| Name | Category | Theorems |
adj š | CompOp | ā |
carrier š | CompOp | 51 mathmath: hom_inv_apply, hom_inv_associator, hom_inv_rightUnitor, forget_obj, inv_hom_apply, forget_map, CommAlgCat.forgetā_algCat_map, id_apply, forgetāRing_preservesLimitsOfSize, CSA.isSimple, hom_hom_associator, CategoryTheory.Iso.toAlgEquiv_symm_apply, forget_preservesLimits, forgetāModule_preservesLimitsOfSize, hom_hom_rightUnitor, BialgCat.forgetā_algebra_map, ModuleCat.MonModuleEquivalenceAlgebra.functor_obj_carrier, hom_inv_leftUnitor, CategoryTheory.Iso.toAlgEquiv_apply, coe_of, hom_hom_leftUnitor, hom_whiskerLeft, CommAlgCat.forgetā_algCat_obj, forgetā_module_obj, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_mul, forget_preservesLimitsOfSize, BialgCat.MonoidalCategory.inducingFunctorData_μIso, instMonoidalCategory.tensorObj_carrier, instSmallSubtypeForallCarrierObjMemSubalgebraSectionsSubalgebra, forgetāModule_preservesLimits, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, comp_apply, forget_reflects_isos, forgetā_module_map, CSA.fin_dim, QuadraticModuleCat.cliffordAlgebra_obj_carrier, hom_id, forgetāRing_preservesLimits, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, hom_comp, hom_tensorHom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, CSA.isCentral, BialgCat.forgetā_algebra_obj, hom_whiskerRight, ofHom_apply, BialgCat.MonoidalCategory.inducingFunctorData_εIso, ofHom_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_one, instIsRightAdjointForgetAlgHomCarrier
|
free š | CompOp | 2 mathmath: free_obj, free_map
|
hasForgetToModule š | CompOp | 4 mathmath: forgetāModule_preservesLimitsOfSize, forgetā_module_obj, forgetāModule_preservesLimits, forgetā_module_map
|
hasForgetToRing š | CompOp | 2 mathmath: forgetāRing_preservesLimitsOfSize, forgetāRing_preservesLimits
|
instAlgebraObjForgetAlgHomCarrier š | CompOp | ā |
instCategory š | CompOp | 56 mathmath: hom_inv_apply, hom_inv_associator, hom_inv_rightUnitor, forget_obj, inv_hom_apply, forget_map, CommAlgCat.forgetā_algCat_map, id_apply, forgetāRing_preservesLimitsOfSize, ofHom_comp, hom_hom_associator, CategoryTheory.Iso.toAlgEquiv_symm_apply, forget_preservesLimits, forgetāModule_preservesLimitsOfSize, hom_hom_rightUnitor, BialgCat.forgetā_algebra_map, ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply, ModuleCat.MonModuleEquivalenceAlgebra.functor_obj_carrier, hom_inv_leftUnitor, CategoryTheory.Iso.toAlgEquiv_apply, free_obj, hom_hom_leftUnitor, hom_whiskerLeft, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_mon, ofHom_id, QuadraticModuleCat.cliffordAlgebra_map, CommAlgCat.forgetā_algCat_obj, algEquivIsoAlgebraIso_inv, AlgEquiv.toAlgebraIso_inv, forgetā_module_obj, forget_preservesLimitsOfSize, BialgCat.MonoidalCategory.inducingFunctorData_μIso, free_map, instSmallSubtypeForallCarrierObjMemSubalgebraSectionsSubalgebra, forgetāModule_preservesLimits, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, comp_apply, forget_reflects_isos, forgetā_module_map, algEquivIsoAlgebraIso_hom, QuadraticModuleCat.cliffordAlgebra_obj_carrier, hom_id, forgetāRing_preservesLimits, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, hom_comp, hom_tensorHom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, BialgCat.forgetā_algebra_obj, hom_whiskerRight, ofHom_apply, BialgCat.MonoidalCategory.inducingFunctorData_εIso, hasLimits, instIsRightAdjointForgetAlgHomCarrier, hasLimitsOfSize, AlgEquiv.toAlgebraIso_hom
|
instCoeSortType š | CompOp | ā |
