Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/BigOperators/Finsupp/Basic.lean

Statistics

MetricCount
DefinitionsliftAddHom, prod, sum
3
Theoremscoe_finsuppSum, finsuppSum_apply, op_finsuppProd, unop_finsuppProd, finsuppSum_mem, sum_apply', add_sum_erase, add_sum_erase', coe_finset_sum, coe_sum, coe_univ_sum_single, comp_liftAddHom, equivFunOnFinite_symm_eq_sum, equivFunOnFinite_symm_sum, finset_sum_apply, if_mem_support, indicator_eq_sum_attach_single, indicator_eq_sum_single, liftAddHom_apply, liftAddHom_apply_single, liftAddHom_comp_single, liftAddHom_singleAddHom, liftAddHom_symm_apply, liftAddHom_symm_apply_apply, mul_prod_erase, mul_prod_erase', mul_sum, multiset_map_sum, multiset_sum_sum, multiset_sum_sum_index, onFinset_prod, onFinset_sum, prod_add_index, prod_add_index', prod_add_index_of_disjoint, prod_attach_index, prod_comm, prod_congr, prod_dvd_prod_of_subset_of_dvd, prod_embDomain, prod_eq_single, prod_eq_zero_iff, prod_finsetProd_comm, prod_finset_sum_index, prod_fintype, prod_fun_one, prod_hom_add_index, prod_indicator_index, prod_indicator_index_eq_prod_attach, prod_inv, prod_ite_eq, prod_ite_eq', prod_mapRange_index, prod_mul, prod_mul_eq_prod_mul_of_exists, prod_ne_zero_iff, prod_neg_index, prod_of_support_subset, prod_pow, prod_single_index, prod_sum_index, prod_unique, prod_zero_index, prod_zpow, single_finset_sum, single_multiset_sum, single_sum, sum_add, sum_add_eq_sum_add_of_exists, sum_add_index, sum_add_index', sum_add_index_of_disjoint, sum_apply, sum_apply', sum_apply'', sum_attach_index, sum_comm, sum_congr, sum_embDomain, sum_eq_one_iff, sum_eq_single, sum_finsetSum_comm, sum_finset_sum_index, sum_fintype, sum_fun_zero, sum_hom_add_index, sum_indicator_index, sum_indicator_index_eq_sum_attach, sum_ite_eq, sum_ite_eq', sum_ite_self_eq, sum_ite_self_eq', sum_mapRange_index, sum_mul, sum_neg, sum_neg_index, sum_nsmul, sum_of_support_subset, sum_single, sum_single_add_single, sum_single_index, sum_sub, sum_sub_index, sum_sum_index, sum_sum_index', sum_unique, sum_zero, sum_zero_index, sum_zsmul, support_finset_sum, support_sum, support_sum_eq_biUnion, univ_sum_single, univ_sum_single_apply, univ_sum_single_apply', coe_finsuppProd, finsuppProd_apply, op_finsuppSum, unop_finsuppSum, card_finsuppSum, prod_pow_pos_of_zero_notMem_support, finsuppProd_mem, map_finsuppProd, map_finsuppSum
124
Total127

AddMonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_finsuppSum πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
Finsupp.sum
instAddCommMonoid
Pi.addCommMonoid
β€”coe_finset_sum
finsuppSum_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
Finsupp.sum
instAddCommMonoid
β€”finset_sum_apply

AddOpposite

Theorems

NameKindAssumesProvesValidatesDepends On
op_finsuppProd πŸ“–mathematicalβ€”op
Finsupp.prod
AddOpposite
instCommMonoid
β€”Finset.op_prod
unop_finsuppProd πŸ“–mathematicalβ€”unop
Finsupp.prod
AddOpposite
instCommMonoid
β€”Finset.unop_prod

AddSubmonoidClass

Theorems

NameKindAssumesProvesValidatesDepends On
finsuppSum_mem πŸ“–mathematicalSetLike.instMembership
DFunLike.coe
Finsupp
Finsupp.instFunLike
Finsupp.sumβ€”sum_mem
Finsupp.mem_support_iff

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
sum_apply' πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instFunLike
sum
Finsupp.instAddCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass

Finsupp

Definitions

NameCategoryTheorems
liftAddHom πŸ“–CompOp
7 mathmath: liftAddHom_comp_single, comp_liftAddHom, liftAddHom_apply, liftAddHom_singleAddHom, liftAddHom_apply_single, liftAddHom_symm_apply_apply, liftAddHom_symm_apply
prod πŸ“–CompOp
105 mathmath: prod_eq_single, prod_congr, Submonoid.exists_finsupp_of_mem_closure_range, Nat.multiplicative_factorization', Nat.factorization_prod_pow_eq_self, MvPowerSeries.constantCoeff_subst, MvPolynomial.evalβ‚‚Hom_monomial, prod_add_index_of_disjoint, MvPolynomial.monomial_finsupp_sum_index, prod_toMultiset, Nat.prod_pow_pos_of_zero_notMem_support, FractionalIdeal.count_finsuppProd, prod_add_index, MvPolynomial.evalβ‚‚_mul_monomial, logb_prod, MvPowerSeries.hasSum_aeval, MvPowerSeries.subst_monomial, onFinset_prod, map_finsuppProd, ArithmeticFunction.IsMultiplicative.multiplicative_factorization, prod_finsetProd_comm, prod_zpow, prod_add_index', Algebra.Generators.H1Cotangent.Ξ΄Aux_monomial, prod_unique, star_finsuppProd, MvPowerSeries.coeff_subst, Nat.eq_factorization_iff, prod_of_support_subset, prod_equivMapDomain, prod_embDomain, Nat.ceilRoot_def, prod_mul, Subgroup.mem_closure_range_iff, prod_indicator_index_eq_prod_attach, RCLike.ofReal_finsuppProd, prod_eq_zero_iff, Rat.cast_finsuppProd, MonoidHom.coe_finsuppProd, MvPowerSeries.evalβ‚‚_eq_tsum, prod_inv, prod_mapDomain_index_inj, prod_sumElim, prod_hom_add_index, prod_filter_mul_prod_filter_not, prod_filter_index, MvPolynomial.eval_monomial, prod_indicator_index, Prime.dvd_finsuppProd_iff, MonoidHom.finsuppProd_apply, prod_pow, card_pi, prod_dvd_prod_of_subset_of_dvd, AddOpposite.unop_finsuppProd, Prime.not_dvd_finsuppProd, prod_neg_index, MvPolynomial.monic_monomial_eq, Nat.cast_finsuppProd, AddOpposite.op_finsuppProd, MvPowerSeries.coeff_rescale, Nat.prod_factorization_eq_prod_primeFactors, Nat.prod_pow_factorization_eq_self, prod_option_index, SubmonoidClass.finsuppProd_mem, prod_mapDomain_index, Nat.floorRoot_def, prod_mul_eq_prod_mul_of_exists, prod_div_prod_filter, MvPolynomial.monomial_eq, Nat.totient_eq_prod_factorization, prod_ite_eq, Nat.prod_primeFactors_prod_factorization, prod_mapRange_index, Submonoid.mem_closure_range_iff, prod_fintype, Nat.multiplicative_factorization, log_prod, MvPowerSeries.substAlgHom_monomial, mul_prod_erase, Nat.factorizationEquiv_inv_apply, prod_subtypeDomain_index, prod_sum_index, prod_comm, MvPowerSeries.aeval_eq_sum, MvPowerSeries.monomial_one_eq, MvPolynomial.evalβ‚‚_monomial, MvPowerSeries.monomial_eq, Algebra.Generators.Hom.toAlgHom_monomial, MvPowerSeries.coeff_subst_finite, MvPolynomial.aeval_monomial, mul_prod_erase', MvPowerSeries.monomial_smul_const, MvPowerSeries.hasSum_evalβ‚‚, Nat.Partition.coeff_genFun, prod_finset_sum_index, prod_single_index, prod_fun_one, MvPowerSeries.monomial_smul_eq, prod_ite_eq', MvPowerSeries.monomial_eq', Int.cast_finsuppProd, Subgroup.exists_finsupp_of_mem_closure_range, prod_zero_index, MvPowerSeries.prod_smul_X_eq_smul_monomial_one, image_pow_eq_finsuppProd_image
sum πŸ“–CompOp
216 mathmath: sum_toMultiset, LaurentPolynomial.smeval_eq_sum, AddMonoidAlgebra.lift_apply', MonoidAlgebra.liftMagma_apply_apply, sum_indicator_index, MvPolynomial.totalDegree_monomial, Module.Basis.mem_submodule_iff, sum_indicator_index_eq_sum_attach, AddMonoidAlgebra.mul_apply, Submodule.mem_ideal_smul_span_iff_exists_sum, MvPolynomial.sum_def, MulOpposite.op_finsuppSum, TensorProduct.equivFinsuppOfBasisLeft_symm_apply, sum_apply', multiset_sum_sum_index, sum_zsmul, sum_finsetSum_comm, AddSubgroup.exists_finsupp_of_mem_closure_range, MvPolynomial.monomial_finsupp_sum_index, sum_mapDomain_index_inj, sum_smul_index', MvPolynomial.mul_def, Rat.cast_finsupp_sum, Submodule.mem_iSup_iff_exists_finsupp, groupHomology.mem_cyclesβ‚‚_iff, MonoidAlgebra.mul_def, sum_smul_index_linearMap', sum_single_add_single, Algebra.FormallyUnramified.finite_of_free_aux, Sym.coe_equivNatSum_apply_apply, LinearMap.sum_repr_mul_repr_mulβ‚›β‚—, AddSubmonoid.mem_closure_range_iff, AddSubmonoid.exists_finsupp_of_mem_closure_range, Submodule.mem_ideal_smul_span_iff_exists_sum', SkewMonoidAlgebra.ofFinsupp_sum, Multiset.toFinsupp_sum_eq, Ideal.finsuppTotal_apply, sum_comm, sum_single_index, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, sum