Documentation Verification Report

Finprod

πŸ“ Source: Mathlib/Algebra/BigOperators/Finprod.lean

Statistics

MetricCount
Definitionsfinprod, finsum, Β«term∏ᢠ_,_Β», Β«termβˆ‘αΆ _,_Β»
4
Theoremsmap_finsum, map_finsum_mem, map_finsum, map_finsum, map_finsum_Prop, map_finsum_mem, map_finsum_mem', map_finsum_of_injective, map_finsum_of_preimage_zero, map_finsum_plift, mulSupport_of_fiberwise_prod_subset_image, support_of_fiberwise_sum_subset_image, map_finprod, map_finprod_Prop, map_finprod_mem, map_finprod_mem', map_finprod_of_injective, map_finprod_of_preimage_one, map_finprod_plift, map_finprod, map_finprod_mem, map_finprod, cast_finprod, cast_finprod_mem, cast_finsum, cast_finsum_mem, add_finsum_cond_ne, exists_ne_one_of_finprod_mem_ne_one, exists_ne_zero_of_finsum_mem_ne_zero, finite_mulSupport_of_finprod_ne_one, finite_support_of_finsum_eq_one, finite_support_of_finsum_ne_zero, finprod_apply, finprod_apply_ne_one, finprod_comp, finprod_comp_equiv, finprod_cond_eq_left, finprod_cond_eq_prod_of_cond_iff, finprod_cond_eq_right, finprod_cond_ne, finprod_cond_nonneg, finprod_cond_pos, finprod_congr, finprod_congr_Prop, finprod_curry, finprod_curry₃, finprod_def, finprod_def', finprod_div_distrib, finprod_dmem, finprod_emb_domain, finprod_emb_domain', finprod_eq_dif, finprod_eq_finset_prod_of_mulSupport_subset, finprod_eq_if, finprod_eq_mulIndicator_apply, finprod_eq_of_bijective, finprod_eq_one_of_forall_eq_one, finprod_eq_prod, finprod_eq_prod_of_fintype, finprod_eq_prod_of_mulSupport_subset, finprod_eq_prod_of_mulSupport_subset_of_finite, finprod_eq_prod_of_mulSupport_toFinset_subset, finprod_eq_prod_plift_of_mulSupport_subset, finprod_eq_prod_plift_of_mulSupport_toFinset_subset, finprod_eq_single, finprod_eq_zero, finprod_false, finprod_induction, finprod_inv_distrib, finprod_le_finprod, finprod_le_finprod', finprod_mem_biUnion, finprod_mem_coe_finset, finprod_mem_comm, finprod_mem_congr, finprod_mem_def, finprod_mem_div_distrib, finprod_mem_dvd, finprod_mem_empty, finprod_mem_eq_finite_toFinset_prod, finprod_mem_eq_of_bijOn, finprod_mem_eq_one_of_forall_eq_one, finprod_mem_eq_one_of_infinite, finprod_mem_eq_prod, finprod_mem_eq_prod_filter, finprod_mem_eq_prod_of_inter_mulSupport_eq, finprod_mem_eq_prod_of_subset, finprod_mem_eq_toFinset_prod, finprod_mem_finset_eq_prod, finprod_mem_finset_product, finprod_mem_finset_product', finprod_mem_finset_product₃, finprod_mem_iUnion, finprod_mem_image, finprod_mem_image', finprod_mem_induction, finprod_mem_insert, finprod_mem_insert', finprod_mem_insert_of_eq_one_if_notMem, finprod_mem_insert_one, finprod_mem_inter_mulSupport, finprod_mem_inter_mulSupport_eq, finprod_mem_inter_mulSupport_eq', finprod_mem_inter_mul_diff, finprod_mem_inter_mul_diff', finprod_mem_inv_distrib, finprod_mem_mulSupport, finprod_mem_mul_diff, finprod_mem_mul_diff', finprod_mem_mul_distrib, finprod_mem_mul_distrib', finprod_mem_of_eqOn_one, finprod_mem_one, finprod_mem_pair, finprod_mem_powerset_diff_elem, finprod_mem_powerset_insert, finprod_mem_range, finprod_mem_range', finprod_mem_sUnion, finprod_mem_singleton, finprod_mem_union, finprod_mem_union', finprod_mem_union'', finprod_mem_union_inter, finprod_mem_union_inter', finprod_mem_univ, finprod_mul_distrib, finprod_nonneg, finprod_of_infinite_mulSupport, finprod_of_isEmpty, finprod_one, finprod_option, finprod_pow, finprod_prod_comm, finprod_prod_filter, finprod_set_coe_eq_finprod_mem, finprod_subtype_eq_finprod_cond, finprod_true, finprod_unique, finsum_add_distrib, finsum_apply, finsum_apply_ne_zero, finsum_comp, finsum_comp_equiv, finsum_cond_eq_left, finsum_cond_eq_right, finsum_cond_eq_sum_of_cond_iff, finsum_cond_ne, finsum_cond_pos, finsum_congr, finsum_congr_Prop, finsum_curry, finsum_curry₃, finsum_def, finsum_def', finsum_dmem, finsum_emb_domain, finsum_emb_domain', finsum_eq_dif, finsum_eq_finset_sum_of_support_subset, finsum_eq_if, finsum_eq_indicator_apply, finsum_eq_of_bijective, finsum_eq_single, finsum_eq_sum, finsum_eq_sum_of_fintype, finsum_eq_sum_of_support_subset, finsum_eq_sum_of_support_subset_of_finite, finsum_eq_sum_of_support_toFinset_subset, finsum_eq_sum_plift_of_support_subset, finsum_eq_sum_plift_of_support_toFinset_subset, finsum_eq_zero_of_forall_eq_zero, finsum_false, finsum_induction, finsum_le_finsum', finsum_mem_add_diff, finsum_mem_add_diff', finsum_mem_add_distrib, finsum_mem_add_distrib', finsum_mem_biUnion, finsum_mem_coe_finset, finsum_mem_comm, finsum_mem_congr, finsum_mem_def, finsum_mem_empty, finsum_mem_eq_finite_toFinset_sum, finsum_mem_eq_of_bijOn, finsum_mem_eq_sum, finsum_mem_eq_sum_filter, finsum_mem_eq_sum_of_inter_support_eq, finsum_mem_eq_sum_of_subset, finsum_mem_eq_toFinset_sum, finsum_mem_eq_zero_of_forall_eq_zero, finsum_mem_eq_zero_of_infinite, finsum_mem_finset_eq_sum, finsum_mem_finset_product, finsum_mem_finset_product', finsum_mem_finset_product₃, finsum_mem_iUnion, finsum_mem_image, finsum_mem_image', finsum_mem_induction, finsum_mem_insert, finsum_mem_insert', finsum_mem_insert_of_eq_zero_if_notMem, finsum_mem_insert_zero, finsum_mem_inter_add_diff, finsum_mem_inter_add_diff', finsum_mem_inter_support, finsum_mem_inter_support_eq, finsum_mem_inter_support_eq', finsum_mem_mul, finsum_mem_mul', finsum_mem_neg_distrib, finsum_mem_of_eqOn_zero, finsum_mem_pair, finsum_mem_powerset_diff_elem, finsum_mem_powerset_insert, finsum_mem_range, finsum_mem_range', finsum_mem_sUnion, finsum_mem_singleton, finsum_mem_sub_distrib, finsum_mem_support, finsum_mem_union, finsum_mem_union', finsum_mem_union'', finsum_mem_union_inter, finsum_mem_union_inter', finsum_mem_univ, finsum_mem_zero, finsum_mul, finsum_mul', finsum_neg_distrib, finsum_nonneg, finsum_nsmul, finsum_of_infinite_support, finsum_of_isEmpty, finsum_option, finsum_pos, finsum_pos', finsum_set_coe_eq_finsum_mem, finsum_smul, finsum_smul', finsum_sub_distrib, finsum_subtype_eq_finsum_cond, finsum_sum_comm, finsum_sum_filter, finsum_true, finsum_unique, finsum_zero, map_finprod, map_finset_prod, map_finset_sum, map_finsum, mul_finprod_cond_ne, mul_finsum, mul_finsum', mul_finsum_mem, mul_finsum_mem', nonempty_of_finprod_mem_ne_one, nonempty_of_finsum_mem_ne_zero, one_le_finprod, one_le_finprod', one_lt_finprod, one_lt_finprod', one_lt_finprod_cond, prod_finprod_comm, single_le_finprod, single_le_finsum, smul_finsum, smul_finsum', sum_finsum_comm
274
Total278

AddEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
map_finsum πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
EquivLike.toFunLike
instEquivLike
finsum
β€”AddMonoidHom.map_finsum_of_injective
EquivLike.injective
map_finsum_mem πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
EquivLike.toFunLike
instEquivLike
finsum
Set
Set.instMembership
β€”AddMonoidHom.map_finsum_mem

AddEquivClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_finsum πŸ“–mathematicalβ€”DFunLike.coe
EquivLike.toFunLike
finsum
β€”AddEquiv.map_finsum

AddMonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
map_finsum πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
finsum
β€”map_finsum_plift
Set.Finite.preimage
Function.Injective.injOn
Equiv.injective
map_finsum_Prop πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
finsum
β€”map_finsum_plift
Set.toFinite
Subtype.finite
instFinitePLift
instFiniteProp
map_finsum_mem πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
finsum
Set
Set.instMembership
β€”map_finsum_mem'
Set.Finite.inter_of_left
map_finsum_mem' πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
finsum
Set
Set.instMembership
β€”map_finsum
finsum_eq_indicator_apply
Set.support_indicator
map_finsum_Prop
map_finsum_of_injective πŸ“–mathematicalDFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
finsumβ€”map_finsum_of_preimage_zero
map_zero
map_finsum_of_preimage_zero πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
AddMonoidHom
instFunLike
finsum
β€”map_finsum_plift
finsum_def'
map_zero
Set.Infinite.mono
map_finsum_plift πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
finsum
β€”finsum_eq_sum_plift_of_support_subset
Eq.ge
Set.Finite.coe_toFinset
Function.support_comp_subset
map_zero
map_sum
instAddMonoidHomClass

