Documentation Verification Report

Expect

πŸ“ Source: Mathlib/Algebra/BigOperators/Expect.lean

Statistics

MetricCount
Definitionsbigexpect, delabFinsetExpect, expect
3
Theoremscard_mul_expect, card_smul_expect, exists_ne_zero_of_expect_ne_zero, expectWith_congr, expect_add_distrib, expect_add_expect_comm, expect_apply, expect_bij, expect_bij', expect_boole_mul, expect_boole_mul', expect_comm, expect_congr, expect_const, expect_const_zero, expect_dite_eq, expect_dite_eq', expect_div, expect_empty, expect_eq_single_of_mem, expect_eq_sum_div_card, expect_eq_zero, expect_equiv, expect_image, expect_inv_index, expect_ite_eq, expect_ite_eq', expect_ite_mem, expect_ite_zero, expect_mul, expect_mul_expect, expect_nbij, expect_nbij', expect_neg_distrib, expect_neg_index, expect_pow, expect_product, expect_product', expect_singleton, expect_sub_distrib, expect_sum_comm, expect_univ, mul_expect, smul_expect, card_mul_expect, card_smul_expect, expect_bijective, expect_const, expect_dite_eq, expect_dite_eq', expect_eq_sum_div_card, expect_equiv, expect_ite_eq, expect_ite_eq', expect_ite_mem, expect_ite_zero, expect_mul_expect, expect_one, coe_expect, map_expect
60
Total63

BigOperators

Definitions

NameCategoryTheorems
bigexpect πŸ“–CompOpβ€”
delabFinsetExpect πŸ“–CompOpβ€”

Finset

Definitions

NameCategoryTheorems
expect πŸ“–CompOp
92 mathmath: expect_ite_mem, expect_congr, AddDissociated.randomisation, le_expect_nonempty_of_subadditive, expect_eq_zero, le_expect_of_subadditive_on_pred, Fintype.expect_mul_expect, RCLike.norm_expect_le, expect_neg_distrib, Fintype.expect_dite_eq, Complex.im_expect, Fintype.expect_eq_zero_iff_of_nonpos, expect_mul_expect, expect_const_zero, expect_comm, Fintype.expect_ite_eq, Fintype.expect_ite_zero, expect_ite_zero, expect_add_distrib, RCLike.wInner_cWeight_eq_expect, Fintype.expect_dite_eq', expect_inv_index, expect_image, le_expect_nonempty_of_subadditive_on_pred, Fintype.expect_eq_zero_iff_of_nonneg, expect_const, Fintype.expect_bijective, AddChar.expect_apply_eq_zero_iff_ne_zero, Fintype.card_mul_expect, expect_empty, expect_eq_zero_iff_of_nonneg, expect_eq_single_of_mem, card_smul_expect, expect_mul, card_mul_expect, Fintype.balance_apply, expect_nbij', expect_sub_distrib, expect_eq_zero_iff_of_nonpos, expect_boole_mul', Fintype.expect_one, expect_add_expect_comm, expect_bij, expect_dite_eq', RCLike.wInner_cWeight_const_left, AddChar.expect_eq_zero_iff_ne_zero, expect_bij', expect_le_expect, expect_mul_sq_le_sq_mul_sq, Complex.ofReal_expect, Fintype.expect_ite_mem, expect_equiv, expect_product, expect_le, expect_nonneg, expect_boole_mul, NNReal.coe_expect, Fintype.expect_balance, RCLike.ofReal_expect, Fintype.expect_equiv, expect_nbij, abs_expect_le, expect_neg_index, mul_expect, expect_univ, expect_dite_eq, expect_apply, Complex.re_expect, smul_expect, RCLike.wInner_cWeight_const_right, expect_div, MeasureTheory.lpNorm_expect_le, Fintype.expect_ite_eq', le_expect, le_expect_of_subadditive, map_expect, Fintype.card_smul_expect, Real.compact_inner_le_weight_mul_Lp_of_nonneg, algebraMap.coe_expect, expect_eq_sum_div_card, AddChar.expect_apply_eq_ite, expect_ite_eq, expect_pow, expect_singleton, expect_sum_comm, expect_ite_eq', expect_pos, AddChar.expect_eq_ite, expect_product', Fintype.expect_const, expectWith_congr, Fintype.expect_eq_sum_div_card

