Documentation Verification Report

Tower

πŸ“ Source: Mathlib/Algebra/Algebra/Tower.lean

Statistics

MetricCount
DefinitionsextendScalarsOfSurjective, restrictScalars, extendScalarsOfSurjective, restrictScalars, lsmul, toAlgHom
6
Theoremscoe_restrictScalars, coe_restrictScalars', coe_restrictScalars_symm, coe_restrictScalars_symm', extendScalarsOfSurjective_apply, extendScalarsOfSurjective_symm, restrictScalars_apply, restrictScalars_extendScalarsOfSurjective, restrictScalars_injective, restrictScalars_symm_apply, coe_restrictScalars, coe_restrictScalars', comp_algebraMap_of_tower, extendScalarsOfSurjective_apply, map_algebraMap, restrictScalars_apply, restrictScalars_extendScalarsOfSurjective, restrictScalars_injective, algebraMapSubmonoid_map_map, lsmul_coe, lsmul_injective, ext, ext_iff, algebraMap_apply, algebraMap_eq, algebraMap_smul, coe_toAlgHom, coe_toAlgHom', of_algHom, of_algebraMap_eq, of_algebraMap_eq', of_algebraMap_smul, of_compHom, subsemiring, toAlgHom_apply, coe_span_eq_span_of_surjective, map_mem_span_algebraMap_image, restrictScalars_span, smul_mem_span_smul, smul_mem_span_smul', smul_mem_span_smul_of_mem, span_algebraMap_image, span_algebraMap_image_of_tower, span_smul_of_span_eq_top
44
Total50

AlgEquiv

Definitions

NameCategoryTheorems
extendScalarsOfSurjective πŸ“–CompOp
3 mathmath: extendScalarsOfSurjective_symm, restrictScalars_extendScalarsOfSurjective, extendScalarsOfSurjective_apply
restrictScalars πŸ“–CompOp
11 mathmath: coe_restrictScalars_symm, MvPolynomial.algebraTensorAlgEquiv_symm_comp_aeval, restrictScalars_symm_apply, coe_restrictScalars', coe_restrictScalars, restrictScalars_apply, IsFractionRing.restrictScalars_fieldEquivOfAlgEquiv, Polynomial.Gal.card_complex_roots_eq_card_real_add_card_not_gal_inv, restrictScalars_injective, coe_restrictScalars_symm', restrictScalars_extendScalarsOfSurjective

Theorems

NameKindAssumesProvesValidatesDepends On
coe_restrictScalars πŸ“–mathematicalβ€”RingEquivClass.toRingEquiv
AlgEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toAdd
instEquivLike
AlgEquivClass.toRingEquivClass
instAlgEquivClass
restrictScalars
β€”AlgEquivClass.toRingEquivClass
instAlgEquivClass
coe_restrictScalars' πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
instFunLike
restrictScalars
β€”β€”
coe_restrictScalars_symm πŸ“–mathematicalβ€”RingEquivClass.toRingEquiv
AlgEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toAdd
instEquivLike
AlgEquivClass.toRingEquivClass
instAlgEquivClass
symm
restrictScalars
β€”AlgEquivClass.toRingEquivClass
instAlgEquivClass
coe_restrictScalars_symm' πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
instFunLike
symm
restrictScalars
β€”β€”
extendScalarsOfSurjective_apply πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
AlgEquiv
instFunLike
extendScalarsOfSurjective
EquivLike.toFunLike
instEquivLike
β€”β€”
extendScalarsOfSurjective_symm πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
symm
extendScalarsOfSurjective
β€”β€”
restrictScalars_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
instFunLike
restrictScalars
β€”β€”
restrictScalars_extendScalarsOfSurjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
restrictScalars
extendScalarsOfSurjective
β€”β€”
restrictScalars_injective πŸ“–mathematicalβ€”AlgEquiv
restrictScalars
β€”ext
congr_fun
restrictScalars_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
instFunLike
symm
restrictScalars
β€”β€”