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
mulSupport_of_fiberwise_prod_subset_image πŸ“–mathematicalβ€”Set
Set.instHasSubset
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
filter
SetLike.coe
Finset
instSetLike
image
β€”coe_image
nonempty_of_prod_ne_one
support_of_fiberwise_sum_subset_image πŸ“–mathematicalβ€”Set
Set.instHasSubset
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
filter
SetLike.coe
Finset
instSetLike
image
β€”coe_image
nonempty_of_sum_ne_zero
fiber_nonempty_iff_mem_image
mem_image

MonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
map_finprod πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
instFunLike
finprod
β€”map_finprod_plift
Set.Finite.preimage
Function.Injective.injOn
Equiv.injective
map_finprod_Prop πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
instFunLike
finprod
β€”map_finprod_plift
Set.toFinite
Subtype.finite
instFinitePLift
instFiniteProp
map_finprod_mem πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
instFunLike
finprod
Set
Set.instMembership
β€”map_finprod_mem'
Set.Finite.inter_of_left
map_finprod_mem' πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
instFunLike
finprod
Set
Set.instMembership
β€”map_finprod
finprod_eq_mulIndicator_apply
Set.mulSupport_mulIndicator
map_finprod_Prop
map_finprod_of_injective πŸ“–mathematicalDFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
instFunLike
finprodβ€”map_finprod_of_preimage_one
map_one
map_finprod_of_preimage_one πŸ“–mathematicalMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
DFunLike.coe
MonoidHom
instFunLike
finprod
β€”map_finprod_plift
finprod_def'
map_one
Set.Infinite.mono
map_finprod_plift πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
instFunLike
finprod
β€”finprod_eq_prod_plift_of_mulSupport_subset
Eq.ge
Set.Finite.coe_toFinset
Function.mulSupport_comp_subset
map_one
map_prod
instMonoidHomClass

MulEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
map_finprod πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
EquivLike.toFunLike
instEquivLike
finprod
β€”MonoidHom.map_finprod_of_injective
EquivLike.injective
map_finprod_mem πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
EquivLike.toFunLike
instEquivLike
finprod
Set
Set.instMembership
β€”MonoidHom.map_finprod_mem

MulEquivClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_finprod πŸ“–mathematicalβ€”DFunLike.coe
EquivLike.toFunLike
finprod
β€”MulEquiv.map_finprod

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
cast_finprod πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
finprod
instCommMonoid
CommSemiring.toCommMonoid
β€”MonoidHom.map_finprod
Set.toFinite
Subtype.finite
cast_finprod_mem πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
finprod
instCommMonoid
Set
Set.instMembership
CommSemiring.toCommMonoid
β€”MonoidHom.map_finprod_mem
cast_finsum πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
finsum
instAddCommMonoid
AddCommMonoidWithOne.toAddCommMonoid
β€”AddMonoidHom.map_finsum
Set.toFinite
Subtype.finite
cast_finsum_mem πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
finsum
instAddCommMonoid
Set
Set.instMembership
AddCommMonoidWithOne.toAddCommMonoid
β€”AddMonoidHom.map_finsum_mem

(root)