_zero, sum_equivMapDomain, sum_sub_sum_filter, sum_sub, card_toMultiset, logb_prod, sum_sub_index, Sym.coe_equivNatSum_symm_apply, sum_inner, sum_smul_index, AddSubmonoidClass.finsuppSum_mem, sum_ite_eq, sum_fintype, Submodule.mulLeftMap_apply, toMultiset_apply, TensorProduct.finsuppScalarRight_apply_tmul, QuadraticMap.map_finsuppSum, sum_nonneg, sum_ite_eq', SkewMonoidAlgebra.sum_def, MvPolynomial.scalarRTensor_apply_tmul, sum_congr, Real.log_nat_eq_sum_factorization, sum_mapDomain_index, Int.cast_finsupp_sum, sigma_sum, AddMonoidAlgebra.lift_apply, inner_sum, Real.logb_nat_eq_sum_factorization, sum_filter_add_sum_filter_not, lift_apply, AddMonoidAlgebra.mul_def, subtypeDomain_finsupp_sum, sum_add_index', onFinset_sum, MvPolynomial.rTensor_apply_tmul, AddMonoidHom.finsuppSum_apply, sum_apply'', sum_sum_index', sum_unique, LinearMap.BilinForm.sum_repr_mul_repr_mul, MonoidAlgebra.lift_unique, MvPolynomial.mkDerivationβ‚—_monomial, ArithmeticFunction.cardFactors_eq_sum_factorization, sum_cons, MonoidAlgebra.lift_apply', support_sum, sum_nonneg', sum_filter_index, sum_neg_index, sum_embDomain, Submodule.mem_span_set, RCLike.ofReal_finsupp_sum, TensorProduct.exists_finsupp_left, Orthonormal.inner_finsupp_eq_sum_right, sum_cons', multinomial_update, AddSubgroup.mem_closure_range_iff, sum_add_index_of_disjoint, sum_neg, linearCombination_apply, liftAddHom_apply, HahnSeries.SummableFamily.hsum_ofFinsupp, QuadraticMap.map_finsuppSum', sum_id_lt_of_lt, MvPolynomial.mkDerivation_monomial, AddMonoidAlgebra.mul_apply_left, groupHomology.isBoundaryβ‚‚_iff, sum_add, sum_nsmul, lsum_apply, coe_lsum, sum_uncurry_index', MonoidAlgebra.sum_single, sum_curry_index, Profinite.NobelingProof.GoodProducts.finsuppSum_mem_span_eval, AddMonoidAlgebra.liftMagma_apply_apply, LinearMap.finsupp_sum_apply, Submodule.mulRightMap_apply, Orthonormal.inner_finsupp_eq_sum_left, sum_update_add, PointedCone.mem_span_set, TensorProduct.eq_repr_basis_left, sum_uncurry_index, sum_le_sum_index, sum_comapDomain, sum_fun_zero, sum_sumElim, Nat.cast_finsupp_sum, sum_eq_single, LieAlgebra.LoopAlgebra.residuePairing_apply_apply, MonoidAlgebra.lift_apply, sum_hom_add_index, TensorProduct.exists_finsupp_right, add_sum_erase', sum_option_index_smul, TensorProduct.finsuppScalarLeft_apply_tmul, sum_add_eq_sum_add_of_exists, map_finsuppSum, MonoidAlgebra.mul_apply, PolynomialModule.eval_apply, Basis.mem_ideal_iff, mem_span_range_iff_exists_finsupp, MvPolynomial.sum_C, sum_smul_index_semilinearMap', multiset_sum_sum, MvPolynomial.totalDegree_monomial_le, StdSimplex.total, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, sum_subtypeDomain_index, sum_le_sum, multiset_map_sum, log_prod, mul_sum, prod_sum_index, mapDomain_sum, TensorProduct.finsuppLeft_apply_tmul, CategoryTheory.Free.lift_map, MvPolynomial.sum_monomial_eq, MvPolynomial.le_totalDegree, groupHomology.isBoundaryβ‚€_iff, smul_sum, mem_ideal_span_range_iff_exists_finsupp, star_finsuppSum, finTwoArrowEquiv'_sum_eq, MonoidAlgebra.mul_apply_right, sum_mapRange_index, sum_mul, sum_add_index, sum_nonpos, equivFunOnFinite_symm_sum, Submodule.finsuppSum_mem, add_sum_erase, sum_smul_index_addMonoidHom, single_sum, sum_apply, Submodule.mem_span_set_iff_exists_finsupp_le_finrank, coe_sum, AddMonoidAlgebra.lift_unique, Multiset.card_finsuppSum, sum_ite_self_eq', sum_zero_index, Submodule.mem_set_smul, Finset.mem_finsuppAntidiag', MonoidAlgebra.mapDomain_sum, sum_pos', Module.Basis.constr_apply, AddMonoidAlgebra.sum_single, MvPowerSeries.monomial_smul_const, sum_single, sum_finset_sum_index, AddMonoidAlgebra.sum_single_index, Algebra.Generators.comp_Οƒ, sum_eq_one_iff, TensorProduct.equivFinsuppOfBasisRight_symm_apply, sum_pos, AddMonoidAlgebra.mul_apply_right, MulOpposite.unop_finsuppSum, sum_ite_self_eq, TensorProduct.finsuppRight_apply_tmul, groupHomology.isBoundary₁_iff, weight_apply, LinearMap.coe_finsupp_sum, sum_mapDomain_index_addMonoidHom, AddMonoidAlgebra.mapDomain_sum, SkewMonoidAlgebra.toFinsupp_sum', groupHomology.mem_cycles₁_iff, sum_sum_index, MonoidAlgebra.sum_single_index, AddMonoidHom.coe_finsuppSum, sum_of_support_subset, Module.Basis.coe_sumCoords, LinearMap.sum_repr_mul_repr_mul, sum_option_index, TensorProduct.eq_repr_basis_right, MonoidAlgebra.mul_apply_left

