_adjoin, FractionalIdeal.isFractional_adjoin_integral, Subalgebra.fg_def, PowerBasis.adjoin_gen_eq_top, adjoin_range_eq_range_freeAlgebra_lift, coeff_minpolyDiv_mem_adjoin, Complex.range_liftAux, Subalgebra.adjoin_eq_span_basis, adjoin.powerBasis'_dim, AlgebraicIndependent.isAlgebraic_adjoin_iff_of_matroid_isBasis, IntermediateField.mem_adjoin_iff_div, ContinuousAlgHom.eqOn_closure_adjoin, conductor_subset_adjoin, exists_jacobiSum_eq_neg_one_add, Derivation.eqOn_adjoin, adjoin_toSubmodule_le, adjoin_eq_top_of_primitive_element, Presentation.instHasCoeffsSubtypeMemSubalgebraAdjoin, NonUnitalSubalgebra.unitizationAlgEquiv_apply_coe, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_none, MonoidAlgebra.exists_finset_adjoin_eq_top, Polynomial.IsSplittingField.adjoin_rootSet', AlgHom.map_adjoin, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, adjoin.powerBasis_gen, Unitization.lift_range, AlgebraicIndependent.option_iff_transcendental, adjoin_singleton_one, adjoin_eq_span_of_subset, discr_mul_isIntegral_mem_adjoin, AlgebraicIndependent.algebraMap_aevalEquiv, AdjoinRoot.Minpoly.coe_toAdjoin_mk_X, IsCyclotomicExtension.iff_singleton, adjoin_range_eq_range_aeval, MvPolynomial.aeval_toPolynomialAdjoinImageCompl_eq_zero, adjoin_inl_union_inr_eq_prod, finite_adjoin_of_finite_of_isIntegral, adjoin_insert_intCast, Subalgebra.finrank_sup_eq_finrank_left_mul_finrank_of_free, Polynomial.IsWeaklyEisensteinAt.exists_mem_adjoin_mul_eq_pow_natDegree, adjoin_insert_adjoin, IntermediateField.isTranscendenceBasis_adjoin_iff, IntermediateField.adjoin_intermediateField_toSubalgebra_of_isAlgebraic_left, small_adjoin, Submodule.span_range_natDegree_eq_adjoin, adjoin_eq_exists_aeval, adjoin_nonUnitalSubalgebra, AlgebraicIndepOn.insert_iff, adjoin_singleton_natCast, Subalgebra.unop_adjoin, AddMonoidAlgebra.exists_finset_adjoin_eq_top, adjoin_image, Subalgebra.rank_sup_eq_rank_right_mul_rank_of_free, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_symm_apply, IntermediateField.adjoin_simple_toSubalgebra_of_isAlgebraic, Module.End.exists_isNilpotent_isSemisimple_of_separable_of_dvd_pow, FreeAlgebra.adjoin_range_ΞΉ, isAlgebraic_iff_exists_isTranscendenceBasis_subset, adjoin_union_coe_submodule, isCyclotomicExtension_singleton_iff_eq_adjoin, AlgebraicIndependent.aeval_repr, AlgHom.eqOn_adjoin_iff, adjoin_adjoin_coe_preimage, fg_adjoin_of_finite, adjoin_top, adjoin_le_centralizer_centralizer, adjoin_root_eq_top_of_isSplittingField, mem_adjoin_of_mem, adjoin_eq_range, adjoin_eq_span, TensorAlgebra.range_lift, IntermediateField.adjoin_toSubalgebra, DualNumber.range_inlAlgHom_sup_adjoin_eps, AddMonoidAlgebra.mem_adjoin_support, adjoin_univ, IsCyclotomicExtension.union_left, adjoin_mono, IntermediateField.algebraAdjoinAdjoin.instIsFractionRingSubtypeMemSubalgebraAdjoinAdjoin, adjoin_le_iff, StarAlgebra.adjoin_toSubalgebra, Polynomial.IsWeaklyEisensteinAt.exists_mem_adjoin_mul_eq_pow_natDegree_le, adjoin_prod_le, AlgHom.adjoin_le_equalizer, restrictScalars_adjoin