Definitions

NameCategoryTheorems
finprod πŸ“–CompOp
180 mathmath: FractionalIdeal.finprod_heightOneSpectrum_factorization_principal, MonoidHom.map_finprod_mem', MulEquivClass.map_finprod, Function.FactorizedRational.divisor, NumberField.prod_nonarchAbsVal_eq, contMDiff_finprod, finprod_mem_union', Height.mulHeight₁_eq, finprod_mem_sUnion, BumpCovering.toPartitionOfUnity_apply, finprod_eq_if, finprod_mem_comm, finprod_mem_insert, finprod_nonneg, NumberField.FinitePlace.prod_eq_inv_abs_norm, finprod_prod_filter, finprod_mem_union, contMDiff_finprod_cond, finprod_mem_finset_product, NumberField.prod_abs_eq_one, finprod_mem_powerset_diff_elem, finprod_mem_dvd, one_le_finprod, finprod_mem_one, Polynomial.monic_finprod_X_sub_C, finprod_mem_range, NumberField.FinitePlace.prod_eq_inv_abs_norm_int, MulEquiv.map_finprod, finprod_emb_domain, finprod_option, prod_finprod_comm, finprod_eq_prod_of_mulSupport_toFinset_subset, finprod_set_coe_eq_finprod_mem, finprod_le_finprod', finprod_mem_mul_diff', finprod_apply_ne_one, finprod_mem_inter_mul_diff, FractionalIdeal.count_finprod_coprime, NumberField.mulHeight_eq, SmoothBumpCovering.toSmoothPartitionOfUnity_apply, FractionalIdeal.finprod_heightOneSpectrum_factorization, MonoidHom.map_finprod_of_preimage_one, finprod_mem_inter_mul_diff', Function.FactorizedRational.meromorphicOrderAt_eq, finprod_mem_of_eqOn_one, finprod_eq_finset_prod_of_mulSupport_subset, FractionalIdeal.count_finprod, finprod_mem_inter_mulSupport_eq', Function.FactorizedRational.finprod_eq_fun, finprod_mul_distrib, map_finprod, finprod_cond_nonneg, finprod_mem_insert_one, MonoidHom.map_finprod_mem, contMDiffAt_finprod, finprod_mem_range', SmoothBumpCovering.sum_toSmoothPartitionOfUnity_eq, finprod_mem_empty, finprod_false, finprod_mem_def, Nat.cast_finprod, finprod_eventually_eq_prod, finprod_mem_mul_distrib', finprod_induction, finprod_mem_eq_prod, finprod_mem_powerset_insert, contMDiffWithinAt_finprod, finprod_curry₃, Function.FactorizedRational.meromorphicNFOn_univ, finprod_def', finprod_cond_eq_right, finprod_prod_comm, finprod_eq_prod_of_fintype, finprod_mem_mulSupport, finprod_mem_union_inter', Function.FactorizedRational.analyticAt, finprod_curry, Height.mulHeight_eq, finprod_mem_insert', finprod_le_finprod, finprod_mem_union'', finprod_subtype_eq_finprod_cond, finprod_true, finprod_cond_ne, finprod_mem_finset_product', finprod_mem_coe_finset, one_lt_finprod', finprod_eq_prod_of_mulSupport_subset_of_finite, finprod_mem_inter_mulSupport_eq, finprod_mem_eq_prod_filter, smul_finprod', finprod_eq_of_bijective, finprod_mem_eq_prod_of_inter_mulSupport_eq, continuous_finprod_cond, finprod_eq_zero, Function.FactorizedRational.meromorphicTrailingCoeffAt_factorizedRational, finprod_pow, finprod_of_infinite_mulSupport, finprod_of_isEmpty, finprod_mem_congr, Function.FactorizedRational.log_norm_meromorphicTrailingCoeffAt, finprod_cond_eq_left, contMDiffOn_finprod, finprod_eq_single, finprod_eq_prod_plift_of_mulSupport_subset, finprod_mem_eq_one_of_infinite, finprod_unique, BumpCovering.sum_toPartitionOfUnity_eq, finprod_congr_Prop, finprod_eq_one_of_forall_eq_one, finprod_mem_eq_prod_of_subset, MeromorphicOn.extract_zeros_poles, finprod_comp_equiv, finprod_mem_union_inter, MonoidHom.map_finprod_Prop, finprod_mem_mul_distrib, finprod_mem_div_distrib, Ideal.finprod_count, finprod_mem_singleton, Function.FactorizedRational.extractFactor, finprod_eq_mulIndicator_apply, finprod_mem_eq_finite_toFinset_prod, tprod_eq_finprod, finprod_mem_iUnion, finprod_apply, analyticAt_finprod, finprod_cond_eq_prod_of_cond_iff, tprod_def, finprod_comp, MonoidHom.map_finprod, Ideal.finprod_heightOneSpectrum_factorization_coe, one_lt_finprod, finprod_mem_biUnion, one_lt_finprod_cond, Nat.cast_finprod_mem, finprod_def, MonoidHom.map_finprod_of_injective, finprod_congr, finprod_mem_image, finprod_eq_prod_plift_of_mulSupport_toFinset_subset, finprod_mem_eq_of_bijOn, finprod_mem_finset_product₃, finprod_mem_image', finprod_mem_finset_eq_prod, NumberField.mulHeight₁_eq, smul_finprod_perm, MonoidHom.map_finprod_plift, Height.AdmissibleAbsValues.product_formula, finprod_mem_inter_mulSupport, tprod_bot, finprod_one, finprod_mem_insert_of_eq_one_if_notMem, FractionalIdeal.finprod_heightOneSpectrum_factorization_principal_fraction, mul_finprod_cond_ne, finprod_eq_dif, Ideal.finprod_not_dvd, finprod_mem_eq_one_of_forall_eq_one, finprod_emb_domain', Function.FactorizedRational.meromorphicTrailingCoeffAt_factorizedRational_off_support, finprod_mem_induction, finprod_mem_pair, finprod_eq_prod_of_mulSupport_subset, BumpCovering.sum_toPOUFun_eq, finprod_div_distrib, finprod_mem_univ, finprod_inv_distrib, Ideal.finprod_heightOneSpectrum_factorization, finprod_dmem, finprod_mem_eq_toFinset_prod, MulEquiv.map_finprod_mem, finprod_mem_mul_diff, FractionalIdeal.finprod_heightOneSpectrum_factorization', Function.FactorizedRational.meromorphicNFOn, one_le_finprod', single_le_finprod, continuous_finprod, finprod_mem_inv_distrib, FractionalIdeal.coeIdeal_finprod, Polynomial.monic_finprod_of_monic, finprod_eq_prod
finsum πŸ“–CompOp
216 mathmath: AddMonoidHom.map_finsum_of_injective, finsum_mem_union, MDifferentiableOn.finsum_section_of_locallyFinite, smul_finsum_mem, finsum_mem_insert_zero, PowerSeries.constantCoeff_subst, continuous_finsum, contMDiffOn_finsum, finsum_cond_eq_sum_of_cond_iff, countingFunction_finsum_eq_finsum_add, finsum_eq_sum_plift_of_support_subset, finsum_zero, finsum_one, single_le_finsum, finsum_mem_sub_distrib, SmoothPartitionOfUnity.contMDiffAt_finsum, MvPowerSeries.constantCoeff_subst, finsum_mem_add_diff, ContMDiffAt.finsum_section_of_locallyFinite, finsum_mem_inter_support_eq, finsum_comp_equiv, MDifferentiableWithinAt.finsum_section_of_locallyFinite, AddMonoidHom.map_finsum, finsum_mem_union_inter', finsum_pos, finsum_def', finsum_mem_univ, PowerSeries.coeff_heval, MeromorphicOn.extract_zeros_poles_log, finsum_eq_sum_of_support_subset_of_finite, PowerSeries.coeff_subst, finsum_mem_eq_sum_filter, finsum_mem_inter_add_diff', finsum_mem_support, finsum_mem_mul', finsum_mem_coe_finset, mul_finsum_mem', PartitionOfUnity.sum_eq_one', finsum_sum_filter, finsum_eq_sum, finsum_mem_sUnion, AddMonoidHom.map_finsum_plift, PartitionOfUnity.IsSubordinate.continuous_finsum_smul, tsum_eq_finsum, SmoothPartitionOfUnity.contDiffAt_finsum, Module.rankAtStalk_pi, AddMonoidHom.map_finsum_mem', finsum_sum_comm, Set.encard_iUnion_of_finite, finsum_apply, ContMDiffOn.finsum_section_of_locallyFinite, finsum_mem_eq_sum, sum_finsum_comm, finsum_emb_domain, PartitionOfUnity.sum_le_one', Setoid.IsPartition.ncard_eq_finsum, finsum_eq_of_bijective, finsum_mem_eq_finite_toFinset_sum, finsum_eq_indicator_apply, finsum_nsmul, finsum_sub_distrib, PartitionOfUnity.sum_eq_one, finsum_mem_eq_sum_of_subset, MDifferentiableAt.finsum_section_of_locallyFinite, MvPowerSeries.coeff_subst, SmoothBumpCovering.sum_toSmoothPartitionOfUnity_eq, finsum_option, finsum_eq_if, circleIntegrable_log_norm_factorizedRational, add_finsum_cond_ne, finsum_mem_finset_eq_sum, MvPolynomial.sum_weightedHomogeneousComponent, AddEquiv.map_finsum_mem, Module.Basis.coe_sumCoords_eq_finsum, SmoothPartitionOfUnity.sum_eq_one', finsum_cond_ne, finsum_unique, Nat.cast_finsum, contMDiff_finsum_cond, finsum_mem_eq_zero_of_infinite, PartitionOfUnity.finsum_smul_mem_convex, finsum_of_isEmpty, finsum_dmem, finsum_mem_singleton, ContMDiffWithinAt.finsum_section_of_locallyFinite, finsum_false, mul_finsum', finsum_mem_finset_product', finsum_mem_pair, finsum_congr_Prop, Nat.cast_finsum_mem, finsum_eventually_eq_sum, PartitionOfUnity.sum_finsupport_smul_eq_finsum, Set.encard_iUnion_le_of_finite, SmoothPartitionOfUnity.finsum_smul_mem_convex, finsum_mem_mul, SmoothPartitionOfUnity.sum_le_one', finsum_def, mul_finsum_mem, finsum_mem_congr, ContMDiff.finsum_section_of_locallyFinite, SmoothPartitionOfUnity.sum_nonneg, SkewMonoidAlgebra.coeff_mul_antidiagonal_finsum, PartitionOfUnity.continuous_finsum_smul, finsum_curry, finsum_mem_eq_of_bijOn, map_finsum, finsum_mem_insert, finsum_set_coe_eq_finsum_mem, finsum_mem_zero, finsum_mem_inter_support_eq', finprod_cond_pos, finsum_mem_powerset_insert, SmoothPartitionOfUnity.sum_eq_one, Set.Finite.ncard_biUnion, finsum_apply_ne_zero, MeromorphicOn.circleAverage_log_norm, finsum_mem_insert', finsum_mem_finset_product, MvPolynomial.DirectSum.coeLinearMap_eq_finsum, finsum_mem_range, finsum_true, Function.FactorizedRational.log_norm_meromorphicTrailingCoeffAt, finsum_mem_image', finsum_eq_sum_of_fintype, Set.Finite.ncard_biUnion_le, finsum_mul, contMDiff_finsum, smul_finsum', MeromorphicOn.log_norm_meromorphicTrailingCoeffAt_extract_zeros_poles, finsum_mem_insert_of_eq_zero_if_notMem, finsum_eq_sum_of_support_subset, IntervalIntegrable.finsum, finsum_curry₃, AddMonoidHom.map_finsum_Prop, finsum_mem_powerset_diff_elem, finsum_mem_range', BumpCovering.sum_toPartitionOfUnity_eq, PartitionOfUnity.sum_le_one, finsum_mem_inter_add_diff, finsum_mem_union'', finsum_eq_sum_plift_of_support_toFinset_subset, finsum_of_infinite_support, HahnSeries.SummableFamily.coeff_hsum, finsum_mem_add_distrib, finsum_mem_union_inter, circleAverage_log_norm_factorizedRational, SmoothPartitionOfUnity.sum_finsupport_smul_eq_finsum, SmoothPartitionOfUnity.contMDiff_finsum_smul, Set.ncard_iUnion_of_finite, finsum_pos', finsum_eq_dif, mul_finsum, Commute.isNilpotent_finsum, finsum_mem_add_diff', MDifferentiable.finsum_section_of_locallyFinite, finsum_eq_finset_sum_of_support_subset, PartitionOfUnity.sum_nonneg, PowerSeries.coeff_subst', Set.Finite.encard_biUnion, HahnSeries.SummableFamily.hsum_smulFamily, finsum_cond_eq_right, finsum_mem_add_distrib', finsum_mem_induction, AddEquiv.map_finsum, contMDiffWithinAt_finsum, finsum_mem_neg_distrib, finsum_congr, isNilpotent_finsum, AddEquivClass.map_finsum, finsum_mem_empty, finsum_smul', finsum_mem_biUnion, finsum_induction, finsum_smul, contMDiffAt_finsum, finsum_mem_comm, finsum_le_finsum', finsum_mem_finset_product₃, finsum_eq_zero_of_forall_eq_zero, Group.nat_card_center_add_sum_card_noncenter_eq_card, finsum_add_distrib, finsum_neg_distrib, finsum_mem_of_eqOn_zero, finsum_mul', Set.Finite.encard_biUnion_le, finsum_nonneg, finsum_eq_single, SmoothPartitionOfUnity.IsSubordinate.contMDiff_finsum_smul, finsum_emb_domain', finsum_mem_image, tsum_def, MvPolynomial.finsum_weightedHomogeneousComponent, SmoothPartitionOfUnity.sum_le_one, CircleIntegrable.finsum, AddMonoidHom.map_finsum_mem, finsum_mem_eq_toFinset_sum, tsum_bot, smul_finsum, BumpCovering.sum_toPOUFun_eq, finsum_comp, finsum_mem_eq_sum_of_inter_support_eq, finsum_mem_inter_support, Group.sum_card_conj_classes_eq_card, finsum_cond_eq_left, finsum_mem_eq_zero_of_forall_eq_zero, AddMonoidHom.map_finsum_of_preimage_zero, finsum_mem_iUnion, finsum_mem_def, finsum_cond_pos, SmoothPartitionOfUnity.contMDiff_sum, finsum_eq_sum_of_support_toFinset_subset, continuous_finsum_cond, Set.ncard_iUnion_le_of_finite, finsum_subtype_eq_finsum_cond, finsum_mem_union'
Β«term∏ᢠ_,_Β» πŸ“–CompOpβ€”
Β«termβˆ‘αΆ _,_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_finsum_cond_ne πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
β€”finsum_eq_sum
Finset.mem_sdiff
Finset.mem_singleton
Set.Finite.mem_toFinset
Function.mem_support
finsum_cond_eq_sum_of_cond_iff
Finset.sdiff_singleton_eq_erase
Finset.add_sum_erase
zero_add
Finset.sum_erase
exists_ne_one_of_finprod_mem_ne_one πŸ“–mathematicalβ€”Set
Set.instMembership
β€”finprod_mem_of_eqOn_one
Mathlib.Tactic.Push.not_and_eq
exists_ne_zero_of_finsum_mem_ne_zero πŸ“–mathematicalβ€”Set
Set.instMembership
β€”finsum_mem_of_eqOn_zero
Mathlib.Tactic.Push.not_exists
Mathlib.Tactic.Push.not_and_eq
finite_mulSupport_of_finprod_ne_one πŸ“–mathematicalβ€”Set.Finite
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”Set.not_infinite
Function.mt
finprod_of_infinite_mulSupport
finite_support_of_finsum_eq_one πŸ“–mathematicalfinsum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Set.Finite
Function.support
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”subsingleton_or_nontrivial
Subsingleton.support_eq
finite_support_of_finsum_ne_zero
one_ne_zero
NeZero.one
finite_support_of_finsum_ne_zero πŸ“–mathematicalβ€”Set.Finite
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Set.not_infinite
Function.mt
finsum_of_infinite_support
finprod_apply πŸ“–mathematicalβ€”finprod
Pi.commMonoid
β€”Set.Finite.subset
finprod_def
Finset.prod_apply
Finset.prod_subset
Set.Finite.coe_toFinset
finprod_apply_ne_one πŸ“–mathematicalβ€”finprod
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”Function.mem_mulSupport
finprod_eq_mulIndicator_apply
Set.mulIndicator_mulSupport
finprod_comp πŸ“–mathematicalFunction.Bijectivefinprodβ€”finprod_eq_of_bijective
finprod_comp_equiv πŸ“–mathematicalβ€”finprod
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”finprod_comp
Equiv.bijective
finprod_cond_eq_left πŸ“–mathematicalβ€”finprodβ€”finprod_mem_singleton
finprod_cond_eq_prod_of_cond_iff πŸ“–mathematicalFinset
Finset.instMembership
finprod
Finset.prod
β€”Set.mulSupport_mulIndicator
finprod_mem_def
finprod_eq_prod_of_mulSupport_subset
Finset.prod_congr
Set.mulIndicator_apply_eq_self
Mathlib.Tactic.Contrapose.contraposeβ‚‚
finprod_cond_eq_right πŸ“–mathematicalβ€”finprodβ€”finprod_congr_Prop
finprod_cond_eq_left
finprod_cond_ne πŸ“–mathematicalβ€”finprod
Finset.prod
Finset.erase
Set.Finite.toFinset
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_cond_eq_prod_of_cond_iff
Finset.mem_erase
Set.Finite.mem_toFinset
Function.mem_mulSupport
finprod_cond_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
finprod
CommSemiring.toCommMonoid
β€”finprod_nonneg
finprod_cond_pos πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLT
finsumβ€”finsum_cond_pos
finprod_congr πŸ“–mathematicalβ€”finprodβ€”β€”
finprod_congr_Prop πŸ“–mathematicalβ€”finprodβ€”finprod_congr
finprod_curry πŸ“–mathematicalβ€”finprodβ€”finprod_congr_Prop
finprod_apply_ne_one
finprod_mem_finset_product
finprod_curry₃ πŸ“–mathematicalβ€”finprodβ€”finprod_curry
finprod_def πŸ“–mathematicalβ€”finprod
Set.Finite
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset.prod
Set.Finite.toFinset
β€”finprod_eq_prod_of_mulSupport_toFinset_subset
Finset.Subset.refl
finprod_def'
Function.mulSupport_comp_eq_preimage
Set.Finite.of_preimage
Equiv.surjective
finprod_def' πŸ“–mathematicalβ€”finprod
Set.Finite
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset.prod
Set.Finite.toFinset
β€”β€”
finprod_div_distrib πŸ“–mathematicalβ€”finprod
DivisionCommMonoid.toCommMonoid
DivInvMonoid.toDiv
DivisionMonoid.toDivInvMonoid
DivisionCommMonoid.toDivisionMonoid
β€”div_eq_mul_inv
finprod_mul_distrib
Function.mulSupport_fun_inv
finprod_inv_distrib
finprod_dmem πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_congr
finprod_emb_domain πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_emb_domain'
Function.Embedding.injective
finprod_emb_domain' πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
Set.range
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_dmem
finprod_mem_range
finprod_congr
Set.mem_range_self
finprod_eq_dif πŸ“–mathematicalβ€”finprod
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_unique
finprod_of_isEmpty
finprod_eq_finset_prod_of_mulSupport_subset πŸ“–mathematicalSet
Set.instHasSubset
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.coe
Finset
Finset.instSetLike
finprod
Finset.prod
β€”finprod_eq_prod_of_mulSupport_toFinset_subset
Set.Finite.subset
Finset.finite_toSet
Set.Finite.coe_toFinset
finprod_eq_if πŸ“–mathematicalβ€”finprod
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_eq_dif
finprod_eq_mulIndicator_apply πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
Set.mulIndicator
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_eq_if
finprod_eq_of_bijective πŸ“–mathematicalFunction.Bijectivefinprodβ€”finprod_mem_univ
finprod_mem_eq_of_bijOn
Function.Bijective.bijOn_univ
finprod_eq_one_of_forall_eq_one πŸ“–mathematicalMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprodβ€”finprod_one
finprod_eq_prod πŸ“–mathematicalβ€”finprod
Finset.prod
Set.Finite.toFinset
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_def
finprod_eq_prod_of_fintype πŸ“–mathematicalβ€”finprod
Finset.prod
Finset.univ
β€”finprod_eq_prod_of_mulSupport_toFinset_subset
Set.toFinite
Subtype.finite
Finite.of_fintype
Finset.subset_univ
finprod_eq_prod_of_mulSupport_subset πŸ“–mathematicalSet
Set.instHasSubset
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.coe
Finset
Finset.instSetLike
finprod
Finset.prod
β€”Function.mulSupport_comp_eq_preimage
Equiv.image_eq_preimage_symm
Finset.coe_map
Set.image_mono
finprod_eq_prod_plift_of_mulSupport_subset
Finset.prod_map
Finset.prod_congr
finprod_eq_prod_of_mulSupport_subset_of_finite πŸ“–mathematicalSet
Set.instHasSubset
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Finset.prod
Set.Finite.toFinset
β€”finprod_eq_prod_of_mulSupport_subset
Set.Finite.coe_toFinset
finprod_eq_prod_of_mulSupport_toFinset_subset πŸ“–mathematicalFinset
Finset.instHasSubset
Set.Finite.toFinset
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Finset.prod
β€”finprod_eq_prod_of_mulSupport_subset
Set.Finite.mem_toFinset
finprod_eq_prod_plift_of_mulSupport_subset πŸ“–mathematicalSet
Set.instHasSubset
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.coe
Finset
Finset.instSetLike
finprod
Finset.prod
β€”finprod_eq_prod_plift_of_mulSupport_toFinset_subset
Set.Finite.subset
Finset.finite_toSet
Set.Finite.mem_toFinset
finprod_eq_prod_plift_of_mulSupport_toFinset_subset πŸ“–mathematicalFinset
Finset.instHasSubset
Set.Finite.toFinset
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Finset.prod
β€”finprod_def'
Finset.prod_subset
Function.notMem_mulSupport
Set.Finite.mem_toFinset
finprod_eq_single πŸ“–mathematicalMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprodβ€”Mathlib.Tactic.Contrapose.contrapose₁
Finset.coe_singleton
finprod_eq_prod_plift_of_mulSupport_subset
Finset.prod_singleton
finprod_eq_zero πŸ“–mathematicalMulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
finprod
CommMonoidWithZero.toCommMonoid
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
finprod_eq_prod
Finset.prod_eq_zero
Set.Finite.mem_toFinset
NeZero.one
finprod_false πŸ“–mathematicalβ€”finprod
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_of_isEmpty
instIsEmptyFalse
finprod_induction πŸ“–mathematicalMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MulOne.toMul
finprodβ€”finprod_def'
Finset.prod_induction
finprod_inv_distrib πŸ“–mathematicalβ€”finprod
DivisionCommMonoid.toCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
β€”MulEquiv.map_finprod
finprod_le_finprod πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Pi.hasLe
finprod
CommMonoidWithZero.toCommMonoid
β€”Set.Finite.union
finprod_eq_finset_prod_of_mulSupport_subset
Finset.prod_le_prod
finprod_le_finprod' πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
finprodβ€”Set.Finite.union