Theorems

NameKindAssumesProvesValidatesDepends On
add_sum_erase πŸ“–mathematicalFinset
Finset.instMembership
support
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Finsupp
instFunLike
sum
erase
β€”sum.eq_1
Finset.add_sum_erase
support_erase
Finset.sum_congr
erase_ne
Finset.ne_of_mem_erase
add_sum_erase' πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddZero.toAdd
DFunLike.coe
Finsupp
instFunLike
sum
erase
β€”add_sum_erase
notMem_support_iff
erase_of_notMem_support
zero_add
coe_finset_sum πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
Finset.sum
instAddCommMonoid
Pi.addCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
coe_sum πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
sum
instAddCommMonoid
Pi.addCommMonoid
β€”coe_finset_sum
coe_univ_sum_single πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
Finset.sum
instAddCommMonoid
Finset.univ
single
β€”Finite.of_fintype
equivFunOnFinite_symm_eq_sum
comp_liftAddHom πŸ“–mathematicalβ€”AddMonoidHom.comp
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
instAddZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
AddEquiv
AddMonoidHom
Pi.instAdd
AddMonoidHom.add
EquivLike.toFunLike
AddEquiv.instEquivLike
liftAddHom
β€”AddEquiv.symm_apply_eq
liftAddHom_symm_apply
AddMonoidHom.comp_assoc
liftAddHom_comp_single
equivFunOnFinite_symm_eq_sum πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivFunOnFinite
Finite.of_fintype
Finset.sum
instAddCommMonoid
Finset.univ
single
β€”Finite.of_fintype
univ_sum_single
equivFunOnFinite_symm_sum πŸ“–mathematicalβ€”sum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Equiv
Finsupp
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivFunOnFinite
Finite.of_fintype
Finset.sum
Finset.univ
β€”Finite.of_fintype
equivFunOnFinite_symm_eq_sum
sum_fintype
coe_univ_sum_single
finset_sum_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
Finset.sum
instAddCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
if_mem_support πŸ“–mathematicalβ€”Finset
Finset.instMembership
support
Finset.decidableMem
DFunLike.coe
Finsupp
instFunLike
β€”β€”
indicator_eq_sum_attach_single πŸ“–mathematicalβ€”indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finset
Finset.instMembership
Finsupp
instAddCommMonoid
Finset.attach
single
β€”sum_single
sum.eq_1
Finset.sum_subset
support_indicator_subset
notMem_support_iff
single_zero
Finset.sum_attach
Finset.sum_congr
indicator_of_mem
indicator_eq_sum_single πŸ“–mathematicalβ€”indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finsupp
instAddCommMonoid
single
β€”indicator_eq_sum_attach_single
Finset.sum_attach
liftAddHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
instAddZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
AddEquiv
Pi.instAdd
AddMonoidHom.add
EquivLike.toFunLike
AddEquiv.instEquivLike
liftAddHom
sum
β€”β€”
liftAddHom_apply_single πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
instAddZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
AddEquiv
Pi.instAdd
AddMonoidHom.add
EquivLike.toFunLike
AddEquiv.instEquivLike
liftAddHom
single
β€”sum_single_index
AddMonoidHom.map_zero
liftAddHom_comp_single πŸ“–mathematicalβ€”AddMonoidHom.comp
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
instAddZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
AddEquiv
AddMonoidHom
Pi.instAdd
AddMonoidHom.add
EquivLike.toFunLike
AddEquiv.instEquivLike
liftAddHom
singleAddHom
β€”AddMonoidHom.ext
liftAddHom_apply_single
liftAddHom_singleAddHom πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
AddMonoidHom
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddZeroClass
instAddCommMonoid
Pi.instAdd
AddMonoidHom.add
EquivLike.toFunLike
AddEquiv.instEquivLike
liftAddHom
singleAddHom
AddMonoidHom.id
β€”Equiv.apply_eq_iff_eq_symm_apply
liftAddHom_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AddEquiv
AddMonoidHom
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
instAddZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.add
Pi.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
liftAddHom
AddMonoidHom.comp
singleAddHom
β€”β€”
liftAddHom_symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
AddEquiv
Finsupp
AddZero.toZero
instAddZeroClass
AddMonoidHom.add
Pi.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
liftAddHom
single
β€”β€”
mul_prod_erase πŸ“–mathematicalFinset
Finset.instMembership
support
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
DFunLike.coe
Finsupp
instFunLike
prod
erase
β€”prod.eq_1
Finset.mul_prod_erase
support_erase
Finset.prod_congr
erase_ne
Finset.ne_of_mem_erase
mul_prod_erase' πŸ“–mathematicalMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
MulOne.toMul
DFunLike.coe
Finsupp
instFunLike
prod
erase
β€”mul_prod_erase
notMem_support_iff
erase_of_notMem_support
one_mul
mul_sum πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
sum
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”Finset.mul_sum
Finset.sum_congr
multiset_map_sum πŸ“–mathematicalβ€”Multiset.map
sum
Multiset
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
multiset_sum_sum πŸ“–mathematicalβ€”Multiset.sum
sum
Multiset
AddCancelCommMonoid.toAddCommMonoid
Multiset.instAddCancelCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
