Documentation Verification Report

Associated

πŸ“ Source: Mathlib/Algebra/BigOperators/Associated.lean

Statistics

MetricCount
Definitions0
Theoremsprod, exists_mem_multiset_le_of_prime, finset_prod_mk, prod_eq_one_iff, prod_le_prod, prod_mk, rel_associated_iff_map_eq_map, prod_primes_dvd, prod_ne_zero_of_prime, prod_primes_dvd, dvd_finset_prod_iff, dvd_finsuppProd_iff, exists_mem_finset_dvd, exists_mem_multiset_dvd, exists_mem_multiset_map_dvd, not_dvd_finset_prod, not_dvd_finsuppProd, associated_iff, divisor_closure_eq_closure, exists_associated_mem_of_dvd_prod
20
Total20

Associated

Theorems

NameKindAssumesProvesValidatesDepends On
prod πŸ“–mathematicalAssociated
CommMonoid.toMonoid
Finset.prodβ€”Finset.induction
refl

Associates

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem_multiset_le_of_prime πŸ“–mathematicalPrime
Associates
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
instCommMonoidWithZero
Preorder.toLE
instPreorder
CommMonoidWithZero.toCommMonoid
Multiset.prod
instCommMonoid
Multiset
Multiset.instMembership
β€”Multiset.induction_on
Prime.ne_one
mul_eq_one
Unique.instSubsingleton
Multiset.prod_cons
Prime.le_or_le
Multiset.mem_cons_self
Multiset.mem_cons_of_mem
finset_prod_mk πŸ“–mathematicalβ€”Finset.prod
Associates
CommMonoid.toMonoid
instCommMonoid
β€”Finset.prod_eq_multiset_prod
Multiset.map_map
prod_eq_one_iff πŸ“–mathematicalβ€”Multiset.prod
Associates
CommMonoid.toMonoid
instCommMonoid
instOne
β€”Multiset.induction_on
instIsEmptyFalse
Multiset.prod_cons
Unique.instSubsingleton
prod_le_prod πŸ“–mathematicalMultiset
Associates
CommMonoid.toMonoid
Preorder.toLE
PartialOrder.toPreorder
Multiset.instPartialOrder
instPreorder
Multiset.prod
instCommMonoid
β€”mul_mono
le_refl
one_le
Multiset.prod_add
mul_one
add_tsub_cancel_of_le
Multiset.instExistsAddOfLE
Multiset.instAddLeftMono
Multiset.instOrderedSub
prod_mk πŸ“–mathematicalβ€”Multiset.prod
Associates
CommMonoid.toMonoid
instCommMonoid
Multiset.map
β€”Multiset.induction_on
Multiset.map_cons
Multiset.prod_cons
rel_associated_iff_map_eq_map πŸ“–mathematicalβ€”Multiset.Rel
Associated
CommMonoid.toMonoid
Multiset.map
Associates
β€”Multiset.rel_eq
Multiset.rel_map

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
prod_primes_dvd πŸ“–mathematicalPrime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
prod
CommMonoidWithZero.toCommMonoid
β€”Multiset.prod_primes_dvd
IsCancelMulZero.toIsLeftCancelMulZero
Multiset.map_id'
Multiset.countP_congr
associated_eq_eq
Multiset.countP_eq_card_filter
Multiset.count_eq_card_filter_eq
nodup

Multiset

Theorems

NameKindAssumesProvesValidatesDepends On
prod_ne_zero_of_prime πŸ“–β€”Primeβ€”β€”prod_ne_zero
Prime.ne_zero
prod_primes_dvd πŸ“–mathematicalPrime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
countP
Associated
MonoidWithZero.toMonoid
prod
CommMonoidWithZero.toCommMonoid
β€”induction_on
prod_cons
mem_cons_self
mul_dvd_mul_left
mem_cons_of_mem
Prime.dvd_or_dvd
Prime.associated_of_dvd
countP_pos
not_lt
countP_cons_of_pos
Associated.refl
Associated.symm
LE.le.trans
countP_le_of_le
le_cons_self

Prime

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_finset_prod_iff πŸ“–mathematicalPrimesemigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Finset.prod
CommMonoidWithZero.toCommMonoid
Finset
Finset.instMembership
β€”exists_mem_finset_dvd
dvd_trans
Finset.dvd_prod_of_mem
dvd_finsuppProd_iff πŸ“–mathematicalPrime
Nat.instCommMonoidWithZero
Finsupp.prod
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Nat.instCommMonoid
Finset
Finset.instMembership
Finsupp.support
DFunLike.coe
Finsupp
Finsupp.instFunLike
β€”dvd_finset_prod_iff
exists_mem_finset_dvd πŸ“–mathematicalPrime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Finset.prod
CommMonoidWithZero.toCommMonoid
Finset
Finset.instMembership
β€”exists_mem_multiset_map_dvd
exists_mem_multiset_dvd πŸ“–mathematicalPrime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Multiset.prod
CommMonoidWithZero.toCommMonoid
Multiset
Multiset.instMembership
β€”Multiset.induction_on
not_dvd_one
Multiset.prod_cons
dvd_or_dvd
Multiset.mem_cons_self
Multiset.mem_cons_of_mem
exists_mem_multiset_map_dvd πŸ“–mathematicalPrime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Multiset.prod
CommMonoidWithZero.toCommMonoid
Multiset.map
Multiset
Multiset.instMembership
β€”exists_mem_multiset_dvd
not_dvd_finset_prod πŸ“–mathematicalPrime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Finset.prod
CommMonoidWithZero.toCommMonoid
β€”dvd_finset_prod_iff
not_dvd_finsuppProd πŸ“–mathematicalPrime
Nat.instCommMonoidWithZero
DFunLike.coe
Finsupp
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Finsupp.instFunLike
Finsupp.prod
Nat.instCommMonoid
β€”not_dvd_finset_prod

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
associated_iff πŸ“–mathematicalβ€”Associated
instMonoid
β€”eq_iff_fst_eq_snd_eq

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
divisor_closure_eq_closure πŸ“–β€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
Submonoid.closure
setOf
IsUnit
MonoidWithZero.toMonoid
Prime
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
β€”β€”Submonoid.exists_multiset_of_mem_closure
Multiset.induction
Submonoid.subset_closure
IsUnit.of_mul_eq_one
instIsDedekindFiniteMonoid
IsUnit.exists_right_inv
Multiset.prod_cons
mul_comm
Submonoid.multiset_prod_mem
Multiset.forall_mem_cons
IsUnit.of_mul_eq_one_right
mul_one
mul_assoc
mul_eq_mul_right_iff
IsCancelMulZero.toIsRightCancelMulZero
Prime.dvd_mul
Dvd.intro
Submonoid.mul_mem
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Prime.ne_zero
exists_associated_mem_of_dvd_prod πŸ“–mathematicalPrime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Multiset.prod
CommMonoidWithZero.toCommMonoid
Multiset
Multiset.instMembership
Associated
MonoidWithZero.toMonoid
β€”Multiset.induction_on
instIsEmptyFalse
isUnit_iff_dvd_one
Prime.not_unit
Zero.instNonempty
Prime.dvd_or_dvd
Multiset.prod_cons
Multiset.mem_cons
Multiset.mem_cons_self
Prime.associated_of_dvd

---

← Back to Index