finprod_eq_finset_prod_of_mulSupport_subset
Finset.prod_le_prod'
finprod_mem_biUnion πŸ“–mathematicalSet.PairwiseDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Finite
finprod
Set.instMembership
Set.iUnion
β€”Set.biUnion_eq_iUnion
finprod_mem_iUnion
Finite.of_fintype
Subtype.coe_injective
finprod_set_coe_eq_finprod_mem
finprod_mem_coe_finset πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
SetLike.coe
Finset
Finset.instSetLike
Finset.prod
β€”finprod_mem_eq_prod_of_inter_mulSupport_eq
finprod_mem_comm πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
β€”CanLift.prf
Set.instCanLiftFinsetCoeFinite
finprod_congr_Prop
finprod_mem_coe_finset
Finset.prod_comm
finprod_mem_congr πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
β€”finprod_congr
finprod_congr_Prop
finprod_mem_def πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
Set.mulIndicator
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_congr
finprod_eq_mulIndicator_apply
finprod_mem_div_distrib πŸ“–mathematicalβ€”finprod
DivisionCommMonoid.toCommMonoid
Set
Set.instMembership
DivInvMonoid.toDiv
DivisionMonoid.toDivInvMonoid
DivisionCommMonoid.toDivisionMonoid
β€”finprod_congr_Prop
div_eq_mul_inv
finprod_mem_mul_distrib
finprod_mem_inv_distrib
finprod_mem_dvd πŸ“–mathematicalβ€”semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
finprod
β€”finprod_eq_prod_of_mulSupport_toFinset_subset
Set.Subset.refl
Finset.dvd_prod_of_mem
Set.Finite.mem_toFinset
Function.notMem_mulSupport
one_dvd
finprod_mem_empty πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
Set.instEmptyCollection
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_congr_Prop
finprod_false
finprod_one
finprod_mem_eq_finite_toFinset_prod πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
Finset.prod
Set.Finite.toFinset
β€”finprod_mem_eq_prod_of_inter_mulSupport_eq
Set.Finite.coe_toFinset
finprod_mem_eq_of_bijOn πŸ“–mathematicalSet.BijOnfinprod
Set
Set.instMembership
β€”Set.BijOn.image_eq
finprod_mem_image
finprod_mem_congr
finprod_mem_eq_one_of_forall_eq_one πŸ“–mathematicalMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Set
Set.instMembership
β€”finprod_congr_Prop
finprod_one
finprod_mem_eq_one_of_infinite πŸ“–mathematicalSet.Infinite
Set
Set.instInter
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Set.instMembership
β€”finprod_mem_def
finprod_of_infinite_mulSupport
Set.mulSupport_mulIndicator
finprod_mem_eq_prod πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
Finset.prod
Set.Finite.toFinset
Set.instInter
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_mem_eq_prod_of_inter_mulSupport_eq
Set.Finite.coe_toFinset
Set.inter_assoc
Set.inter_self
finprod_mem_eq_prod_filter πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
Finset.prod
Finset.filter
Set.Finite.toFinset
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_mem_eq_prod_of_inter_mulSupport_eq
Set.ext
Finset.coe_filter
finprod_mem_eq_prod_of_inter_mulSupport_eq πŸ“–mathematicalSet
Set.instInter
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.coe
Finset
Finset.instSetLike
finprod
Set.instMembership
Finset.prod
β€”finprod_cond_eq_prod_of_cond_iff
Set.mem_inter_iff
Set.ext_iff
Function.mem_mulSupport
finprod_mem_eq_prod_of_subset πŸ“–mathematicalSet
Set.instHasSubset
Set.instInter
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.coe
Finset
Finset.instSetLike
finprod
Set.instMembership
Finset.prod
β€”finprod_cond_eq_prod_of_cond_iff
finprod_mem_eq_toFinset_prod πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
Finset.prod
Set.toFinset
β€”finprod_mem_eq_prod_of_inter_mulSupport_eq
Set.coe_toFinset
finprod_mem_finset_eq_prod πŸ“–mathematicalβ€”finprod
Finset
Finset.instMembership
Finset.prod
β€”finprod_mem_eq_prod_of_inter_mulSupport_eq
finprod_mem_finset_product πŸ“–mathematicalβ€”finprod
Finset
Finset.instMembership
β€”finprod_mem_finset_product'
finprod_congr_Prop
finprod_mem_finset_product' πŸ“–mathematicalβ€”finprod
Finset
Finset.instMembership
Finset.image
Finset.filter
β€”Finset.prod_nbij'
finprod_mem_finset_eq_prod
finprod_eq_prod_of_mulSupport_subset
Finset.mulSupport_of_fiberwise_prod_subset_image
Finset.prod_fiberwise_of_maps_to
finprod_mem_finset_product₃ πŸ“–mathematicalβ€”finprod
Finset
Finset.instMembership
β€”finprod_mem_finset_product'
finprod_congr_Prop
finprod_mem_iUnion πŸ“–mathematicalPairwise
Function.onFun
Set
Disjoint
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Finite
finprod
Set.instMembership
Set.iUnion
β€”nonempty_fintype
CanLift.prf
Pi.canLift
Set.instCanLiftFinsetCoeFinite
Set.biUnion_univ
Finset.coe_univ
Finset.coe_biUnion
finprod_mem_coe_finset
Finset.prod_biUnion
Finset.disjoint_coe
finprod_eq_prod_of_fintype
finprod_mem_image πŸ“–mathematicalSet.InjOnfinprod
Set
Set.instMembership
Set.image
β€”finprod_mem_image'
Set.InjOn.mono
Set.inter_subset_left
finprod_mem_image' πŸ“–mathematicalSet.InjOn
Set
Set.instInter
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Set.instMembership
Set.image
β€”Set.Finite.mem_toFinset
finprod_mem_eq_prod
Finset.prod_image
finprod_mem_eq_prod_of_inter_mulSupport_eq
Finset.coe_image
Set.Finite.coe_toFinset
Set.image_inter_mulSupport_eq
Set.inter_assoc
Set.inter_self
finprod_mem_eq_one_of_infinite
Set.infinite_image_iff
finprod_mem_induction πŸ“–mathematicalMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MulOne.toMul
finprod
Set
Set.instMembership
β€”finprod_induction
finprod_mem_insert πŸ“–mathematicalSet
Set.instMembership
finprod
Set.instInsert
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_mem_insert'
Set.Finite.inter_of_left
finprod_mem_insert' πŸ“–mathematicalSet
Set.instMembership
finprod
Set.instInsert
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”Set.insert_eq
finprod_mem_union'
Set.disjoint_singleton_left
Set.Finite.inter_of_left
Set.finite_singleton
finprod_mem_singleton
finprod_mem_insert_of_eq_one_if_notMem πŸ“–mathematicalMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Set
Set.instMembership
Set.instInsert
β€”finprod_mem_inter_mulSupport_eq'
not_imp_comm
finprod_mem_insert_one πŸ“–mathematicalMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Set
Set.instMembership
Set.instInsert
β€”finprod_mem_insert_of_eq_one_if_notMem
finprod_mem_inter_mulSupport πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
Set.instInter
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_mem_def
Set.mulIndicator_inter_mulSupport
finprod_mem_inter_mulSupport_eq πŸ“–mathematicalSet
Set.instInter
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Set.instMembership
β€”finprod_mem_inter_mulSupport
finprod_mem_inter_mulSupport_eq' πŸ“–mathematicalSet
Set.instMembership
finprodβ€”finprod_mem_inter_mulSupport_eq
Set.ext
finprod_mem_inter_mul_diff πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Set
Set.instMembership
Set.instInter
Set.instSDiff
β€”finprod_mem_inter_mul_diff'
Set.Finite.inter_of_left
finprod_mem_inter_mul_diff' πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Set
Set.instMembership
Set.instInter
Set.instSDiff
β€”finprod_mem_union'
disjoint_iff_inf_le
Set.Finite.subset
Set.inter_union_diff
finprod_mem_inv_distrib πŸ“–mathematicalβ€”finprod
DivisionCommMonoid.toCommMonoid
Set
Set.instMembership
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
β€”MulEquiv.map_finprod_mem
finprod_mem_mulSupport πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_mem_def
Set.mulIndicator_mulSupport
finprod_mem_mul_diff πŸ“–mathematicalSet
Set.instHasSubset
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Set.instMembership
Set.instSDiff
β€”finprod_mem_mul_diff'
Set.Finite.inter_of_left
finprod_mem_mul_diff' πŸ“–mathematicalSet
Set.instHasSubset
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Set.instMembership
Set.instSDiff
β€”finprod_mem_inter_mul_diff'
Set.inter_eq_self_of_subset_right
finprod_mem_mul_distrib πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_mem_mul_distrib'
Set.Finite.inter_of_left
finprod_mem_mul_distrib' πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_mem_def
Set.mulIndicator_mul
finprod_mul_distrib
Set.mulSupport_mulIndicator
finprod_mem_of_eqOn_one πŸ“–mathematicalSet.EqOn
Pi.instOne
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Set
Set.instMembership
β€”finprod_mem_one
finprod_mem_congr
finprod_mem_one πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_one
finprod_mem_pair πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
Set.instInsert
Set.instSingletonSet
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_mem_insert
Set.finite_singleton
finprod_mem_singleton
finprod_mem_powerset_diff_elem πŸ“–mathematicalSet
Set.instMembership
finprod
Set.powerset
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Set.instSDiff
Set.instSingletonSet
Set.instInsert
β€”Set.insert_diff_self_of_mem
finprod_mem_powerset_insert
Set.Finite.subset
Set.diff_subset
Set.notMem_diff_of_mem
Set.mem_singleton
finprod_mem_powerset_insert πŸ“–mathematicalSet
Set.instMembership
finprod
Set.powerset
Set.instInsert
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”Set.powerset_insert
finprod_mem_union
Set.disjoint_powerset_insert
Set.Finite.powerset
Set.Finite.image
finprod_mem_image
Set.powerset_insert_injOn
finprod_mem_range πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
Set.range
β€”finprod_mem_range'
Function.Injective.injOn
finprod_mem_range' πŸ“–mathematicalSet.InjOn
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Set
Set.instMembership
Set.range
β€”Set.image_univ
finprod_mem_image'
Set.univ_inter
finprod_mem_univ