AlgHom

Definitions

NameCategoryTheorems
extendScalarsOfSurjective πŸ“–CompOp
2 mathmath: extendScalarsOfSurjective_apply, restrictScalars_extendScalarsOfSurjective
restrictScalars πŸ“–CompOp
14 mathmath: MvPolynomial.universalFactorizationMap_comp_map, coe_restrictScalars, PowerSeries.substAlgHom_comp_substAlgHom, restrictScalars_injective, Algebra.TensorProduct.lift_comp_includeRight, restrictScalars_extendScalarsOfSurjective, ContinuousAlgHom.coe_restrictScalars, coe_restrictScalars', Algebra.TensorProduct.ext_iff, restrictScalars_apply, Algebra.FormallySmooth.exists_adicCompletionEvalOneₐ_comp_eq, Algebra.TensorProduct.map_restrictScalars_comp_includeRight, Algebra.TensorProduct.liftEquiv_symm_apply_coe, MvPowerSeries.substAlgHom_comp_substAlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_restrictScalars πŸ“–mathematicalβ€”RingHomClass.toRingHom
AlgHom
funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
algHomClass
restrictScalars
β€”AlgHomClass.toRingHomClass
algHomClass
coe_restrictScalars' πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
funLike
restrictScalars
β€”β€”
comp_algebraMap_of_tower πŸ“–mathematicalβ€”RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHomClass.toRingHom
AlgHom
funLike
AlgHomClass.toRingHomClass
algHomClass
algebraMap
β€”RingHom.ext
AlgHomClass.toRingHomClass
algHomClass
map_algebraMap
extendScalarsOfSurjective_apply πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
AlgHom
funLike
extendScalarsOfSurjective
β€”β€”
map_algebraMap πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
funLike
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”IsScalarTower.algebraMap_apply
commutes
restrictScalars_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
funLike
restrictScalars
β€”β€”
restrictScalars_extendScalarsOfSurjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
restrictScalars
extendScalarsOfSurjective
β€”β€”
restrictScalars_injective πŸ“–mathematicalβ€”AlgHom
restrictScalars
β€”ext
congr_fun

Algebra

Definitions

NameCategoryTheorems
lsmul πŸ“–CompOp
8 mathmath: lmul_algebraMap, lsmul_injective, Module.AEval.mem_mapSubmodule_symm_apply, toMatrix_lsmul, FormallyUnramified.comp_sec, TensorProduct.AlgebraTensorModule.smul_eq_lsmul_rTensor, Module.AEval.mem_mapSubmodule_apply, lsmul_coe

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMapSubmonoid_map_map πŸ“–mathematicalβ€”algebraMapSubmonoid
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”algebraMapSubmonoid_map_eq
lsmul_coe πŸ“–mathematicalβ€”DFunLike.coe
Module.End
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
AlgHom
Module.End.instSemiring
Module.End.instAlgebra
IsScalarTower.to_smulCommClass'
toSMul
AlgHom.funLike
lsmul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”IsScalarTower.to_smulCommClass'
lsmul_injective πŸ“–mathematicalβ€”DFunLike.coe
Module.End
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
AlgHom
Module.End.instSemiring
Module.End.instAlgebra
IsScalarTower.to_smulCommClass'
toSMul
AlgHom.funLike
lsmul
β€”smul_right_injective
IsDomain.toIsCancelMulZero

