| Metric | Count |
DefinitionstoAlgHom, addEquiv, fst, fstHom, inl, inlRingHom, inr, inrHom, inrNonUnitalAlgHom, inrNonUnitalStarAlgHom, inrRangeEquiv, instAdd, instAddCommGroup, instAddCommMonoid, instAddCommSemigroup, instAddGroup, instAddMonoid, instAddSemigroup, instAddZeroClass, instAlgebra, instCoeTCOfZero, instCommMonoid, instCommRing, instCommSemiring, instDistribMulAction, instInhabited, instModule, instMonoid, instMul, instMulAction, instMulOneClass, instNeg, instNonAssocRing, instNonAssocSemiring, instOne, instRing, instSMul, instSemiring, instStar, instStarAddMonoid, instStarRing, instZero, snd, sndHom, starLift, starMap | 46 |
Theoremsinr, of_inr, of_inr, toAlgHom_apply, toAlgHom_zero, inr, algHom_ext, algHom_ext', algHom_ext'', algHom_ext'_iff, algebraMap_eq_inl, algebraMap_eq_inlRingHom, algebraMap_eq_inlRingHom_comp, algebraMap_eq_inl_comp, ext, ext_iff, fstHom_apply, fst_add, fst_inl, fst_inr, fst_mul, fst_neg, fst_one, fst_smul, fst_star, fst_zero, ind, inlRingHom_apply, inl_add, inl_fst_add_inr_snd_eq, inl_injective, inl_mul, inl_mul_inl, inl_mul_inr, inl_neg, inl_one, inl_smul, inl_star, inl_sub, inl_zero, inrHom_apply, inrNonUnitalAlgHom_apply, inrNonUnitalAlgHom_toFun, inrNonUnitalStarAlgHom_apply, inrRangeEquiv_apply_coe, inrRangeEquiv_symm_apply, inr_add, inr_injective, inr_mul, inr_mul_inl, inr_neg, inr_smul, inr_star, inr_sub, inr_zero, instCanLift, instIsCentralScalar, instIsScalarTower, instIsStarNormal, instNontrivialLeft, instNontrivialRight, instSMulCommClass, instStarModule, isIdempotentElem_inr_iff, isSelfAdjoint_inr, isStarNormal_inr, lift_apply, lift_apply_apply, lift_symm_apply, lift_symm_apply_apply, linearMap_ext, sndHom_apply, snd_add, snd_inl, snd_inr, snd_mul, snd_neg, snd_one, snd_smul, snd_star, snd_zero, starAlgHom_ext, starAlgHom_ext_iff, starLift_apply, starLift_apply_apply, starLift_symm_apply, starLift_symm_apply_apply, starMap_apply, starMap_comp, starMap_id, starMap_injective, starMap_inl, starMap_inr, starMap_surjective | 94 |
| Total | 140 |
| Name | Category | Theorems |
addEquiv 📖 | CompOp | 5 mathmath: cobounded_eq_aux, isUniformEmbedding_addEquiv, antilipschitzWith_addEquiv, uniformity_eq_aux, lipschitzWith_addEquiv
|
fst 📖 | CompOp | 33 mathmath: fst_inr, splitMul_apply, NonUnitalStarSubalgebra.unitizationStarAlgEquiv_apply_coe, fst_inl, starLift_apply_apply, fst_zero, snd_mul, fst_mul, NonUnitalSubsemiring.unitization_apply, NonUnitalSubring.unitization_apply, NonUnitalAlgHom.toAlgHom_zero, instCanLift, fst_add, NonUnitalStarSubalgebra.unitization_apply, norm_eq_sup, NonUnitalSubalgebra.unitizationAlgEquiv_apply_coe, NonUnitalSubalgebra.unitization_apply, ext_iff, WithLp.unitization_norm_def, fst_one, fstHom_apply, starMap_apply, NonUnitalAlgHom.toAlgHom_apply, nnnorm_eq_sup, lift_apply_apply, fst_smul, unitsFstOne_val_val_fst, WithLp.unitization_nnnorm_def, fst_star, inl_fst_add_inr_snd_eq, mem_unitsFstOne, fst_neg, unitsFstOne_val_inv_val_fst