Theorems

NameKindAssumesProvesValidatesDepends On
card_mul_expect πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
card
expect
NonUnitalNonAssocSemiring.toAddCommMonoid
sum
β€”nsmul_eq_mul
card_smul_expect
card_smul_expect πŸ“–mathematicalβ€”AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
card
expect
sum
β€”eq_empty_or_nonempty
expect_empty
nsmul_zero
expect.eq_1
Nat.cast_smul_eq_nsmul
smul_inv_smulβ‚€
Nat.cast_zero
NNRat.instCharZero
Nonempty.card_ne_zero
exists_ne_zero_of_expect_ne_zero πŸ“–mathematicalβ€”Finset
instMembership
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
expect_eq_zero
expectWith_congr πŸ“–mathematicalβ€”expect
filter
β€”expect_congr
filter_inj'
expect_add_distrib πŸ“–mathematicalβ€”expect
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”sum_congr
sum_add_distrib
smul_add
expect_add_expect_comm πŸ“–mathematicalβ€”AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
expect
β€”expect_add_distrib
add_add_add_comm
expect_apply πŸ“–mathematicalβ€”expect
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Pi.module
NNRat
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
β€”sum_congr
sum_apply
expect_bij πŸ“–mathematicalFinset
instMembership
expectβ€”sum_congr
card_bij
sum_bij
expect_bij' πŸ“–mathematicalFinset
instMembership
expectβ€”sum_congr
card_bij'
sum_bij'
expect_boole_mul πŸ“–mathematicalβ€”expect
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.toModule
NNRat
instCommSemiringNNRat
DivisionSemiring.toNNRatAlgebra
univ
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”expect_univ
sum_congr
ite_mul
MulZeroClass.zero_mul
sum_ite_eq
mem_univ
NNRat.cast_natCast
NNRat.smul_def
inv_smul_smulβ‚€
NNRat.instCharZero
expect_boole_mul' πŸ“–mathematicalβ€”expect
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.toModule
NNRat
instCommSemiringNNRat
DivisionSemiring.toNNRatAlgebra
univ
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”expect_congr
expect_boole_mul
expect_comm πŸ“–mathematicalβ€”expectβ€”expect.eq_1
expect_sum_comm
SMulCommClass.smul_comm
smulCommClass_self
sum_comm
expect_congr πŸ“–mathematicalβ€”expectβ€”expect.eq_1
sum_congr
expect_const πŸ“–mathematicalNonemptyexpectβ€”expect.eq_1
sum_const
Nat.cast_smul_eq_nsmul
inv_smul_smulβ‚€
Nat.cast_zero
NNRat.instCharZero
Nonempty.card_ne_zero
expect_const_zero πŸ“–mathematicalβ€”expect
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”sum_congr
sum_const_zero
smul_zero
expect_dite_eq πŸ“–mathematicalβ€”expect
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset
instMembership
decidableMem
NNRat
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
card
β€”sum_congr
sum_dite_eq
smul_zero
expect_dite_eq' πŸ“–mathematicalβ€”expect
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset
instMembership
decidableMem
NNRat
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
card
β€”sum_congr
sum_dite_eq'
smul_zero
expect_div πŸ“–mathematicalβ€”DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
expect
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Algebra.toModule
NNRat
instCommSemiringNNRat
DivisionSemiring.toNNRatAlgebra
β€”div_eq_mul_inv
expect_congr
expect_mul
IsScalarTower.right
expect_empty πŸ“–mathematicalβ€”expect
Finset
instEmptyCollection
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Nat.cast_zero
inv_zero
sum_congr
smul_zero
expect_eq_single_of_mem πŸ“–mathematicalFinset
instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
expect
NNRat
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
card
β€”expect.eq_1
sum_eq_single_of_mem
expect_eq_sum_div_card πŸ“–mathematicalβ€”expect
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.toModule
NNRat
instCommSemiringNNRat
DivisionSemiring.toNNRatAlgebra
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
sum
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
card
β€”expect.eq_1
NNRat.smul_def
div_eq_inv_mul
