📁 Source: Mathlib/Algebra/Algebra/Subalgebra/Rank.lean
finrank_left_dvd_finrank_sup_of_free
finrank_right_dvd_finrank_sup_of_free
finrank_sup_eq_finrank_left_mul_finrank_of_free
finrank_sup_eq_finrank_right_mul_finrank_of_free
rank_sup_eq_rank_left_mul_rank_of_free
rank_sup_eq_rank_right_mul_rank_of_free
Module.finrank
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
instSetLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
instModuleSubtypeMem
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Algebra.instCompleteLatticeSubalgebra
toCommSemiring
toAlgebra
Algebra.id
Algebra.adjoin
SetLike.coe
toSemiring
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
sup_comm
Module.rank
Cardinal
Cardinal.instMul
subsingleton_or_nontrivial
rank_subsingleton
instSubsingletonSubtype_mathlib
Module.subsingleton
mul_one
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
rank_subsingleton'
IsScalarTower.subalgebra'
IsScalarTower.right
rank_mul_rank
commRing_strongRankCondition
SubsemiringClass.nontrivial
instSubsemiringClass
IsScalarTower.of_algebraMap_eq
Algebra.restrictScalars_adjoin
---
← Back to Index