|
fstHom 📖 | CompOp | 1 mathmath: fstHom_apply
|
inl 📖 | CompOp | 19 mathmath: inl_mul_inr, inl_injective, fst_inl, inl_one, inl_mul, inl_zero, inl_star, starMap_inl, inl_mul_inl, algebraMap_eq_inl, inr_mul_inl, inl_neg, inl_add, inl_sub, snd_inl, inl_smul, inl_fst_add_inr_snd_eq, inlRingHom_apply, algebraMap_eq_inl_comp
|
inlRingHom 📖 | CompOp | 3 mathmath: algebraMap_eq_inlRingHom_comp, algebraMap_eq_inlRingHom, inlRingHom_apply
|
inr 📖 | CompOp | 56 mathmath: CStarAlgebra.preimage_inr_Icc_zero_one, inr_neg, isometry_inr, inrNonUnitalAlgHom_toFun, CStarAlgebra.inr_mem_Icc_iff_norm_le, quasispectrumRestricts_iff_spectrumRestricts_inr', real_cfcₙ_eq_cfc_inr, fst_inr, inr_sub, inl_mul_inr, isIdempotentElem_inr_iff, isQuasiregular_inr_iff, starLift_symm_apply_apply, inr_star, inr_le_iff, dist_inr, snd_inr, lift_symm_apply_apply, quasispectrum_inr_eq, zero_mem_spectrum_inr, IsSelfAdjoint.inr, inr_mul, instCanLift, inr_smul, inrNonUnitalStarAlgHom_apply, starMap_inr, val_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe, isSelfAdjoint_inr, val_inv_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe, inr_injective, inrHom_apply, mem_spectrum_inr_of_not_isUnit, WithLp.unitization_nnnorm_inr, inr_add, inr_mul_inl, nnreal_cfcₙ_eq_cfc_inr, IsIdempotentElem.inr, quasispectrumRestricts_iff_spectrumRestricts_inr, starMap_apply, instIsStarNormal, inr_zero, quasispectrum_eq_spectrum_inr', complex_cfcₙ_eq_cfc_inr, inrNonUnitalAlgHom_apply, nndist_inr, isQuasiregular_iff_isUnit', CStarAlgebra.inr_mem_Icc_iff_nnnorm_le, quasispectrum_eq_spectrum_inr, WithLp.unitization_norm_inr, inl_fst_add_inr_snd_eq, WithLp.unitization_isometry_inr, norm_inr, inr_nonneg_iff, continuous_inr, isStarNormal_inr, nnnorm_inr
|
inrHom 📖 | CompOp | 1 mathmath: inrHom_apply
|
inrNonUnitalAlgHom 📖 | CompOp | 4 mathmath: inrNonUnitalAlgHom_toFun, algHom_ext'_iff, lift_symm_apply, inrNonUnitalAlgHom_apply
|
inrNonUnitalStarAlgHom 📖 | CompOp | 7 mathmath: starAlgHom_ext_iff, inrNonUnitalStarAlgHom_apply, inr_comp_cfcₙHom_eq_cfcₙAux, cfcₙAux_mem_range_inr, inrRangeEquiv_apply_coe, starLift_symm_apply, inrRangeEquiv_symm_apply
|
inrRangeEquiv 📖 | CompOp | 2 mathmath: inrRangeEquiv_apply_coe, inrRangeEquiv_symm_apply
|
instAdd 📖 | CompOp | 14 mathmath: NonUnitalStarSubalgebra.unitizationStarAlgEquiv_apply_coe, cobounded_eq_aux, fst_add, val_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe, val_inv_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe, inr_add, isUniformEmbedding_addEquiv, isQuasiregular_iff_isUnit', snd_add, antilipschitzWith_addEquiv, uniformity_eq_aux, inl_add, lipschitzWith_addEquiv, inl_fst_add_inr_snd_eq