IsScalarTower

Definitions

NameCategoryTheorems
toAlgHom πŸ“–CompOp
53 mathmath: MvPolynomial.algHom_ext'_iff, coe_toAlgHom', IntermediateField.LinearDisjoint.map', algebraicClosure.map_eq_of_algebraicClosure_eq_bot, adjoin_range_toAlgHom, IsLocalizedModule.map_linearMap_of_isLocalization, PrimeSpectrum.coe_preimageHomeomorphFiber_apply_asIdeal, MvPolynomial.sumAlgEquiv_comp_rename_inr, MvPolynomial.aevalTower_toAlgHom, Subalgebra.range_isScalarTower_toAlgHom, Normal.algHomEquivAut_symm_apply, toAlgHom_comp_sectionOfRetractionKerToTensorAux, Ideal.Fiber.lift_residueField_surjective, IsDedekindDomain.range_sup_range_eq_top_of_isCoprime_differentIdeal, IntermediateField.linearDisjoint_iff, IntermediateField.map_fixingSubgroup, Polynomial.aevalTower_toAlgHom, normalClosure.restrictScalars_eq, KaehlerDifferential.End_equiv_aux, PrimeSpectrum.preimageEquivFiber_apply_asIdeal, Ideal.ResidueField.liftₐ_comp_toAlgHom, Algebra.lift_algHom_comp_left, IsLocalization.mk'_algebraMap_eq_mk', isLocalizedModule_iff_isLocalization, coe_toAlgHom, Algebra.isPushout_iff, IntermediateField.linearDisjoint_comm', Algebra.IsAlgebraic.instIsLocalizedModuleNonZeroDivisorsToLinearMapToAlgHom, instIsLocalizedModuleToLinearMapToAlgHomOfIsLocalizationAlgebraMapSubmonoid, derivationToSquareZeroEquivLift_symm_apply_apply_coe, Algebra.IsPushout.out, PrimeSpectrum.coe_primesOverOrderIsoFiber_apply_asIdeal, Ideal.ResidueField.algHom_ext_iff, IntermediateField.map_fixingSubgroup_index, Algebra.IsAlgebraic.isBaseChange_of_isFractionRing, IsLocalization.map_eq_toLinearMap_mapₐ, Algebra.lift_algHom_comp_right, toAlgHom_comp_sectionOfRetractionKerToTensor, PrimeSpectrum.coe_preimageOrderIsoFiber_apply_asIdeal, Algebra.EssFiniteType.aux, Algebra.adjoin_restrictScalars, IsLocalization.mapExtendScalars_eq_toLinearMap_mapₐ, Module.Basis.localizationLocalization_span, MvPolynomial.aevalTower_comp_toAlgHom, derivationToSquareZeroEquivLift_apply_coe_apply, Algebra.adjoin_algebraMap, IsLocalization.map_linearMap_eq_toLinearMap_mapₐ, separableClosure.map_eq_of_separableClosure_eq_bot, Polynomial.aevalTower_comp_toAlgHom, Algebra.kerTensorProductMapIdToAlgHomEquiv_symm_apply, MvPolynomial.mapEquivMonic_symm_map_algebraMap, toAlgHom_apply, Algebra.Subalgebra.restrictScalars_adjoin

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”algebraMap_eq
RingHom.comp_apply
algebraMap_eq πŸ“–mathematicalβ€”algebraMap
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”RingHom.ext
Algebra.algebraMap_eq_smul_one
smul_assoc
one_smul
algebraMap_smul πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
β€”Algebra.algebraMap_eq_smul_one
smul_assoc
one_smul
coe_toAlgHom πŸ“–mathematicalβ€”RingHomClass.toRingHom
AlgHom
CommSemiring.toSemiring
AlgHom.funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
toAlgHom
algebraMap
β€”RingHom.ext
AlgHomClass.toRingHomClass
AlgHom.algHomClass
coe_toAlgHom' πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
CommSemiring.toSemiring
AlgHom.funLike
toAlgHom
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”β€”
of_algHom πŸ“–mathematicalβ€”IsScalarTower
Algebra.toSMul
CommSemiring.toSemiring
RingHom.toAlgebra
AlgHom.toRingHom
β€”of_algebraMap_eq
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.commutes
of_algebraMap_eq πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
IsScalarTower
Algebra.toSMul
β€”Algebra.smul_def
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_assoc
of_algebraMap_eq' πŸ“–mathematicalalgebraMap
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
IsScalarTower
Algebra.toSMul
β€”of_algebraMap_eq
RingHom.ext_iff
of_algebraMap_smul πŸ“–mathematicalSemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
IsScalarTower
Algebra.toSMul
β€”Algebra.smul_def
SemigroupAction.mul_smul
of_compHom πŸ“–mathematicalβ€”IsScalarTower
Algebra.toSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
CommSemiring.toSemiring
MulAction.compHom
MonoidHomClass.toMonoidHom
RingHom
Semiring.toNonAssocSemiring
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
RingHom.instFunLike
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
algebraMap
β€”of_algebraMap_smul
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
subsemiring πŸ“–mathematicalβ€”IsScalarTower
Subsemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subsemiring.instSetLike
Subsemiring.smul
Algebra.toSMul
Algebra.id
β€”of_algebraMap_eq
Subsemiring.instSubsemiringClass
toAlgHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
CommSemiring.toSemiring
AlgHom.funLike
toAlgHom
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
β€”β€”