multiset_sum_sum_index πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
sum
Multiset.sum
Finsupp
instAddCommMonoid
Multiset.map
β€”Multiset.induction_on
Multiset.sum_cons
Multiset.map_cons
sum_add_index'
onFinset_prod πŸ“–mathematicalFinset
Finset.instMembership
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
onFinset
Finset.prod
β€”Finset.prod_subset
support_onFinset_subset
onFinset_sum πŸ“–mathematicalFinset
Finset.instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
onFinset
Finset.sum
β€”Finset.sum_subset
support_onFinset_subset
mem_support_iff
prod_add_index πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
AddZero.toAdd
MulOne.toMul
prod
Finsupp
instAdd
β€”prod_of_support_subset
Finset.subset_union_left
Finset.subset_union_right
Finset.prod_mul_distrib
support_add
Finset.prod_congr
prod_add_index' πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
AddZero.toAdd
MulOne.toMul
prod
Finsupp
instAdd
β€”prod_add_index
prod_add_index_of_disjoint πŸ“–mathematicalDisjoint
Finset
Finset.partialOrder
Finset.instOrderBot
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
prod
Finsupp
instAdd
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”Finset.prod_congr
notMem_support_iff
Finset.disjoint_left
add_zero
Disjoint.symm
add_comm
support_add_eq
Finset.prod_union
prod_attach_index πŸ“–mathematicalβ€”Finset.prod
Finset
Finset.instMembership
Finset.attach
β€”Finset.prod_attach
prod_comm πŸ“–mathematicalβ€”prodβ€”Finset.prod_comm
prod_congr πŸ“–mathematicalDFunLike.coe
Finsupp
instFunLike
prodβ€”Finset.prod_congr
prod_dvd_prod_of_subset_of_dvd πŸ“–mathematicalFinset
Finset.instHasSubset
support
semigroupDvd
Monoid.toSemigroup
CommMonoid.toMonoid
DFunLike.coe
Finsupp
instFunLike
prodβ€”Finset.sdiff_union_of_subset
Finset.prod_union
Finset.sdiff_disjoint
dvd_mul_of_dvd_right
Finset.prod_dvd_prod_of_dvd
prod_embDomain πŸ“–mathematicalβ€”prod
embDomain
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”prod.eq_1
support_embDomain
Finset.prod_map
Finset.prod_congr
embDomain_apply_self
prod_eq_single πŸ“–mathematicalDFunLike.coe
Finsupp
instFunLike
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prodβ€”Finset.prod_eq_single
mem_support_iff
prod_eq_zero_iff πŸ“–mathematicalβ€”prod
CommMonoidWithZero.toCommMonoid
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Finset
Finset.instMembership
support
DFunLike.coe
Finsupp
instFunLike
β€”Finset.prod_eq_zero_iff
prod_finsetProd_comm πŸ“–mathematicalβ€”prod
Finset.prod
β€”Finset.prod_comm
prod_finset_sum_index πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
MulOne.toMul
Finset.prod
prod
Finset.sum
Finsupp
instAddCommMonoid
β€”Finset.cons_induction_on
Finset.prod_cons
Finset.sum_cons
prod_add_index'
prod_fintype πŸ“–mathematicalMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
Finset.prod
Finset.univ
DFunLike.coe
Finsupp
instFunLike
β€”prod_of_support_subset
Finset.subset_univ
prod_fun_one πŸ“–mathematicalβ€”prod
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”Finset.prod_congr
Finset.prod_const_one
prod_hom_add_index πŸ“–mathematicalβ€”prod
AddZero.toZero
AddZeroClass.toAddZero
Finsupp
instAdd
DFunLike.coe
MonoidHom
Multiplicative
MulOneClass.toMulOne
Multiplicative.mulOneClass
Monoid.toMulOneClass
CommMonoid.toMonoid
MonoidHom.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
MulOne.toMul
β€”prod_add_index'
MonoidHom.map_one
MonoidHom.map_mul
prod_indicator_index πŸ“–mathematicalMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
indicator
Finset.prod
β€”prod_indicator_index_eq_prod_attach
prod_attach_index
prod_indicator_index_eq_prod_attach πŸ“–mathematicalMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
indicator
Finset.prod
Finset
Finset.instMembership
Finset.attach
β€”prod_of_support_subset
support_indicator_subset
Finset.prod_attach
Finset.prod_congr
indicator_of_mem
prod_inv πŸ“–mathematicalβ€”prod
CommGroup.toCommMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
β€”map_prod
MonoidHom.instMonoidHomClass
prod_ite_eq πŸ“–mathematicalβ€”prod
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset
Finset.instMembership
support
Finset.decidableMem
DFunLike.coe
Finsupp
instFunLike
β€”Finset.prod_ite_eq
prod_ite_eq' πŸ“–mathematicalβ€”prod
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Finset
Finset.instMembership
support
Finset.decidableMem
DFunLike.coe
Finsupp
instFunLike
β€”Finset.prod_ite_eq'
prod_mapRange_index πŸ“–mathematicalMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
mapRange
β€”Finset.prod_subset
support_mapRange
notMem_support_iff
prod_mul πŸ“–mathematicalβ€”prod
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”Finset.prod_mul_distrib
prod_mul_eq_prod_mul_of_exists πŸ“–mathematicalFinset
Finset.instMembership
support
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
DFunLike.coe
Finsupp
instFunLike
prodβ€”Finset.prod_mul_eq_prod_mul_of_exists
prod_ne_zero_iff πŸ“–β€”β€”β€”β€”Finset.prod_ne_zero_iff
prod_neg_index πŸ“–mathematicalNegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
Finsupp
instNeg
NegZeroClass.toNeg
β€”prod_mapRange_index
neg_zero
prod_of_support_subset πŸ“–mathematicalFinset
Finset.instHasSubset
support