|
instAddCommGroup 📖 | CompOp | — |
instAddCommMonoid 📖 | CompOp | 2 mathmath: sndHom_apply, inrHom_apply
|
instAddCommSemigroup 📖 | CompOp | — |
instAddGroup 📖 | CompOp | 2 mathmath: inr_sub, inl_sub
|
instAddMonoid 📖 | CompOp | — |
instAddSemigroup 📖 | CompOp | — |
instAddZeroClass 📖 | CompOp | — |
instAlgebra 📖 | CompOp | 59 mathmath: quasispectrumRestricts_iff_spectrumRestricts_inr', real_cfcₙ_eq_cfc_inr, splitMul_apply, algHom_ext'_iff, starAlgHom_ext_iff, starLift_symm_apply_apply, starLift_apply_apply, nnnorm_def, WithLp.unitization_algebraMap, NonUnitalSubalgebra.unitization_injective, lift_symm_apply_apply, NonUnitalStarSubalgebra.unitization_range, NonUnitalSubalgebra.unitization_range, NonUnitalSubsemiring.unitization_apply, NonUnitalSubring.unitization_apply, zero_mem_spectrum_inr, splitMul_injective_of_clm_mul_injective, starMap_injective, NonUnitalAlgHom.toAlgHom_zero, starMap_id, starLift_range, starMap_inl, starMap_inr, algebraMap_eq_inl, NonUnitalStarSubalgebra.unitization_injective, NonUnitalStarSubalgebra.unitization_apply, starMap_surjective, NonUnitalSubalgebra.unitizationAlgEquiv_apply_coe, mem_spectrum_inr_of_not_isUnit, lift_range, algebraMap_eq_inlRingHom_comp, NonUnitalSubalgebra.unitization_apply, lift_symm_apply, norm_def, WithLp.unitizationAlgEquiv_symm_apply_ofLp, spec_cfcₙAux, nnreal_cfcₙ_eq_cfc_inr, starLift_apply, starMap_comp, quasispectrumRestricts_iff_spectrumRestricts_inr, fstHom_apply, starMap_apply, NonUnitalSubring.unitization_range, NonUnitalAlgHom.toAlgHom_apply, quasispectrum_eq_spectrum_inr', NonUnitalSubsemiring.unitization_range, complex_cfcₙ_eq_cfc_inr, lift_range_le, norm_splitMul_snd_sq, splitMul_injective, starLift_range_le, lift_apply_apply, starLift_symm_apply, WithLp.unitizationAlgEquiv_apply, algebraMap_eq_inlRingHom, quasispectrum_eq_spectrum_inr, lift_apply, algebraMap_eq_inl_comp, cfcₙ_eq_cfc_inr
|
instCoeTCOfZero 📖 | CompOp | — |
instCommMonoid 📖 | CompOp | — |
instCommRing 📖 | CompOp | — |
instCommSemiring 📖 | CompOp | — |
instDistribMulAction 📖 | CompOp | 11 mathmath: inrNonUnitalAlgHom_toFun, isClosedEmbedding_cfcₙAux, starAlgHom_ext_iff, cfcₙAux_id, inrNonUnitalStarAlgHom_apply, inr_comp_cfcₙHom_eq_cfcₙAux, spec_cfcₙAux, cfcₙAux_mem_range_inr, inrRangeEquiv_apply_coe, inrNonUnitalAlgHom_apply, inrRangeEquiv_symm_apply
|
instInhabited 📖 | CompOp | — |
instModule 📖 | CompOp | 6 mathmath: quasispectrum_inr_eq, sndHom_apply, inrHom_apply, cfcₙAux_mem_range_inr, inrRangeEquiv_apply_coe, inrRangeEquiv_symm_apply
|
instMonoid 📖 | CompOp | 8 mathmath: val_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe, val_inv_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe, val_inv_unitsFstOne_mulEquiv_quasiregular_apply, isQuasiregular_iff_isUnit', val_unitsFstOne_mulEquiv_quasiregular_apply, unitsFstOne_val_val_fst, mem_unitsFstOne, unitsFstOne_val_inv_val_fst