finprod_mem_sUnion πŸ“–mathematicalSet.PairwiseDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Finite
finprod
Set.instMembership
Set.sUnion
β€”Set.sUnion_eq_biUnion
finprod_mem_biUnion
finprod_mem_singleton πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
Set.instSingletonSet
β€”Finset.coe_singleton
finprod_mem_coe_finset
Finset.prod_singleton
finprod_mem_union πŸ“–mathematicalDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
finprod
Set.instMembership
Set.instUnion
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_mem_union'
Set.Finite.inter_of_left
finprod_mem_union' πŸ“–mathematicalDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
finprod
Set.instMembership
Set.instUnion
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_mem_union_inter'
Set.disjoint_iff_inter_eq_empty
finprod_mem_empty
mul_one
finprod_mem_union'' πŸ“–mathematicalDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instInter
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Set.instMembership
Set.instUnion
MulOne.toMul
β€”finprod_mem_inter_mulSupport
finprod_mem_union
Set.union_inter_distrib_right
finprod_mem_union_inter πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Set
Set.instMembership
Set.instUnion
Set.instInter
β€”CanLift.prf
Set.instCanLiftFinsetCoeFinite
Finset.coe_union
Finset.coe_inter
finprod_mem_coe_finset
Finset.prod_union_inter
finprod_mem_union_inter' πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Set
Set.instMembership
Set.instUnion
Set.instInter
β€”finprod_mem_inter_mulSupport
finprod_mem_union_inter
Set.union_inter_distrib_right
Set.inter_left_comm
Set.inter_assoc
Set.inter_self
finprod_mem_univ πŸ“–mathematicalβ€”finprod
Set
Set.instMembership
Set.univ
β€”finprod_congr
finprod_true
finprod_mul_distrib πŸ“–mathematicalβ€”finprod
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_eq_prod_of_mulSupport_toFinset_subset
Finset.subset_union_left
Finset.subset_union_right
Finset.prod_mul_distrib
finprod_eq_prod_of_mulSupport_subset
Finset.coe_union
Set.Finite.coe_toFinset
Mathlib.Tactic.Contrapose.contraposeβ‚‚
mul_one
finprod_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
finprod
CommSemiring.toCommMonoid
β€”finprod_induction
zero_le_one
IsOrderedRing.toZeroLEOneClass
mul_nonneg
IsOrderedRing.toPosMulMono
finprod_of_infinite_mulSupport πŸ“–mathematicalSet.Infinite
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprodβ€”finprod_def
finprod_of_isEmpty πŸ“–mathematicalβ€”finprod
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_one
Unique.instSubsingleton
finprod_one πŸ“–mathematicalβ€”finprod
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”Function.mulSupport_fun_one
finprod_eq_prod_plift_of_mulSupport_subset
Finset.prod_empty
finprod_option πŸ“–mathematicalβ€”finprod
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”finprod_congr_Prop
Set.insert_none_range_some
finprod_true
finprod_mem_range
Option.some_injective
finprod_mem_insert'
Set.Finite.subset
Set.inter_subset_right
finprod_pow πŸ“–mathematicalβ€”Monoid.toNatPow
CommMonoid.toMonoid
finprod
β€”MonoidHom.map_finprod
finprod_prod_comm πŸ“–mathematicalSet.Finite
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
Finset.prod
β€”Set.Finite.biUnion
Finset.finite_toSet
Finset.mem_coe
Set.Finite.coe_toFinset
Set.iUnion_congr_Prop
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
Function.mem_mulSupport
Finset.prod_congr
Finset.prod_const_one
finprod_eq_prod_of_mulSupport_subset
Finset.prod_comm
finprod_prod_filter πŸ“–mathematicalβ€”finprod
Finset.prod
Finset.filter
β€”finprod_eq_finset_prod_of_mulSupport_subset
Finset.exists_ne_one_of_prod_ne_one
Function.mem_mulSupport
Finset.coe_image
Finset.prod_image'
finprod_set_coe_eq_finprod_mem πŸ“–mathematicalβ€”finprod
Set.Elem
Set
Set.instMembership
β€”finprod_mem_range
Subtype.coe_injective
Subtype.range_coe
finprod_subtype_eq_finprod_cond πŸ“–mathematicalβ€”finprodβ€”finprod_set_coe_eq_finprod_mem
finprod_true πŸ“–mathematicalβ€”finprodβ€”finprod_unique
finprod_unique πŸ“–mathematicalβ€”finprod
Unique.instInhabited
β€”finprod_eq_single
Unique.eq_default
finsum_add_distrib πŸ“–mathematicalβ€”finsum
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_eq_sum_of_support_toFinset_subset
Finset.subset_union_left
Finset.subset_union_right
Finset.sum_add_distrib
finsum_eq_sum_of_support_subset
Finset.coe_union
Set.Finite.coe_toFinset
Function.support_subset_iff
Set.mem_union
Function.mem_support
Mathlib.Tactic.Contrapose.contraposeβ‚‚
add_zero
finsum_apply πŸ“–mathematicalβ€”finsum
Pi.addCommMonoid
β€”Set.Finite.subset
Function.support_subset_iff
Function.mem_support
finsum_def
Finset.sum_apply
Finset.sum_subset
Set.Finite.subset_toFinset
Set.Finite.coe_toFinset
Set.Finite.mem_toFinset
finsum_apply_ne_zero πŸ“–mathematicalβ€”finsum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Function.mem_support
finsum_eq_indicator_apply
Set.indicator_support
finsum_comp πŸ“–mathematicalFunction.Bijectivefinsumβ€”finsum_eq_of_bijective
finsum_comp_equiv πŸ“–mathematicalβ€”finsum
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”finsum_comp
Equiv.bijective
finsum_cond_eq_left πŸ“–mathematicalβ€”finsumβ€”finsum_mem_singleton
finsum_cond_eq_right πŸ“–mathematicalβ€”finsumβ€”finsum_congr_Prop
finsum_cond_eq_left
finsum_cond_eq_sum_of_cond_iff πŸ“–mathematicalFinset
Finset.instMembership
finsum
Finset.sum
β€”Set.support_indicator
finsum_mem_def
finsum_eq_sum_of_support_subset
Finset.sum_congr
Set.indicator_apply_eq_self
Mathlib.Tactic.Contrapose.contraposeβ‚‚
finsum_cond_ne πŸ“–mathematicalβ€”finsum
Finset.sum
Finset.erase
Set.Finite.toFinset
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_cond_eq_sum_of_cond_iff
Finset.mem_erase
Set.Finite.mem_toFinset
Function.mem_support
finsum_cond_pos πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLT
finsumβ€”finsum_cond_eq_sum_of_cond_iff
Set.Finite.mem_toFinset
Set.mem_inter_iff
Function.mem_support
Finset.sum_pos'
lt_self_iff_false
finsum_congr πŸ“–mathematicalβ€”finsumβ€”β€”
finsum_congr_Prop πŸ“–mathematicalβ€”finsumβ€”finsum_congr
finsum_curry πŸ“–mathematicalβ€”finsumβ€”finsum_congr_Prop
Set.Finite.mem_toFinset
Function.mem_support
finsum_apply_ne_zero
finsum_mem_finset_product
finsum_curry₃ πŸ“–mathematicalβ€”finsumβ€”finsum_curry
Function.support_along_fiber_finite_of_finite
finsum_def πŸ“–mathematicalβ€”finsum
Set.Finite
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Set.Finite.toFinset
β€”finsum_eq_sum_of_support_toFinset_subset
Finset.Subset.refl
finsum_def'
Function.support_comp_eq_preimage
Set.Finite.of_preimage
Equiv.surjective
finsum_def' πŸ“–mathematicalβ€”finsum
Set.Finite
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Set.Finite.toFinset
β€”β€”
finsum_dmem πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_congr
finsum_emb_domain πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_emb_domain'
Function.Embedding.injective
finsum_emb_domain' πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
Set.range
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_eq_dif
finsum_dmem
finsum_mem_range
finsum_congr
Set.mem_range_self
finsum_eq_dif πŸ“–mathematicalβ€”finsum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_unique
finsum_of_isEmpty
finsum_eq_finset_sum_of_support_subset πŸ“–mathematicalSet
Set.instHasSubset
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.coe
Finset
Finset.instSetLike
finsum
Finset.sum
β€”finsum_eq_sum_of_support_toFinset_subset
Set.Finite.subset
Finset.finite_toSet
Finset.coe_subset
Set.Finite.coe_toFinset
Function.support_subset_iff
SetLike.mem_coe
finsum_eq_if πŸ“–mathematicalβ€”finsum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_eq_dif
finsum_eq_indicator_apply πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_eq_if
finsum_eq_of_bijective πŸ“–mathematicalFunction.Bijectivefinsumβ€”finsum_mem_univ
finsum_mem_eq_of_bijOn
Function.Bijective.bijOn_univ
finsum_eq_single πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsumβ€”Mathlib.Tactic.Contrapose.contrapose₁
Finset.coe_singleton
Set.mem_singleton_iff
PLift.eq_up_iff_down_eq
Function.mem_support
finsum_eq_sum_plift_of_support_subset
Finset.sum_singleton
finsum_eq_sum πŸ“–mathematicalβ€”finsum
Finset.sum
Set.Finite.toFinset
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_def
finsum_eq_sum_of_fintype πŸ“–mathematicalβ€”finsum
Finset.sum
Finset.univ
β€”finsum_eq_sum_of_support_toFinset_subset
Set.toFinite
Subtype.finite
Finite.of_fintype
Finset.subset_univ
finsum_eq_sum_of_support_subset πŸ“–mathematicalSet
Set.instHasSubset
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.coe
Finset
Finset.instSetLike
finsum
Finset.sum
β€”Function.support_comp_eq_preimage
Equiv.image_eq_preimage_symm
Finset.coe_map
Set.image_mono
finsum_eq_sum_plift_of_support_subset
Finset.sum_map
Finset.sum_congr
finsum_eq_sum_of_support_subset_of_finite πŸ“–mathematicalSet
Set.instHasSubset
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Finset.sum
Set.Finite.toFinset
β€”finsum_eq_sum_of_support_subset
Set.Finite.coe_toFinset
finsum_eq_sum_of_support_toFinset_subset πŸ“–mathematicalFinset
Finset.instHasSubset
Set.Finite.toFinset
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Finset.sum
β€”finsum_eq_sum_of_support_subset
Set.Finite.mem_toFinset
finsum_eq_sum_plift_of_support_subset πŸ“–mathematicalSet
Set.instHasSubset
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.coe
Finset
Finset.instSetLike
finsum
Finset.sum
β€”finsum_eq_sum_plift_of_support_toFinset_subset
