Documentation Verification Report

Indicator

πŸ“ Source: Mathlib/Algebra/BigOperators/Group/Finset/Indicator.lean

Statistics

MetricCount
Definitions0
Theoremsindicator_biUnion, indicator_biUnion_apply, indicator_sum, mulIndicator_biUnion, mulIndicator_biUnion_apply, mulIndicator_prod, prod_mulIndicator_eq_prod_filter, prod_mulIndicator_eq_prod_inter, prod_mulIndicator_subset, prod_mulIndicator_subset_of_eq_one, sum_indicator_eq_sum_filter, sum_indicator_eq_sum_inter, sum_indicator_subset, sum_indicator_subset_of_eq_zero
14
Total14

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
indicator_biUnion πŸ“–mathematicalSet.PairwiseDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Finset
instSetLike
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set.iUnion
instMembership
sum
β€”cons_induction
Set.iUnion_congr_Prop
notMem_empty
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Set.indicator_empty
sum_cons
cons_eq_insert
set_biUnion_insert
Set.indicator_union_of_notMem_inter
Set.disjoint_iff
Set.disjoint_iUnionβ‚‚_right
Set.pairwiseDisjoint_insert_of_notMem
Iff.not
mem_coe
coe_cons
indicator_biUnion_apply πŸ“–mathematicalSet.PairwiseDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Finset
instSetLike
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set.iUnion
instMembership
sum
β€”indicator_biUnion
indicator_sum πŸ“–mathematicalβ€”Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
Pi.addCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
mulIndicator_biUnion πŸ“–mathematicalSet.PairwiseDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Finset
instSetLike
Set.mulIndicator
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Set.iUnion
instMembership
prod
β€”cons_induction
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Set.mulIndicator_empty
prod_cons
cons_eq_insert
set_biUnion_insert
Set.mulIndicator_union_of_notMem_inter
Set.disjoint_iff
Set.disjoint_iUnionβ‚‚_right
Set.pairwiseDisjoint_insert_of_notMem
Iff.not
mem_coe
coe_cons
mulIndicator_biUnion_apply πŸ“–mathematicalSet.PairwiseDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Finset
instSetLike
Set.mulIndicator
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Set.iUnion
instMembership
prod
β€”mulIndicator_biUnion
mulIndicator_prod πŸ“–mathematicalβ€”Set.mulIndicator
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
Pi.commMonoid
β€”map_prod
MonoidHom.instMonoidHomClass
prod_mulIndicator_eq_prod_filter πŸ“–mathematicalβ€”prod
Set.mulIndicator
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
filter
Set
Set.instMembership
β€”prod_filter_mul_prod_filter_not
prod_congr
Set.mulIndicator_of_mem
mem_filter
prod_eq_one
Set.mulIndicator_of_notMem
mul_one
prod_mulIndicator_eq_prod_inter πŸ“–mathematicalβ€”prod
Set.mulIndicator
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.coe
Finset
instSetLike
instInter
β€”filter_mem_eq_inter
prod_mulIndicator_eq_prod_filter
prod_mulIndicator_subset πŸ“–mathematicalFinset
instHasSubset
prod
Set.mulIndicator
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
SetLike.coe
instSetLike
β€”prod_mulIndicator_subset_of_eq_one
prod_mulIndicator_subset_of_eq_one πŸ“–mathematicalFinset
instHasSubset
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
prod
Set.mulIndicator
SetLike.coe
instSetLike
β€”prod_subset
Set.mulIndicator_of_notMem
prod_congr
Set.mulIndicator_of_mem
sum_indicator_eq_sum_filter πŸ“–mathematicalβ€”sum
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
filter
Set
Set.instMembership
β€”sum_filter_add_sum_filter_not
sum_congr
Set.indicator_of_mem
mem_filter
sum_eq_zero
Set.indicator_of_notMem
add_zero
sum_indicator_eq_sum_inter πŸ“–mathematicalβ€”sum
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.coe
Finset
instSetLike
instInter
β€”filter_mem_eq_inter
sum_indicator_eq_sum_filter
sum_indicator_subset πŸ“–mathematicalFinset
instHasSubset
sum
Set.indicator
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SetLike.coe
instSetLike
β€”sum_indicator_subset_of_eq_zero
sum_indicator_subset_of_eq_zero πŸ“–mathematicalFinset
instHasSubset
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
sum
Set.indicator
SetLike.coe
instSetLike
β€”sum_subset
Set.indicator_of_notMem
SetLike.mem_coe
sum_congr
Set.indicator_of_mem

---

← Back to Index