|
instMul 📖 | CompOp | 15 mathmath: inl_mul_inr, NonUnitalStarSubalgebra.unitizationStarAlgEquiv_apply_coe, isIdempotentElem_inr_iff, inl_mul, snd_mul, fst_mul, inr_mul, inl_mul_inl, inr_comp_cfcₙHom_eq_cfcₙAux, inr_mul_inl, IsIdempotentElem.inr, instIsStarNormal, norm_splitMul_snd_sq, WithLp.unitization_mul, isStarNormal_inr
|
instMulAction 📖 | CompOp | — |
instMulOneClass 📖 | CompOp | — |
instNeg 📖 | CompOp | 4 mathmath: inr_neg, snd_neg, inl_neg, fst_neg
|
instNonAssocRing 📖 | CompOp | 4 mathmath: isClosedEmbedding_cfcₙAux, cfcₙAux_id, spec_cfcₙAux, cfcₙAux_mem_range_inr
|
instNonAssocSemiring 📖 | CompOp | 10 mathmath: inrNonUnitalAlgHom_toFun, starAlgHom_ext_iff, inrNonUnitalStarAlgHom_apply, inr_comp_cfcₙHom_eq_cfcₙAux, algebraMap_eq_inlRingHom_comp, cfcₙAux_mem_range_inr, inrRangeEquiv_apply_coe, inrNonUnitalAlgHom_apply, inrRangeEquiv_symm_apply, inlRingHom_apply
|
instOne 📖 | CompOp | 10 mathmath: CStarAlgebra.preimage_inr_Icc_zero_one, CStarAlgebra.inr_mem_Icc_iff_norm_le, inl_one, val_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe, val_inv_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe, fst_one, snd_one, instNormOneClass, isQuasiregular_iff_isUnit', CStarAlgebra.inr_mem_Icc_iff_nnnorm_le
|
instRing 📖 | CompOp | 12 mathmath: quasispectrumRestricts_iff_spectrumRestricts_inr', real_cfcₙ_eq_cfc_inr, quasispectrum_inr_eq, zero_mem_spectrum_inr, mem_spectrum_inr_of_not_isUnit, spec_cfcₙAux, nnreal_cfcₙ_eq_cfc_inr, quasispectrumRestricts_iff_spectrumRestricts_inr, quasispectrum_eq_spectrum_inr', complex_cfcₙ_eq_cfc_inr, quasispectrum_eq_spectrum_inr, cfcₙ_eq_cfc_inr
|
instSMul 📖 | CompOp | 9 mathmath: NonUnitalStarSubalgebra.unitizationStarAlgEquiv_apply_coe, instSMulCommClass, inr_smul, instIsCentralScalar, instStarModule, instIsScalarTower, fst_smul, inl_smul, snd_smul
|
instSemiring 📖 | CompOp | 52 mathmath: splitMul_apply, algHom_ext'_iff, starAlgHom_ext_iff, isQuasiregular_inr_iff, starLift_symm_apply_apply, starLift_apply_apply, nnnorm_def, instStarOrderedRing, WithLp.unitization_algebraMap, NonUnitalSubalgebra.unitization_injective, lift_symm_apply_apply, NonUnitalStarSubalgebra.unitization_range, NonUnitalSubalgebra.unitization_range, NonUnitalSubsemiring.unitization_apply, NonUnitalSubring.unitization_apply, splitMul_injective_of_clm_mul_injective, starMap_injective, NonUnitalAlgHom.toAlgHom_zero, starMap_id, starLift_range, starMap_inl, starMap_inr, algebraMap_eq_inl, NonUnitalStarSubalgebra.unitization_injective, NonUnitalStarSubalgebra.unitization_apply, starMap_surjective, NonUnitalSubalgebra.unitizationAlgEquiv_apply_coe, lift_range, algebraMap_eq_inlRingHom_comp, NonUnitalSubalgebra.unitization_apply, lift_symm_apply, norm_def, WithLp.unitizationAlgEquiv_symm_apply_ofLp, starLift_apply, starMap_comp, fstHom_apply, starMap_apply, NonUnitalSubring.unitization_range, NonUnitalAlgHom.toAlgHom_apply, inrRangeEquiv_apply_coe, NonUnitalSubsemiring.unitization_range, lift_range_le, norm_splitMul_snd_sq, splitMul_injective, starLift_range_le, lift_apply_apply, starLift_symm_apply, WithLp.unitizationAlgEquiv_apply, algebraMap_eq_inlRingHom, lift_apply, inrRangeEquiv_symm_apply, algebraMap_eq_inl_comp
|
instStar 📖 | CompOp | 35 mathmath: isClosedEmbedding_cfcₙAux, starAlgHom_ext_iff, NonUnitalStarSubalgebra.unitizationStarAlgEquiv_apply_coe, starLift_symm_apply_apply, starLift_apply_apply, inr_star, cfcₙAux_id, starMap_injective, IsSelfAdjoint.inr, starMap_id, starLift_range, inl_star, inrNonUnitalStarAlgHom_apply, starMap_inl, starMap_inr, isSelfAdjoint_inr, NonUnitalStarSubalgebra.unitization_injective, NonUnitalStarSubalgebra.unitization_apply, starMap_surjective, inr_comp_cfcₙHom_eq_cfcₙAux, spec_cfcₙAux, starLift_apply, starMap_comp, starMap_apply, instIsStarNormal, cfcₙAux_mem_range_inr, snd_star, inrRangeEquiv_apply_coe, instStarModule, norm_splitMul_snd_sq, starLift_range_le, starLift_symm_apply, inrRangeEquiv_symm_apply, fst_star, isStarNormal_inr
|
instStarAddMonoid 📖 | CompOp | — |
instStarRing 📖 | CompOp | 9 mathmath: real_cfcₙ_eq_cfc_inr, instStarOrderedRing, NonUnitalStarSubalgebra.unitization_range, starLift_range, nnreal_cfcₙ_eq_cfc_inr, instCStarRing, complex_cfcₙ_eq_cfc_inr, starLift_range_le, cfcₙ_eq_cfc_inr
|
instZero 📖 | CompOp | 8 mathmath: CStarAlgebra.preimage_inr_Icc_zero_one, CStarAlgebra.inr_mem_Icc_iff_norm_le, fst_zero, inl_zero, inr_zero, snd_zero, CStarAlgebra.inr_mem_Icc_iff_nnnorm_le, inr_nonneg_iff
|
snd 📖 | CompOp | 30 mathmath: splitMul_apply, NonUnitalStarSubalgebra.unitizationStarAlgEquiv_apply_coe, starLift_apply_apply, snd_inr, snd_mul, NonUnitalSubsemiring.unitization_apply, NonUnitalSubring.unitization_apply, sndHom_apply, NonUnitalStarSubalgebra.unitization_apply, norm_eq_sup, NonUnitalSubalgebra.unitizationAlgEquiv_apply_coe, val_inv_unitsFstOne_mulEquiv_quasiregular_apply, NonUnitalSubalgebra.unitization_apply, ext_iff, WithLp.unitization_norm_def, starMap_apply, snd_one, NonUnitalAlgHom.toAlgHom_apply, nnnorm_eq_sup, snd_zero, snd_star, snd_add, snd_neg, lift_apply_apply, snd_inl, val_unitsFstOne_mulEquiv_quasiregular_apply, WithLp.unitization_nnnorm_def, inrRangeEquiv_symm_apply, inl_fst_add_inr_snd_eq, snd_smul
|
sndHom 📖 | CompOp | 1 mathmath: sndHom_apply
|
starLift 📖 | CompOp | 6 mathmath: starLift_symm_apply_apply, starLift_apply_apply, starLift_range, starLift_apply, starLift_range_le, starLift_symm_apply
|
starMap 📖 | CompOp | 7 mathmath: starMap_injective, starMap_id, starMap_inl, starMap_inr, starMap_surjective, starMap_comp, starMap_apply
|