instConcreteCategoryAlgHomCarrier š | CompOp | 25 mathmath: hom_inv_apply, forget_obj, inv_hom_apply, forget_map, CommAlgCat.forgetā_algCat_map, id_apply, forgetāRing_preservesLimitsOfSize, CategoryTheory.Iso.toAlgEquiv_symm_apply, forget_preservesLimits, forgetāModule_preservesLimitsOfSize, BialgCat.forgetā_algebra_map, CategoryTheory.Iso.toAlgEquiv_apply, CommAlgCat.forgetā_algCat_obj, forgetā_module_obj, forget_preservesLimitsOfSize, BialgCat.MonoidalCategory.inducingFunctorData_μIso, forgetāModule_preservesLimits, comp_apply, forget_reflects_isos, forgetā_module_map, forgetāRing_preservesLimits, BialgCat.forgetā_algebra_obj, ofHom_apply, BialgCat.MonoidalCategory.inducingFunctorData_εIso, instIsRightAdjointForgetAlgHomCarrier
|
instInhabited š | CompOp | ā |
instRingObjForgetAlgHomCarrier š | CompOp | ā |
isAlgebra š | CompOp | 45 mathmath: hom_inv_apply, hom_inv_associator, hom_inv_rightUnitor, forget_obj, inv_hom_apply, forget_map, CommAlgCat.forgetā_algCat_map, id_apply, forgetāRing_preservesLimitsOfSize, hom_hom_associator, CategoryTheory.Iso.toAlgEquiv_symm_apply, forget_preservesLimits, forgetāModule_preservesLimitsOfSize, hom_hom_rightUnitor, BialgCat.forgetā_algebra_map, hom_inv_leftUnitor, CategoryTheory.Iso.toAlgEquiv_apply, hom_hom_leftUnitor, hom_whiskerLeft, CommAlgCat.forgetā_algCat_obj, forgetā_module_obj, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_mul, forget_preservesLimitsOfSize, BialgCat.MonoidalCategory.inducingFunctorData_μIso, instMonoidalCategory.tensorObj_carrier, instSmallSubtypeForallCarrierObjMemSubalgebraSectionsSubalgebra, forgetāModule_preservesLimits, comp_apply, forget_reflects_isos, forgetā_module_map, CSA.fin_dim, hom_id, forgetāRing_preservesLimits, hom_comp, hom_tensorHom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, CSA.isCentral, BialgCat.forgetā_algebra_obj, hom_whiskerRight, ofHom_apply, BialgCat.MonoidalCategory.inducingFunctorData_εIso, ofHom_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_one, instIsRightAdjointForgetAlgHomCarrier
|
isRing š | CompOp | 47 mathmath: hom_inv_apply, hom_inv_associator, hom_inv_rightUnitor, forget_obj, inv_hom_apply, forget_map, CommAlgCat.forgetā_algCat_map, id_apply, forgetāRing_preservesLimitsOfSize, CSA.isSimple, hom_hom_associator, CategoryTheory.Iso.toAlgEquiv_symm_apply, forget_preservesLimits, forgetāModule_preservesLimitsOfSize, hom_hom_rightUnitor, BialgCat.forgetā_algebra_map, hom_inv_leftUnitor, CategoryTheory.Iso.toAlgEquiv_apply, hom_hom_leftUnitor, hom_whiskerLeft, CommAlgCat.forgetā_algCat_obj, forgetā_module_obj, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_mul, forget_preservesLimitsOfSize, BialgCat.MonoidalCategory.inducingFunctorData_μIso, instMonoidalCategory.tensorObj_carrier, instSmallSubtypeForallCarrierObjMemSubalgebraSectionsSubalgebra, forgetāModule_preservesLimits, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, comp_apply, forget_reflects_isos, forgetā_module_map, CSA.fin_dim, hom_id, forgetāRing_preservesLimits, hom_comp, hom_tensorHom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, CSA.isCentral, BialgCat.forgetā_algebra_obj, hom_whiskerRight, ofHom_apply, BialgCat.MonoidalCategory.inducingFunctorData_εIso, ofHom_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_one, instIsRightAdjointForgetAlgHomCarrier
|
of š | CompOp | 13 mathmath: ofHom_comp, ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply, coe_of, free_obj, ofHom_id, CommAlgCat.forgetā_algCat_obj, algEquivIsoAlgebraIso_inv, AlgEquiv.toAlgebraIso_inv, algEquivIsoAlgebraIso_hom, BialgCat.forgetā_algebra_obj, ofHom_apply, hom_ofHom, AlgEquiv.toAlgebraIso_hom
|
ofHom š | CompOp | 11 mathmath: CommAlgCat.forgetā_algCat_map, ofHom_comp, BialgCat.forgetā_algebra_map, ofHom_id, QuadraticModuleCat.cliffordAlgebra_map, AlgEquiv.toAlgebraIso_inv, free_map, ofHom_apply, ofHom_hom, hom_ofHom, AlgEquiv.toAlgebraIso_hom
|