Set.Finite.subset
Finset.finite_toSet
Set.Finite.mem_toFinset
finsum_eq_sum_plift_of_support_toFinset_subset πŸ“–mathematicalFinset
Finset.instHasSubset
Set.Finite.toFinset
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Finset.sum
β€”finsum_def'
Finset.sum_subset
Function.notMem_support
Set.Finite.mem_toFinset
finsum_eq_zero_of_forall_eq_zero πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsumβ€”finsum_zero
finsum_false πŸ“–mathematicalβ€”finsum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_of_isEmpty
instIsEmptyFalse
finsum_induction πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddZero.toAdd
finsumβ€”finsum_def'
Finset.sum_induction
finsum_le_finsum' πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
finsumβ€”Set.Finite.union
finsum_eq_finset_sum_of_support_subset
Finset.sum_le_sum
finsum_mem_add_diff πŸ“–mathematicalSet
Set.instHasSubset
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Set.instMembership
Set.instSDiff
β€”finsum_mem_add_diff'
Set.Finite.inter_of_left
finsum_mem_add_diff' πŸ“–mathematicalSet
Set.instHasSubset
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Set.instMembership
Set.instSDiff
β€”finsum_mem_inter_add_diff'
Set.inter_eq_self_of_subset_right
finsum_mem_add_distrib πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_mem_add_distrib'
Set.Finite.inter_of_left
finsum_mem_add_distrib' πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_mem_def
Set.indicator_add
finsum_add_distrib
Set.support_indicator
finsum_mem_biUnion πŸ“–mathematicalSet.PairwiseDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Finite
finsum
Set.instMembership
Set.iUnion
β€”Set.biUnion_eq_iUnion
finsum_mem_iUnion
Finite.of_fintype
Subtype.coe_injective
finsum_set_coe_eq_finsum_mem
finsum_mem_coe_finset πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
SetLike.coe
Finset
Finset.instSetLike
Finset.sum
β€”finsum_mem_eq_sum_of_inter_support_eq
finsum_mem_comm πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
β€”CanLift.prf
Set.instCanLiftFinsetCoeFinite
finsum_congr_Prop
finsum_mem_coe_finset
Finset.sum_comm
finsum_mem_congr πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
β€”finsum_congr
finsum_congr_Prop
finsum_mem_def πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_congr
finsum_eq_indicator_apply
finsum_mem_empty πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
Set.instEmptyCollection
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_congr_Prop
Set.mem_empty_iff_false
finsum_false
finsum_zero
finsum_mem_eq_finite_toFinset_sum πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
Finset.sum
Set.Finite.toFinset
β€”finsum_mem_eq_sum_of_inter_support_eq
Set.Finite.coe_toFinset
finsum_mem_eq_of_bijOn πŸ“–mathematicalSet.BijOnfinsum
Set
Set.instMembership
β€”Set.BijOn.image_eq
finsum_mem_image
finsum_mem_congr
finsum_mem_eq_sum πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
Finset.sum
Set.Finite.toFinset
Set.instInter
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_mem_eq_sum_of_inter_support_eq
Set.Finite.coe_toFinset
Set.inter_assoc
Set.inter_self
finsum_mem_eq_sum_filter πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
Finset.sum
Finset.filter
Set.Finite.toFinset
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_mem_eq_sum_of_inter_support_eq
Set.ext
Set.mem_inter_iff
Function.mem_support
Finset.coe_filter
Set.Finite.mem_toFinset
finsum_mem_eq_sum_of_inter_support_eq πŸ“–mathematicalSet
Set.instInter
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.coe
Finset
Finset.instSetLike
finsum
Set.instMembership
Finset.sum
β€”finsum_cond_eq_sum_of_cond_iff
Set.mem_inter_iff
Set.ext_iff
Function.mem_support
finsum_mem_eq_sum_of_subset πŸ“–mathematicalSet
Set.instHasSubset
Set.instInter
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.coe
Finset
Finset.instSetLike
finsum
Set.instMembership
Finset.sum
β€”finsum_cond_eq_sum_of_cond_iff
finsum_mem_eq_toFinset_sum πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
Finset.sum
Set.toFinset
β€”finsum_mem_eq_sum_of_inter_support_eq
Set.coe_toFinset
finsum_mem_eq_zero_of_forall_eq_zero πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Set
Set.instMembership
β€”finsum_congr_Prop
finsum_zero
finsum_mem_eq_zero_of_infinite πŸ“–mathematicalSet.Infinite
Set
Set.instInter
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Set.instMembership
β€”finsum_mem_def
finsum_of_infinite_support
Set.support_indicator
finsum_mem_finset_eq_sum πŸ“–mathematicalβ€”finsum
Finset
Finset.instMembership
Finset.sum
β€”finsum_mem_eq_sum_of_inter_support_eq
finsum_mem_finset_product πŸ“–mathematicalβ€”finsum
Finset
Finset.instMembership
β€”finsum_mem_finset_product'
finsum_congr_Prop
Finset.mem_image
Finset.mem_filter
finsum_mem_finset_product' πŸ“–mathematicalβ€”finsum
Finset
Finset.instMembership
Finset.image
Finset.filter
β€”Finset.sum_nbij'
Finset.mem_filter
Finset.mem_image
finsum_mem_finset_eq_sum
finsum_eq_sum_of_support_subset
Finset.support_of_fiberwise_sum_subset_image
Finset.sum_fiberwise_of_maps_to
finsum_mem_finset_product₃ πŸ“–mathematicalβ€”finsum
Finset
Finset.instMembership
β€”finsum_mem_finset_product'
finsum_congr_Prop
Finset.mem_image
Finset.mem_filter
finsum_mem_iUnion πŸ“–mathematicalPairwise
Function.onFun
Set
Disjoint
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Finite
finsum
Set.instMembership
Set.iUnion
β€”nonempty_fintype
CanLift.prf
Pi.canLift
Set.instCanLiftFinsetCoeFinite
Set.biUnion_univ
Finset.coe_univ
Finset.coe_biUnion
finsum_mem_coe_finset
Finset.sum_biUnion
Finset.disjoint_coe
finsum_eq_sum_of_fintype
finsum_mem_image πŸ“–mathematicalSet.InjOnfinsum
Set
Set.instMembership
Set.image
β€”finsum_mem_image'
Set.InjOn.mono
Set.inter_subset_left
finsum_mem_image' πŸ“–mathematicalSet.InjOn
Set
Set.instInter
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Set.instMembership
Set.image
β€”Set.Finite.mem_toFinset
finsum_mem_eq_sum
Finset.sum_image
finsum_mem_eq_sum_of_inter_support_eq
Finset.coe_image
Set.Finite.coe_toFinset
Set.image_inter_support_eq
Set.inter_assoc
Set.inter_self
finsum_mem_eq_zero_of_infinite
Set.infinite_image_iff
finsum_mem_induction πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddZero.toAdd
finsum
Set
Set.instMembership
β€”finsum_induction
finsum_mem_insert πŸ“–mathematicalSet
Set.instMembership
finsum
Set.instInsert
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_mem_insert'
Set.Finite.inter_of_left
finsum_mem_insert' πŸ“–mathematicalSet
Set.instMembership
finsum
Set.instInsert
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Set.insert_eq
finsum_mem_union'
Set.disjoint_singleton_left
Set.Finite.inter_of_left
Set.finite_singleton
finsum_mem_singleton
finsum_mem_insert_of_eq_zero_if_notMem πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Set
Set.instMembership
Set.instInsert
β€”finsum_mem_inter_support_eq'
not_imp_comm
finsum_mem_insert_zero πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Set
Set.instMembership
Set.instInsert
β€”finsum_mem_insert_of_eq_zero_if_notMem
finsum_mem_inter_add_diff πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Set
Set.instMembership
Set.instInter
Set.instSDiff
β€”finsum_mem_inter_add_diff'
Set.Finite.inter_of_left
finsum_mem_inter_add_diff' πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Set
Set.instMembership
Set.instInter
Set.instSDiff
β€”finsum_mem_union'
disjoint_iff_inf_le
Set.Finite.subset
Set.inter_union_diff
finsum_mem_inter_support πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
Set.instInter
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_mem_def
Set.indicator_inter_support
finsum_mem_inter_support_eq πŸ“–mathematicalSet
Set.instInter
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Set.instMembership
β€”finsum_mem_inter_support
finsum_mem_inter_support_eq' πŸ“–mathematicalSet
Set.instMembership
finsumβ€”finsum_mem_inter_support_eq
Set.ext
finsum_mem_mul πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
finsum
NonUnitalNonAssocSemiring.toAddCommMonoid
Set
Set.instMembership
β€”finsum_mul
finsum_congr_Prop
finsum_true
finsum_false
MulZeroClass.zero_mul
finsum_mem_mul' πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
finsum
NonUnitalNonAssocSemiring.toAddCommMonoid
Set
Set.instMembership
β€”AddMonoidHom.map_finsum_mem
finsum_mem_neg_distrib πŸ“–mathematicalβ€”finsum
SubtractionCommMonoid.toAddCommMonoid
Set
Set.instMembership
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
β€”AddEquiv.map_finsum_mem
finsum_mem_of_eqOn_zero πŸ“–mathematicalSet.EqOn
Pi.instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Set
Set.instMembership
β€”finsum_mem_zero
finsum_mem_congr
finsum_mem_pair πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
Set.instInsert
Set.instSingletonSet
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_mem_insert
Set.finite_singleton
finsum_mem_singleton
finsum_mem_powerset_diff_elem πŸ“–mathematicalSet
Set.instMembership
finsum
Set.powerset
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set.instSDiff
Set.instSingletonSet
Set.instInsert
β€”Set.insert_diff_self_of_mem
finsum_mem_powerset_insert
Set.Finite.subset
Set.diff_subset
Set.notMem_diff_of_mem
Set.mem_singleton
finsum_mem_powerset_insert πŸ“–mathematicalSet
Set.instMembership
finsum
Set.powerset
Set.instInsert
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Set.powerset_insert
finsum_mem_union
Set.disjoint_powerset_insert
Set.Finite.powerset
Set.Finite.image
finsum_mem_image
Set.powerset_insert_injOn