, adjoin_restrictScalars, mem_coeSubmodule_conductor, isCyclotomicExtension_iff, minpoly.equivAdjoin_toAlgHom, adjoin_le, MvPolynomial.irreducible_toPolynomialAdjoinImageCompl, IntermediateField.adjoin_toSubalgebra_of_isAlgebraic_right, RingOfIntegers.exponent_eq_one_iff, AlgebraicIndependent.aevalEquiv_apply_coe, RingHom.adjoin_algebraMap_surjective, Subalgebra.adjoin_eq_span_of_eq_span, IsAlgebraic.exists_nonzero_eq_adjoin_mul, IsCyclotomicExtension.iff_adjoin_eq_top, AlgebraicIndependent.option_iff, IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin, mem_ideal_map_adjoin, adjoin_eq, PolynomialLaw.range_Ο, AlgebraicIndependent.matroid_closure_eq, minpoly.coe_equivAdjoin, adjoin.powerBasis'_minpoly_gen, adjoin_eq_range_freeAlgebra_lift, adjoin_iUnion, IntermediateField.adjoin_toSubalgebra_of_isAlgebraic_left, IntermediateField.adjoin_eq_top_iff, IsCyclotomicExtension.Rat.adjoin_singleton_eq_top, IsUnramifiedAt.exists_notMem_forall_ne_mem_and_adjoin_eq_top, adjoin_eq_sInf, adjoin_algebraMap, mem_adjoin_of_dvd_coeff_of_dvd_aeval, IsPrimitiveRoot.self_sub_one_pow_dvd_order, adjoin_eq_top_of_intermediateField, IsPrimitiveRoot.adjoin_isCyclotomicExtension, conductor_eq_top_iff_adjoin_eq_top, AlgebraicIndependent.iff_adjoin_image, AlgHom.map_adjoin_singleton, AdjoinRoot.adjoinRoot_eq_top, QuaternionAlgebra.Basis.range_liftHom, IntermediateField.algebraicIndependent_adjoin_iff, IsIntegral.fg_adjoin_singleton, cardinalMk_adjoin_le, Complex.adjoin_I, IsCyclotomicExtension.adjoin_roots, IntermediateField.algebraAdjoinAdjoin.instFaithfulSMulSubtypeMemSubalgebraAdjoinAdjoin, IntermediateField.isAlgebraic_adjoin_iff_bot, adjoin_union_eq_adjoin_adjoin, IsTranscendenceBasis.isAlgebraic, adjoin_toSubsemiring, Polynomial.aeval_mem_adjoin_singleton, IntermediateField.transcendental_adjoin_iff, IntermediateField.adjoin_toSubalgebra_of_isAlgebraic, IntermediateField.algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1, adjoin.powerBasis'_gen, IntermediateField.adjoin_intermediateField_toSubalgebra_of_isAlgebraic_right, isAlgebraic_adjoin_of_nonempty, IsAlgClosed.isAlgClosure_of_transcendence_basis, IsCyclotomicExtension.union_right, IsCyclotomicExtension.adjoin_roots_cyclotomic_eq_adjoin_nth_roots, Polynomial.IsSplittingField.adjoin_rootSet_eq_range, IntermediateField.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap, IsIntegral.inv_mem_adjoin, essFiniteType_iff, EssFiniteType.cond, TensorProduct.adjoin_tmul_eq_top, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton, sup_def, Subalgebra.LinearDisjoint.adjoin_rank_eq_rank_right, restrictScalars_adjoin_of_algEquiv, IntermediateField.adjoin_algebraic_toSubalgebra, MvPolynomial.isAlgebraic_of_mem_vars_of_forall_totalDegree_le, IsAdjoinRoot.adjoin_root_eq_top, CyclotomicRing.eq_adjoin_primitive_root, adjoin_insert_zero, Polynomial.SplittingField.adjoin_rootSet, AlgebraicIndependent.iff_transcendental_adjoin_image, TrivSqZeroExt.range_inlAlgHom_sup_adjoin_range_inr, Polynomial.adjoin_X, adjoin_int, Module.End.exists_isNilpotent_isSemisimple, isTranscendenceBasis_iff_algebraicIndependent_isAlgebraic, StarAlgebra.adjoin_eq_starClosure_adjoin, Subalgebra.topologicalClosure_adjoin_le_centralizer_centralizer, gc, adjoin_empty, IntermediateField.algebra_adjoin_le_adjoin, TrivSqZeroExt.range_liftAux, adjoin_nat, Subalgebra.restrictScalars_adjoin, self_mem_adjoin_singleton, rank_adjoin_le