IsScalarTower.Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”Algebra.toSMulβ€”β€”Algebra.algebra_ext
Algebra.smul_def
mul_one
ext_iff πŸ“–mathematicalβ€”Algebra.toSMulβ€”ext

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
coe_span_eq_span_of_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
SetLike.coe
Submodule
setLike
span
β€”restrictScalars_span
map_mem_span_algebraMap_image πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
SetLike.instMembership
setLike
span
Set.image
DFunLike.coe
RingHom
RingHom.instFunLike
algebraMap
β€”RingHomSurjective.ids
LinearMap.IsScalarTower.compatibleSMul'
span_algebraMap_image_of_tower
mem_map
restrictScalars_span πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
restrictScalars
Algebra.toSMul
span
β€”LE.le.antisymm
span_le_restrictScalars
span_induction
subset_span
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
addSubmonoidClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
algebraMap_smul
smul_mem
smul_mem_span_smul πŸ“–mathematicalspan
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Top.top
Submodule
instTop
SetLike.instMembership
setLike
Set
Set.smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”span_smul_of_span_eq_top
smul_mem
span_le_restrictScalars
smul_mem_span_smul' πŸ“–β€”span
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Top.top
Submodule
instTop
SetLike.instMembership
setLike
Set
Set.smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”span_smul_of_span_eq_top
smul_mem
smul_mem_span_smul_of_mem πŸ“–mathematicalSubmodule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
setLike
span
Set
Set.instMembership
Set.smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”span_induction
subset_span
Set.smul_mem_smul
zero_smul
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
addSubmonoidClass
add_smul
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
IsScalarTower.smul_assoc
smul_mem
span_algebraMap_image πŸ“–mathematicalβ€”span
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Set.image
DFunLike.coe
RingHom
RingHom.instFunLike
algebraMap
map
Semiring.toModule
RingHom.id
RingHomSurjective.ids
Algebra.linearMap
β€”RingHomSurjective.ids
span_image
span_algebraMap_image_of_tower πŸ“–mathematicalβ€”span
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Set.image
DFunLike.coe
RingHom
RingHom.instFunLike
algebraMap
map
RingHom.id
RingHomSurjective.ids
LinearMap.restrictScalars
Semiring.toModule
LinearMap.IsScalarTower.compatibleSMul'
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.linearMap
β€”LinearMap.IsScalarTower.compatibleSMul'
RingHomSurjective.ids
span_image
span_smul_of_span_eq_top πŸ“–mathematicalspan
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Top.top
Submodule
instTop
Set
Set.smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
restrictScalars
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”le_antisymm
span_le
smul_mem
subset_span
closure_induction
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
addSubmonoidClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
span_induction
zero_smul
add_smul
IsScalarTower.smul_assoc
mem_top

---

← Back to Index