finsum_mem_range πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
Set.range
β€”finsum_mem_range'
Function.Injective.injOn
finsum_mem_range' πŸ“–mathematicalSet.InjOn
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Set
Set.instMembership
Set.range
β€”Set.image_univ
finsum_mem_image'
Set.univ_inter
finsum_mem_univ
finsum_mem_sUnion πŸ“–mathematicalSet.PairwiseDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Finite
finsum
Set.instMembership
Set.sUnion
β€”Set.sUnion_eq_biUnion
finsum_mem_biUnion
finsum_mem_singleton πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
Set.instSingletonSet
β€”Finset.coe_singleton
finsum_mem_coe_finset
Finset.sum_singleton
finsum_mem_sub_distrib πŸ“–mathematicalβ€”finsum
SubtractionCommMonoid.toAddCommMonoid
Set
Set.instMembership
SubNegMonoid.toSub
SubtractionMonoid.toSubNegMonoid
SubtractionCommMonoid.toSubtractionMonoid
β€”finsum_congr_Prop
sub_eq_add_neg
finsum_mem_add_distrib
finsum_mem_neg_distrib
finsum_mem_support πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_mem_def
Set.indicator_support
finsum_mem_union πŸ“–mathematicalDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
finsum
Set.instMembership
Set.instUnion
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_mem_union'
Set.Finite.inter_of_left
finsum_mem_union' πŸ“–mathematicalDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
finsum
Set.instMembership
Set.instUnion
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_mem_union_inter'
Set.disjoint_iff_inter_eq_empty
finsum_mem_empty
add_zero
finsum_mem_union'' πŸ“–mathematicalDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instInter
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Set.instMembership
Set.instUnion
AddZero.toAdd
β€”finsum_mem_inter_support
finsum_mem_union
Set.union_inter_distrib_right
finsum_mem_union_inter πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Set
Set.instMembership
Set.instUnion
Set.instInter
β€”CanLift.prf
Set.instCanLiftFinsetCoeFinite
Finset.coe_union
Finset.coe_inter
finsum_mem_coe_finset
Finset.sum_union_inter
finsum_mem_union_inter' πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Set
Set.instMembership
Set.instUnion
Set.instInter
β€”finsum_mem_inter_support
finsum_mem_union_inter
Set.union_inter_distrib_right
Set.inter_left_comm
Set.inter_assoc
Set.inter_self
finsum_mem_univ πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
Set.univ
β€”finsum_congr
finsum_true
finsum_mem_zero πŸ“–mathematicalβ€”finsum
Set
Set.instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_zero
finsum_mul πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
finsum
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”MulZeroClass.mul_zero
finsum_zero
finsum_mul'
finsum_def
MulZeroClass.zero_mul
Set.ext
finsum_mul' πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
finsum
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”AddMonoidHom.map_finsum
finsum_neg_distrib πŸ“–mathematicalβ€”finsum
SubtractionCommMonoid.toAddCommMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
β€”AddEquiv.map_finsum
finsum_nonneg πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsumβ€”finsum_induction
le_rfl
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
finsum_nsmul πŸ“–mathematicalβ€”AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
finsum
β€”AddMonoidHom.map_finsum
finsum_of_infinite_support πŸ“–mathematicalSet.Infinite
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsumβ€”finsum_def
finsum_of_isEmpty πŸ“–mathematicalβ€”finsum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”finsum_zero
Unique.instSubsingleton
finsum_option πŸ“–mathematicalβ€”finsum
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Set.finite_option
Function.mem_support
finsum_congr_Prop
Set.insert_none_range_some
Set.mem_univ
finsum_true
finsum_mem_range
Option.some_injective
finsum_mem_insert'
Set.mem_range
Set.Finite.subset
Set.inter_subset_right
finsum_pos πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLT
finsumβ€”finsum_mem_univ
finsum_cond_pos
Set.mem_univ
Set.inter_univ
finsum_pos' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Preorder.toLT
finsumβ€”finsum_pos
finsum_set_coe_eq_finsum_mem πŸ“–mathematicalβ€”finsum
Set.Elem
Set
Set.instMembership
β€”finsum_mem_range
Subtype.coe_injective
Subtype.range_coe
finsum_smul πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
finsum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”eq_or_ne
smul_zero
finsum_zero
AddMonoidHom.map_finsum_of_injective
smul_left_injective
IsDomain.toIsCancelMulZero
finsum_smul' πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
finsum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”AddMonoidHom.map_finsum
finsum_sub_distrib πŸ“–mathematicalβ€”finsum
SubtractionCommMonoid.toAddCommMonoid
SubNegMonoid.toSub
SubtractionMonoid.toSubNegMonoid
SubtractionCommMonoid.toSubtractionMonoid
β€”sub_eq_add_neg
finsum_add_distrib
Function.support_fun_neg
finsum_neg_distrib
finsum_subtype_eq_finsum_cond πŸ“–mathematicalβ€”finsumβ€”finsum_set_coe_eq_finsum_mem
finsum_sum_comm πŸ“–mathematicalSet.Finite
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsum
Finset.sum
β€”Set.Finite.biUnion
Finset.finite_toSet
Finset.mem_coe
Set.Finite.coe_toFinset
Set.iUnion_congr_Prop
Set.mem_iUnion
Function.mem_support
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_exists
Mathlib.Tactic.Push.not_and_eq
Finset.sum_congr
Finset.sum_const_zero
finsum_eq_sum_of_support_subset
Finset.sum_comm
finsum_sum_filter πŸ“–mathematicalβ€”finsum
Finset.sum
Finset.filter
β€”finsum_eq_finset_sum_of_support_subset
Finset.exists_ne_zero_of_sum_ne_zero
Function.mem_support
Finset.coe_image
Set.mem_image
SetLike.mem_coe
Finset.mem_filter
Finset.sum_image'
finsum_true πŸ“–mathematicalβ€”finsumβ€”finsum_unique
finsum_unique πŸ“–mathematicalβ€”finsum
Unique.instInhabited
β€”finsum_eq_single
Unique.eq_default
finsum_zero πŸ“–mathematicalβ€”finsum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Function.support_fun_zero
Set.mem_empty_iff_false
finsum_eq_sum_plift_of_support_subset
Finset.sum_empty
map_finprod πŸ“–mathematicalβ€”DFunLike.coe
finprod
β€”MonoidHom.map_finprod
map_finset_prod πŸ“–mathematicalβ€”DFunLike.coe
EquivLike.toFunLike
Finset.prod
Finset.univ
β€”MulEquivClass.map_finprod
map_finset_sum πŸ“–mathematicalβ€”DFunLike.coe
EquivLike.toFunLike
Finset.sum
Finset.univ
β€”finsum_eq_sum_of_fintype
AddEquivClass.map_finsum
map_finsum πŸ“–mathematicalβ€”DFunLike.coe
finsum
β€”AddMonoidHom.map_finsum
mul_finprod_cond_ne πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprod
β€”finprod_eq_prod
Finset.mem_sdiff
Finset.mem_singleton
Set.Finite.mem_toFinset
Function.mem_mulSupport
finprod_cond_eq_prod_of_cond_iff
Finset.sdiff_singleton_eq_erase
Finset.mul_prod_erase
one_mul
Finset.prod_erase
mul_finsum πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
finsum
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”MulZeroClass.zero_mul
finsum_zero
mul_finsum'
finsum_def
MulZeroClass.mul_zero
Set.ext
mul_finsum' πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
finsum
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”AddMonoidHom.map_finsum
mul_finsum_mem πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
finsum
NonUnitalNonAssocSemiring.toAddCommMonoid
Set
Set.instMembership
β€”mul_finsum
finsum_congr_Prop
finsum_true
finsum_false
MulZeroClass.mul_zero
mul_finsum_mem' πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
finsum
NonUnitalNonAssocSemiring.toAddCommMonoid
Set
Set.instMembership
β€”AddMonoidHom.map_finsum_mem
nonempty_of_finprod_mem_ne_one πŸ“–mathematicalβ€”Set.Nonemptyβ€”Set.nonempty_iff_ne_empty
finprod_mem_empty
nonempty_of_finsum_mem_ne_zero πŸ“–mathematicalβ€”Set.Nonemptyβ€”Set.nonempty_iff_ne_empty
finsum_mem_empty
one_le_finprod πŸ“–mathematicalPreorder.toLE
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
finprod
CommMonoidWithZero.toCommMonoid
β€”finprod_induction
le_rfl
one_le_mul_of_one_le_of_one_le
one_le_finprod' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprodβ€”finprod_induction
le_rfl
one_le_mul
IsOrderedMonoid.toMulLeftMono
one_lt_finprod πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLT
finprodβ€”finprod_mem_univ
one_lt_finprod_cond
Set.inter_univ
one_lt_finprod' πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLT
finprodβ€”one_lt_finprod
one_lt_finprod_cond πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Preorder.toLT
finprodβ€”finprod_cond_eq_prod_of_cond_iff
Finset.one_lt_prod'
prod_finprod_comm πŸ“–mathematicalSet.Finite
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset.prod
finprod
β€”finprod_prod_comm
single_le_finprod πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprodβ€”Finset.single_le_prod'
IsOrderedMonoid.toMulLeftMono
Finset.mem_insert_self
finprod_eq_prod_of_mulSupport_toFinset_subset
Finset.subset_insert
single_le_finsum πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsumβ€”Finset.single_le_sum
IsOrderedAddMonoid.toAddLeftMono
Finset.mem_insert_self
finsum_eq_sum_of_support_toFinset_subset
Finset.subset_insert
smul_finsum πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
finsum
β€”eq_or_ne
zero_smul
finsum_zero
AddMonoidHom.map_finsum_of_injective
smul_right_injective
IsDomain.toIsCancelMulZero
smul_finsum' πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
finsum
β€”AddMonoidHom.map_finsum
sum_finsum_comm πŸ“–mathematicalSet.Finite
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
finsum
β€”finsum_sum_comm

---

← Back to Index