NNRat.cast_inv
NNRat.cast_natCast
expect_eq_zero πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
expectβ€”expect_congr
expect_const_zero
expect_equiv πŸ“–mathematicalFinset
instMembership
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
expectβ€”sum_congr
card_equiv
sum_equiv
expect_image πŸ“–mathematicalSet.InjOn
SetLike.coe
Finset
instSetLike
expect
image
β€”sum_congr
card_image_of_injOn
sum_image
expect_inv_index πŸ“–mathematicalβ€”expect
Finset
inv
InvolutiveInv.toInv
β€”expect_image
Function.Injective.injOn
inv_injective
expect_ite_eq πŸ“–mathematicalβ€”expect
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset
instMembership
decidableMem
NNRat
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
card
β€”sum_congr
sum_ite_eq
smul_zero
expect_ite_eq' πŸ“–mathematicalβ€”expect
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset
instMembership
decidableMem
NNRat
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
card
β€”sum_congr
sum_ite_eq'
smul_zero
expect_ite_mem πŸ“–mathematicalβ€”expect
Finset
instMembership
decidableMem
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NNRat
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instDiv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
card
instInter
β€”eq_empty_or_nonempty
sum_congr
sum_ite_mem
smul_zero
Nat.cast_zero
zero_div
inv_zero
smul_smul
mul_inv_cancel_rightβ‚€
NNRat.instCharZero
Nonempty.card_ne_zero
expect_ite_zero πŸ“–mathematicalβ€”expect
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset
instMembership
decidableExistsAndFinset
NNRat
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
card
β€”sum_congr
sum_ite_zero
smul_zero
expect_mul πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
expect
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”expect.eq_1
smul_mul_assoc
sum_mul
expect_mul_expect πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
expect
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”expect_mul
expect_congr
mul_expect
expect_nbij πŸ“–mathematicalFinset
instMembership
Set.InjOn
SetLike.coe
instSetLike
Set.SurjOn
expectβ€”sum_congr
card_nbij
sum_nbij
expect_nbij' πŸ“–mathematicalFinset
instMembership
expectβ€”sum_congr
card_nbij'
sum_nbij'
expect_neg_distrib πŸ“–mathematicalβ€”expect
AddCommGroup.toAddCommMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”sum_congr
sum_neg_distrib
smul_neg
expect_neg_index πŸ“–mathematicalβ€”expect
Finset
neg
InvolutiveNeg.toNeg
β€”expect_image
Function.Injective.injOn
neg_injective
expect_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
expect
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Fintype.piFinset
Fin.fintype
prod
CommSemiring.toCommMonoid
univ
β€”expect.eq_1
smul_pow
sum_pow'
Fintype.card_piFinset_const
inv_pow
Nat.cast_pow
expect_product πŸ“–mathematicalβ€”expect
SProd.sprod
Finset
instSProd
β€”card_product
Nat.cast_mul
mul_inv
sum_congr
sum_product
smul_sum
SemigroupAction.mul_smul
expect_product' πŸ“–mathematicalβ€”expect
SProd.sprod
Finset
instSProd
β€”card_product
Nat.cast_mul
mul_inv
sum_congr
sum_product'
smul_sum
SemigroupAction.mul_smul
expect_singleton πŸ“–mathematicalβ€”expect
Finset
instSingleton
β€”card_singleton
Nat.cast_one
inv_one
sum_congr
sum_singleton
one_smul
expect_sub_distrib πŸ“–mathematicalβ€”expect
AddCommGroup.toAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”sum_congr
sum_sub_distrib
smul_sub
expect_sum_comm πŸ“–mathematicalβ€”expect
sum
β€”sum_congr
smul_sum
sum_comm
expect_univ πŸ“–mathematicalβ€”expect
univ
NNRat
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Fintype.card
sum
β€”expect.eq_1
card_univ
mul_expect πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
expect
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”expect.eq_1
mul_smul_comm
mul_sum
smul_expect πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
expect
β€”sum_congr
smul_sum
SMulCommClass.smul_comm