|
adjoinCommRingOfComm π | CompOp | β |
adjoinCommSemiringOfComm π | CompOp | β |
botEquiv π | CompOp | 1 mathmath: botEquiv_symm_apply
|
botEquivOfInjective π | CompOp | β |
gi π | CompOp | β |
instCompleteLatticeSubalgebra π | CompOp | 266 mathmath: IsCyclotomicExtension.adjoin_primitive_root_eq_top, range_ofId, Subalgebra.LinearDisjoint.inf_eq_bot, Submodule.rTensorOne_symm_apply, IntermediateField.adjoin_eq_top_iff_of_isAlgebraic, mem_iInf, Subalgebra.coe_iSup_of_directed, Submodule.comm_trans_lTensorOne, IsDedekindDomain.HeightOneSpectrum.iInf_localization_eq_bot, adjoin_singleton_intCast, Subalgebra.LinearDisjoint.sup_free_of_free, Subalgebra.pi_top, GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous_ne_zero, mem_top, Submodule.mulMap_one_right_eq, Subalgebra.comap_map_eq, Subalgebra.finrank_sup_eq_finrank_right_mul_finrank_of_free, Subalgebra.op_sSup, TensorAlgebra.adjoin_range_ΞΉ, AlgHom.equalizer_eq_top, DualNumber.range_lift, Subalgebra.op_sInf, StarSubalgebra.inf_toSubalgebra, sSup_def, toSubsemiring_eq_top, Subalgebra.op_bot, mem_sInf, adjoin_singleton_algebraMap, Subalgebra.centralizer_coe_iSup, toSubring_eq_top, NumberField.adjoin_eq_top_of_infinitePlace_lt, Subalgebra.rank_sup_eq_rank_left_mul_rank_of_free, Polynomial.IsSplittingField.splits_iff, StarSubalgebra.bot_toSubalgebra, toSubring_bot, integralClosure_eq_top_iff, map_sup, Subalgebra.algebra_isAlgebraic_bot_right, Subalgebra.unop_sup, Subalgebra.comm_trans_rTensorBot, Subalgebra.algebra_isAlgebraic_bot_left_iff, EssFiniteType.adjoin_mem_finset, adjoin_attach_biUnion, Polynomial.IsSplittingField.adjoin_rootSet, Subalgebra.prod_inf_prod, IntermediateField.inf_toSubalgebra, Subalgebra.center_eq_top, IsIntegrallyClosedIn.integralClosure_eq_bot, integralClosure_idem, mem_bot, adjoin_union, coe_iInf, Polynomial.SplittingFieldAux.adjoin_rootSet, IntermediateField.bot_toSubalgebra, toSubmodule_bot, map_bot, IntermediateField.sup_toSubalgebra_of_isAlgebraic_left, adjoin_singleton_zero, coe_bot, sInf_toSubsemiring, sInf_toSubmodule, MvPolynomial.adjoin_range_X, IsDedekindDomain.integer_empty, adjoin_eq_top_of_conductor_eq_top, Subalgebra.eq_bot_of_finrank_one, Subalgebra.LinearDisjoint.rank_sup_of_free, coe_top, Subalgebra.unop_top, Subalgebra.lTensorBot_one_tmul, Subalgebra.isSimpleOrder_of_finrank, Subalgebra.mulMap_bot_left_eq, Subalgebra.op_inf, Polynomial.adjoin_rootSet_eq_range, IntermediateField.sup_toSubalgebra_of_isAlgebraic, top_toSubmodule, Subalgebra.fg_of_submodule_fg, CliffordAlgebra.adjoin_range_ΞΉ, Polynomial.Splits.adjoin_rootSet_eq_range, IntermediateField.sInf_toSubalgebra, map_inf, sup_toSubsemiring, GradedAlgebra.exists_finset_adjoin_eq_top_and_homogeneous, Subalgebra.mem_starClosure, Subalgebra.finrank_right_dvd_finrank_sup_of_free, PrimeSpectrum.iInf_localization_eq_bot, Subalgebra.mul_toSubmodule, Subalgebra.unop_bot, bijective_algebraMap_iff, Subalgebra.topEquiv_apply, IntermediateField.adjoin_simple_eq_top_iff_of_isAlgebraic, iSup_toSubsemiring, PowerBasis.adjoin_gen_eq_top, Subalgebra.mulMap'_surjective, Submodule.comm_trans_rTensorOne, mem_sup_left, top_toSubring, IntermediateField.top_toSubalgebra, Subalgebra.finrank_left_dvd_finrank_sup_of_free, Submodule.lTensorOne'_tmul, Submodule.rTensorOne'_tmul_one, Subalgebra.unop_sSup, Submodule.rTensorOne'_tmul, Subalgebra.mul_toSubmodule_le, adjoin_eq_top_of_primitive_element, zariskisMainProperty_iff_exists_saturation_eq_top, MonoidAlgebra.exists_finset_adjoin_eq_top, sSup_toSubsemiring, IsIntegrallyClosed.iInf, TensorProduct.productMap_range, PowerBasis.adjoin_eq_top_of_gen_mem_adjoin, IsIntegrallyClosed.integralClosure_eq_bot, IsIntegrallyClosed.integralClosure_eq_bot_iff, Polynomial.IsSplittingField.adjoin_rootSet', Submodule.rTensorOne_tmul, Subalgebra.unop_iInf, inf_toSubmodule, AlgHom.range_eq_top, adjoin_singleton_one, iInf_toSubsemiring, Subalgebra.centralizer_eq_top_iff_subset, Subalgebra.unop_inf, top_toSubsemiring, Subalgebra.rTensorBot_tmul_one, Subalgebra.LinearDisjoint.rank_inf_eq_one_of_flat_of_inj, Subalgebra.finrank_sup_eq_finrank_left_mul_finrank_of_free, IsIntegrallyClosedIn.integralClosure_eq_bot_iff, Subalgebra.finrank_sup_le_of_free, Subalgebra.starClosure_toSubalgebra, Submodule.rTensorOne_tmul_one, Subalgebra.op_top, adjoin_singleton_natCast, Subalgebra.finite_sup, Subalgebra.op_iInf, Subalgebra.bot_eq_top_iff_finrank_eq_one, Subalgebra.mulMap_bot_right_eq, AddMonoidAlgebra.exists_finset_adjoin_eq_top, iInf_toSubmodule, Subalgebra.rank_sup_eq_rank_right_mul_rank_of_free, isAlgebraic_iff, Subalgebra.lTensorBot_symm_apply, FreeAlgebra.adjoin_range_ΞΉ, ContinuousMap.subalgebra_topologicalClosure_eq_top_of_separatesPoints, TensorProduct.map_range, IntermediateField.sup_toSubalgebra_of_left, StarSubalgebra.toSubalgebra_eq_top, Submodule.mulMap_one_left_eq, adjoin_adjoin_coe_preimage, Subalgebra.LinearDisjoint.rank_inf_eq_one_of_flat_left_of_inj, adjoin_top, Subalgebra.FG.sup, adjoin_root_eq_top_of_isSplittingField, Subalgebra.LinearDisjoint.finrank_sup_of_free, surjective_algebraMap_iff, toSubmodule_eq_top, DualNumber.range_inlAlgHom_sup_adjoin_eps, Subalgebra.fg_bot, adjoin_univ, AlgHom.equalizer_same, Subalgebra.fg_top, EssFiniteType.aux, IntermediateField.topEquiv_symm_apply_coe, Subalgebra.lTensorBot_tmul, Subalgebra.topEquiv_symm_apply_coe, isIntegral_iSup, Subalgebra.rank_sup_le_of_free, IntermediateField.topEquiv_apply, isIntegral_sup, Subalgebra.op_iSup, IsCyclotomicExtension.singleton_one, Subalgebra.op_sup, adjoin_restrictScalars, Subalgebra.LinearDisjoint.val_mulMap_tmul, Subalgebra.mulMap_range, RingOfIntegers.