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
Finset.prod
DFunLike.coe
Finsupp
instFunLike
β€”Finset.prod_subset
notMem_support_iff
prod_pow πŸ“–mathematicalβ€”prod
MulZeroClass.toZero
Nat.instMulZeroClass
Monoid.toNatPow
CommMonoid.toMonoid
Finset.prod
Finset.univ
DFunLike.coe
Finsupp
instFunLike
β€”prod_fintype
pow_zero
prod_single_index πŸ“–mathematicalMulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
single
β€”prod_of_support_subset
support_single_subset
Finset.mem_singleton
Finset.prod_singleton
single_eq_same
prod_sum_index πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
MulOne.toMul
prod
sum
Finsupp
instAddCommMonoid
β€”prod_finset_sum_index
prod_unique πŸ“–mathematicalUnique.instInhabited
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
DFunLike.coe
Finsupp
instFunLike
β€”prod_eq_single
Unique.instSubsingleton
instIsEmptyFalse
prod_zero_index πŸ“–mathematicalβ€”prod
Finsupp
instZero
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”β€”
prod_zpow πŸ“–mathematicalβ€”prod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
DivisionCommMonoid.toCommMonoid
DivInvMonoid.toZPow
DivisionMonoid.toDivInvMonoid
DivisionCommMonoid.toDivisionMonoid
Finset.prod
Finset.univ
DFunLike.coe
Finsupp
instFunLike
β€”prod_fintype
zpow_zero
single_finset_sum πŸ“–mathematicalβ€”single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finsupp
instAddCommMonoid
β€”single_multiset_sum
Multiset.map_map
single_multiset_sum πŸ“–mathematicalβ€”single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Multiset.sum
Finsupp
instAddCommMonoid
Multiset.map
β€”Multiset.induction_on
single_zero
Multiset.sum_cons
single_add
Multiset.map_cons
single_sum πŸ“–mathematicalβ€”single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
Finsupp
instAddCommMonoid
β€”single_finset_sum
sum_add πŸ“–mathematicalβ€”sum
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Finset.sum_add_distrib
sum_add_eq_sum_add_of_exists πŸ“–mathematicalFinset
Finset.instMembership
support
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Finsupp
instFunLike
sumβ€”Finset.sum_add_eq_sum_add_of_exists
sum_add_index πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddZero.toAdd
sum
Finsupp
instAdd
β€”sum_of_support_subset
Finset.subset_union_left
Finset.subset_union_right
Finset.sum_add_distrib
support_add
Finset.sum_congr
sum_add_index' πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddZero.toAdd
sum
Finsupp
instAdd
β€”sum_add_index
sum_add_index_of_disjoint πŸ“–mathematicalDisjoint
Finset
Finset.partialOrder
Finset.instOrderBot
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
Finsupp
instAdd
AddZero.toAdd
β€”Finset.sum_congr
notMem_support_iff
Finset.disjoint_left
add_zero
Disjoint.symm
add_comm
support_add_eq
Finset.sum_union
sum_apply πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
sum
instAddCommMonoid
β€”finset_sum_apply
sum_apply' πŸ“–mathematicalβ€”sum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Pi.addCommMonoid
β€”Finset.sum_apply
sum_apply'' πŸ“–mathematicalDFunLike.coe
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
sumβ€”Finset.induction
Finset.sum_congr
Finset.sum_insert
sum_attach_index πŸ“–mathematicalβ€”Finset.sum
Finset
Finset.instMembership
Finset.attach
β€”Finset.sum_attach
sum_comm πŸ“–mathematicalβ€”sumβ€”Finset.sum_comm
sum_congr πŸ“–mathematicalDFunLike.coe
Finsupp
instFunLike
sumβ€”Finset.sum_congr
sum_embDomain πŸ“–mathematicalβ€”sum
embDomain
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”sum.eq_1
support_embDomain
Finset.sum_map
Finset.sum_congr
embDomain_apply_self
sum_eq_one_iff πŸ“–mathematicalβ€”sum
MulZeroClass.toZero
Nat.instMulZeroClass
Nat.instAddCommMonoid
single
β€”ne_iff
Finset.sum_congr
support_erase
Finset.erase_eq_of_notMem
erase_of_notMem_support
Unique.instSubsingleton
erase_ne
add_sum_erase'
instIsEmptyFalse
ext
single_eq_same
single_eq_of_ne
sum_eq_single
sum_eq_single πŸ“–mathematicalDFunLike.coe
Finsupp
instFunLike
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sumβ€”Finset.sum_eq_single
mem_support_iff
notMem_support_iff
sum_finsetSum_comm πŸ“–mathematicalβ€”sum
Finset.sum
β€”Finset.sum_comm
sum_finset_sum_index πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddZero.toAdd
Finset.sum
sum
Finsupp
instAddCommMonoid
β€”Finset.cons_induction_on
Finset.sum_cons
sum_add_index'
sum_fintype πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
Finset.sum
Finset.univ
DFunLike.coe
Finsupp
instFunLike
β€”sum_of_support_subset
Finset.subset_univ
sum_fun_zero πŸ“–mathematicalβ€”sum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Finset.sum_congr
Finset.sum_const_zero
sum_hom_add_index πŸ“–mathematicalβ€”sum
AddZero.toZero
AddZeroClass.toAddZero
Finsupp
instAdd
DFunLike.coe
AddMonoidHom
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”sum_add_index'
AddMonoidHom.map_zero
AddMonoidHom.map_add
sum_indicator_index πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
indicator
Finset.sum
β€”sum_indicator_index_eq_sum_attach
sum_attach_index
sum_indicator_index_eq_sum_attach πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
indicator
Finset.sum
Finset
Finset.instMembership
Finset.attach
β€”sum_of_support_subset
support_indicator_subset