Fintype

Theorems

NameKindAssumesProvesValidatesDepends On
card_mul_expect πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
card
Finset.expect
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.univ
Finset.sum
β€”Finset.card_mul_expect
card_smul_expect πŸ“–mathematicalβ€”AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
card
Finset.expect
Finset.univ
Finset.sum
β€”Finset.card_smul_expect
expect_bijective πŸ“–mathematicalFunction.BijectiveFinset.expect
Finset.univ
β€”Finset.expect_nbij
Finset.mem_univ
Function.Injective.injOn
Function.Bijective.injective
Finset.coe_univ
Function.Bijective.surjective
expect_const πŸ“–mathematicalβ€”Finset.expect
Finset.univ
β€”Finset.expect_const
Finset.univ_nonempty
expect_dite_eq πŸ“–mathematicalβ€”Finset.expect
Finset.univ
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NNRat
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
card
β€”Finset.expect_dite_eq
expect_dite_eq' πŸ“–mathematicalβ€”Finset.expect
Finset.univ
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NNRat
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
card
β€”Finset.expect_dite_eq'
expect_eq_sum_div_card πŸ“–mathematicalβ€”Finset.expect
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.toModule
NNRat
instCommSemiringNNRat
DivisionSemiring.toNNRatAlgebra
Finset.univ
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Finset.sum
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
card
β€”Finset.expect_eq_sum_div_card
expect_equiv πŸ“–mathematicalDFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Finset.expect
Finset.univ
β€”expect_bijective
Equiv.bijective
expect_ite_eq πŸ“–mathematicalβ€”Finset.expect
Finset.univ
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NNRat
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
card
β€”Finset.expect_ite_eq
expect_ite_eq' πŸ“–mathematicalβ€”Finset.expect
Finset.univ
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NNRat
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
card
β€”Finset.expect_ite_eq'
expect_ite_mem πŸ“–mathematicalβ€”Finset.expect
Finset.univ
Finset
Finset.instMembership
Finset.decidableMem
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NNRat
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
Finset.dens
β€”Finset.expect_ite_mem
Finset.univ_inter
Finset.expect_congr
expect_ite_zero πŸ“–mathematicalβ€”Finset.expect
Finset.univ
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
decidableExistsFintype
NNRat
SMulZeroClass.toSMul
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
Module.toDistribMulAction
NNRat.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
card
β€”Finset.expect_ite_zero
expect_mul_expect πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.expect
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.univ
β€”Finset.expect_mul_expect
expect_one πŸ“–mathematicalβ€”Finset.expect
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.univ
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”expect_const

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
map_expect πŸ“–mathematicalβ€”DFunLike.coe
Finset.expect
β€”Finset.sum_congr
map_smul
SemilinearMapClass.toMulActionSemiHomClass
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass

algebraMap

Theorems

NameKindAssumesProvesValidatesDepends On
coe_expect πŸ“–mathematicalβ€”Algebra.cast
Semifield.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Finset.expect
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
NNRat
instCommSemiringNNRat
DivisionSemiring.toNNRatAlgebra
β€”map_expect
RingHomClass.toLinearMapClassNNRat
RingHom.instRingHomClass

---

← Back to Index