Documentation Verification Report

Finset

πŸ“ Source: Mathlib/Algebra/BigOperators/GroupWithZero/Finset.lean

Statistics

MetricCount
Definitions0
Theoremsprod_boole, prod_eq_zero, prod_eq_zero_iff, prod_ite_zero, prod_ne_zero_iff, support_prod, support_prod_subset, prod_boole, prod_ite_zero, indicator_pi_one_apply, mk0_prod
11
Total11

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
prod_boole πŸ“–mathematicalβ€”prod
CommMonoidWithZero.toCommMonoid
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
decidableDforallFinset
β€”prod_ite_zero
prod_const_one
prod_eq_zero πŸ“–mathematicalFinset
instMembership
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
prod
CommMonoidWithZero.toCommMonoid
β€”prod_erase_mul
MulZeroClass.mul_zero
prod_eq_zero_iff πŸ“–mathematicalβ€”prod
CommMonoidWithZero.toCommMonoid
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
Finset
instMembership
β€”induction_on
one_ne_zero
NeZero.one
prod_insert
mul_eq_zero
exists_mem_insert
prod_ite_zero πŸ“–mathematicalβ€”prod
CommMonoidWithZero.toCommMonoid
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
decidableDforallFinset
β€”prod_congr
Mathlib.Tactic.Push.not_forall_eq
prod_eq_zero
prod_ne_zero_iff πŸ“–β€”β€”β€”β€”prod_eq_zero_iff
Mathlib.Tactic.Push.not_and_eq
support_prod πŸ“–mathematicalβ€”Function.support
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
prod
CommMonoidWithZero.toCommMonoid
Set.iInter
Finset
instMembership
β€”Set.ext
Set.iInter_congr_Prop
support_prod_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Function.support
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
prod
CommMonoidWithZero.toCommMonoid
Set.iInter
Finset
instMembership
β€”Set.mem_iInterβ‚‚
prod_eq_zero

Fintype

Theorems

NameKindAssumesProvesValidatesDepends On
prod_boole πŸ“–mathematicalβ€”Finset.prod
CommMonoidWithZero.toCommMonoid
Finset.univ
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
decidableForallFintype
β€”Finset.prod_boole
prod_ite_zero πŸ“–mathematicalβ€”Finset.prod
CommMonoidWithZero.toCommMonoid
Finset.univ
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
decidableForallFintype
β€”Finset.prod_ite_zero

Set

Theorems

NameKindAssumesProvesValidatesDepends On
indicator_pi_one_apply πŸ“–mathematicalβ€”indicator
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
CommMonoidWithZero.toMonoidWithZero
pi
SetLike.coe
Finset
Finset.instSetLike
Pi.instOne
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
Finset.prod
CommMonoidWithZero.toCommMonoid
β€”Finset.prod_congr
Finset.prod_boole

Units

Theorems

NameKindAssumesProvesValidatesDepends On
mk0_prod πŸ“–mathematicalβ€”CommGroupWithZero.toGroupWithZero
Finset.prod
CommMonoidWithZero.toCommMonoid
CommGroupWithZero.toCommMonoidWithZero
Finset
Finset.instMembership
Units
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroup.toCommMonoid
instCommGroupUnits
Finset.attach
Finset.prod_eq_zero
β€”Finset.cons_induction_on
Finset.prod_eq_zero
mul_ne_zero_iff
GroupWithZero.noZeroDivisors
Finset.prod_cons
Finset.mem_cons_self
Finset.mem_cons_of_mem
Finset.prod_congr
Finset.attach_cons
Finset.prod_map

---

← Back to Index