exponent_eq_one_iff, Subalgebra.rTensorBot_symm_apply, comap_top, Subalgebra.LinearDisjoint.rank_inf_eq_one_of_flat_right_of_inj, StarSubalgebra.sInf_toSubalgebra, MaximalSpectrum.iInf_localization_eq_bot, IsCentral.center_eq_bot, mem_iSup_of_mem, Subalgebra.centralizer_coe_sup, Submodule.lTensorOne_symm_apply, MvPolynomial.supported_empty, IsCyclotomicExtension.iff_adjoin_eq_top, Subalgebra.coe_starClosure, JacobsonNoether.exists_separable_and_not_isCentral', IntermediateField.toSubalgebra_iSup_of_directed, Submodule.lTensorOne'_one_tmul, eq_top_iff, adjoin_iUnion, Subalgebra.rank_eq_one_iff, Subalgebra.prod_top, Subalgebra.map_comap_eq, subalgebra_top_finrank_eq_submodule_top_finrank, IntermediateField.adjoin_eq_top_iff, Valuation.Integers.integralClosure, IsCyclotomicExtension.Rat.adjoin_singleton_eq_top, mem_sup_right, IsUnramifiedAt.exists_notMem_forall_ne_mem_and_adjoin_eq_top, polynomialFunctions.topologicalClosure, RingCon.range_mkβ, adjoin_eq_sInf, map_top, Subalgebra.eq_bot_of_rank_le_one, Submodule.lTensorOne_tmul, coe_inf, Subalgebra.comm_trans_lTensorBot, adjoin_eq_top_of_intermediateField, Subalgebra.bot_eq_top_of_finrank_eq_one, MvPolynomial.supported_univ, conductor_eq_top_iff_adjoin_eq_top, Subalgebra.isAlgebraic_bot_iff, AdjoinRoot.adjoinRoot_eq_top, Subalgebra.isSimpleOrder_of_finrank_prime, mul_mem_sup, Complex.adjoin_I, FiniteType.out, polynomialFunctions_closure_eq_top', Subalgebra.val_mulMap'_tmul, IntermediateField.sup_toSubalgebra_of_right, AlgHom.eqOn_sup, IntermediateField.le_sup_toSubalgebra, IntermediateField.sup_toSubalgebra_of_isAlgebraic_right, Submodule.lTensorOne_one_tmul, map_iInf, TensorProduct.adjoin_tmul_eq_top, IntermediateField.iInf_toSubalgebra, mem_inf, Subalgebra.LinearDisjoint.eq_bot_of_commute_of_self, Subalgebra.finrank_bot, coe_sInf, sup_def, Subalgebra.restrictScalars_top, IsCentral.out, polynomialFunctions_closure_eq_top, IsDedekindDomain.integer_univ, IsAdjoinRoot.adjoin_root_eq_top, Subalgebra.bot_eq_top_iff_rank_eq_one, Subalgebra.rTensorBot_tmul, range_id, Polynomial.SplittingField.adjoin_rootSet, TrivSqZeroExt.range_inlAlgHom_sup_adjoin_range_inr, Polynomial.adjoin_X, inf_toSubsemiring, StarSubalgebra.iInf_toSubalgebra, StarSubalgebra.top_toSubalgebra, IsCyclotomicExtension.lcm_sup, Subalgebra.LinearDisjoint.eq_bot_of_self, Subalgebra.LinearDisjoint.bot_left, Subalgebra.rank_bot, Subalgebra.LinearDisjoint.bot_right, notMem_iff_exists_ne_and_isConjRoot, adjoin_empty, Subalgebra.fg_bot_toSubmodule, botEquiv_symm_apply, Subalgebra.rank_top, Subalgebra.bot_eq_top_of_rank_eq_one, Subalgebra.finrank_eq_one_iff, subalgebra_top_rank_eq_submodule_top_rank, TrivSqZeroExt.range_liftAux, Subalgebra.eq_bot_of_isPurelyInseparable_of_isSeparable, Subalgebra.finite_bot, Subalgebra.restrictScalars_adjoin, Subalgebra.unop_iSup, Subalgebra.unop_sInf
|
instInhabitedSubalgebra π | CompOp | β |
instSubtypeMemSubalgebraMin π | CompOp | β |
instSubtypeMemSubalgebraMin_1 π | CompOp | β |
toTop π | CompOp | β |