Finset.sum_attach
Finset.sum_congr
indicator_of_mem
sum_ite_eq πŸ“–mathematicalβ€”sum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset
Finset.instMembership
support
Finset.decidableMem
DFunLike.coe
Finsupp
instFunLike
β€”Finset.sum_ite_eq
sum_ite_eq' πŸ“–mathematicalβ€”sum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset
Finset.instMembership
support
Finset.decidableMem
DFunLike.coe
Finsupp
instFunLike
β€”Finset.sum_ite_eq'
sum_ite_self_eq πŸ“–mathematicalβ€”sum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Finsupp
instFunLike
β€”sum_ite_eq
sum_ite_self_eq' πŸ“–mathematicalβ€”sum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DFunLike.coe
Finsupp
instFunLike
β€”sum_ite_eq'
if_mem_support
sum_mapRange_index πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
mapRange
β€”Finset.sum_subset
support_mapRange
notMem_support_iff
sum_mul πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
sum
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”Finset.sum_mul
Finset.sum_congr
sum_neg πŸ“–mathematicalβ€”sum
AddCommGroup.toAddCommMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
sum_neg_index πŸ“–mathematicalNegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
Finsupp
instNeg
NegZeroClass.toNeg
β€”sum_mapRange_index
neg_zero
sum_nsmul πŸ“–mathematicalβ€”sum
MulZeroClass.toZero
Nat.instMulZeroClass
AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
Finset.sum
Finset.univ
DFunLike.coe
Finsupp
instFunLike
β€”sum_fintype
zero_nsmul
sum_of_support_subset πŸ“–mathematicalFinset
Finset.instHasSubset
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
Finset.sum
DFunLike.coe
Finsupp
instFunLike
β€”Finset.sum_subset
notMem_support_iff
sum_single πŸ“–mathematicalβ€”sum
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
single
β€”DFunLike.congr_fun
liftAddHom_singleAddHom
sum_single_add_single πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
Finsupp
instAdd
single
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”sum_of_support_subset
support_single_add_single_subset
Finset.sum_congr
single_apply
Finset.sum_insert
add_zero
Finset.sum_singleton
zero_add
sum_single_index πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
single
β€”sum_of_support_subset
support_single_subset
Finset.mem_singleton
Finset.sum_singleton
single_eq_same
sum_sub πŸ“–mathematicalβ€”sum
SubtractionCommMonoid.toAddCommMonoid
SubNegMonoid.toSub
SubtractionMonoid.toSubNegMonoid
SubtractionCommMonoid.toSubtractionMonoid
β€”Finset.sum_sub_distrib
sum_sub_index πŸ“–mathematicalSubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
sum
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddCommGroup.toAddCommMonoid
Finsupp
instSub
β€”AddMonoidHom.map_sub
sum_sum_index πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddZero.toAdd
sum
Finsupp
instAddCommMonoid
β€”sum_finset_sum_index
sum_sum_index' πŸ“–mathematicalAddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
sum
Finset.sum
Finsupp
instAddCommMonoid
β€”sum_finset_sum_index
sum_unique πŸ“–mathematicalUnique.instInhabited
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
DFunLike.coe
Finsupp
instFunLike
β€”sum_eq_single
Unique.instSubsingleton
IsEmpty.forall_iff
instIsEmptyFalse
sum_zero πŸ“–mathematicalβ€”sum
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”Finset.sum_const_zero
sum_zero_index πŸ“–mathematicalβ€”sum
Finsupp
instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”β€”
sum_zsmul πŸ“–mathematicalβ€”sum
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
SubtractionCommMonoid.toAddCommMonoid
SubNegMonoid.toZSMul
SubtractionMonoid.toSubNegMonoid
SubtractionCommMonoid.toSubtractionMonoid
Finset.sum
Finset.univ
DFunLike.coe
Finsupp
instFunLike
β€”sum_fintype
zero_zsmul
support_finset_sum πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finsupp
instAddCommMonoid
Finset.biUnion
β€”Finset.sup_eq_biUnion
Finset.cons_induction_on
subset_refl
Finset.instReflSubset
Finset.sum_cons
Finset.sup_cons
HasSubset.Subset.trans
Finset.instIsTransSubset
support_add
Finset.union_subset_union
Finset.Subset.refl
support_sum πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
Finsupp
instAddCommMonoid
Finset.biUnion
DFunLike.coe
instFunLike
β€”Finset.exists_ne_zero_of_sum_ne_zero
mem_support_iff
sum_apply
support_sum_eq_biUnion πŸ“–mathematicalDisjoint
Finset
Finset.partialOrder
Finset.instOrderBot
support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finset.sum
Finsupp
instAddCommMonoid
Finset.biUnion
β€”Finset.induction_on
Finset.sum_insert
Finset.biUnion_insert
support_add_eq
Finset.disjoint_biUnion_right
univ_sum_single πŸ“–mathematicalβ€”Finset.sum
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instAddCommMonoid
Finset.univ
single
DFunLike.coe
instFunLike
β€”DFunLike.coe_injective
coe_finset_sum
Finset.sum_congr
single_eq_pi_single
Finset.univ_sum_single
univ_sum_single_apply πŸ“–mathematicalβ€”Finset.sum
Finset.univ
DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
single
β€”single.eq_1
Finset.sum_pi_single'
univ_sum_single_apply' πŸ“–mathematicalβ€”Finset.sum
Finset.univ
DFunLike.coe
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
instFunLike
single
β€”Finset.sum_congr
Finset.sum_pi_single

MonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_finsuppProd πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
instFunLike
Finsupp.prod
instCommMonoid
Pi.commMonoid
β€”coe_finset_prod
finsuppProd_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
instFunLike
Finsupp.prod
instCommMonoid
β€”finset_prod_apply

MulOpposite

Theorems

NameKindAssumesProvesValidatesDepends On
op_finsuppSum πŸ“–mathematicalβ€”op
Finsupp.sum
MulOpposite
instAddCommMonoid
β€”Finset.op_sum
unop_finsuppSum πŸ“–mathematicalβ€”unop
Finsupp.sum
MulOpposite
instAddCommMonoid
β€”Finset.unop_sum

Multiset

Theorems

NameKindAssumesProvesValidatesDepends On
card_finsuppSum πŸ“–mathematicalβ€”card
Finsupp.sum
Multiset
AddCancelCommMonoid.toAddCommMonoid
instAddCancelCommMonoid
Nat.instAddCommMonoid
β€”map_finsuppSum
AddMonoidHom.instAddMonoidHomClass

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
prod_pow_pos_of_zero_notMem_support πŸ“–mathematicalFinset
Finset.instMembership
Finsupp.support
MulZeroClass.toZero
instMulZeroClass
Finsupp.prod
instCommMonoid
Monoid.toNatPow
instMonoid
β€”Finset.prod_ne_zero_iff
instNontrivial
IsDomain.to_noZeroDivisors
instIsDomain
pow_ne_zero
isReduced_of_noZeroDivisors

SubmonoidClass

Theorems

NameKindAssumesProvesValidatesDepends On
finsuppProd_mem πŸ“–mathematicalSetLike.instMembership
DFunLike.coe
Finsupp
Finsupp.instFunLike
Finsupp.prodβ€”prod_mem
Finsupp.mem_support_iff

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
map_finsuppProd πŸ“–mathematicalβ€”DFunLike.coe
Finsupp.prod
β€”map_prod
map_finsuppSum πŸ“–mathematicalβ€”DFunLike.coe
Finsupp.sum
β€”map_sum

---

← Back to Index