Documentation Verification Report

Basic

šŸ“ Source: Mathlib/Algebra/Category/AlgCat/Basic.lean

Statistics

MetricCount
DefinitionsAlgCat, hom, hom, hom', adj, carrier, free, hasForgetToModule, hasForgetToRing, instAlgebraObjForgetAlgHomCarrier, instCategory, instCoeSortType, instConcreteCategoryAlgHomCarrier, instInhabited, instRingObjForgetAlgHomCarrier, isAlgebra, isRing, of, ofHom, toAlgebraIso, toAlgEquiv, algEquivIsoAlgebraIso
22
Theoremsext, ext_iff, coe_of, comp_apply, forget_map, forget_obj, forget_reflects_isos, forgetā‚‚_module_map, forgetā‚‚_module_obj, free_map, free_obj, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_inv_apply, hom_ofHom, id_apply, instIsRightAdjointForgetAlgHomCarrier, inv_hom_apply, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, toAlgebraIso_hom, toAlgebraIso_inv, toAlgEquiv_apply, toAlgEquiv_symm_apply, algEquivIsoAlgebraIso_hom, algEquivIsoAlgebraIso_inv
30
Total52

AlgCat

Definitions

NameCategoryTheorems
adj šŸ“–CompOp—
carrier šŸ“–CompOp
51 mathmath: hom_inv_apply, hom_inv_associator, hom_inv_rightUnitor, forget_obj, inv_hom_apply, forget_map, CommAlgCat.forgetā‚‚_algCat_map, id_apply, forgetā‚‚Ring_preservesLimitsOfSize, CSA.isSimple, hom_hom_associator, CategoryTheory.Iso.toAlgEquiv_symm_apply, forget_preservesLimits, forgetā‚‚Module_preservesLimitsOfSize, hom_hom_rightUnitor, BialgCat.forgetā‚‚_algebra_map, ModuleCat.MonModuleEquivalenceAlgebra.functor_obj_carrier, hom_inv_leftUnitor, CategoryTheory.Iso.toAlgEquiv_apply, coe_of, hom_hom_leftUnitor, hom_whiskerLeft, CommAlgCat.forgetā‚‚_algCat_obj, forgetā‚‚_module_obj, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_mul, forget_preservesLimitsOfSize, BialgCat.MonoidalCategory.inducingFunctorData_μIso, instMonoidalCategory.tensorObj_carrier, instSmallSubtypeForallCarrierObjMemSubalgebraSectionsSubalgebra, forgetā‚‚Module_preservesLimits, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, comp_apply, forget_reflects_isos, forgetā‚‚_module_map, CSA.fin_dim, QuadraticModuleCat.cliffordAlgebra_obj_carrier, hom_id, forgetā‚‚Ring_preservesLimits, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, hom_comp, hom_tensorHom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, CSA.isCentral, BialgCat.forgetā‚‚_algebra_obj, hom_whiskerRight, ofHom_apply, BialgCat.MonoidalCategory.inducingFunctorData_εIso, ofHom_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_one, instIsRightAdjointForgetAlgHomCarrier
free šŸ“–CompOp
2 mathmath: free_obj, free_map
hasForgetToModule šŸ“–CompOp
4 mathmath: forgetā‚‚Module_preservesLimitsOfSize, forgetā‚‚_module_obj, forgetā‚‚Module_preservesLimits, forgetā‚‚_module_map
hasForgetToRing šŸ“–CompOp
2 mathmath: forgetā‚‚Ring_preservesLimitsOfSize, forgetā‚‚Ring_preservesLimits
instAlgebraObjForgetAlgHomCarrier šŸ“–CompOp—
instCategory šŸ“–CompOp
56 mathmath: hom_inv_apply, hom_inv_associator, hom_inv_rightUnitor, forget_obj, inv_hom_apply, forget_map, CommAlgCat.forgetā‚‚_algCat_map, id_apply, forgetā‚‚Ring_preservesLimitsOfSize, ofHom_comp, hom_hom_associator, CategoryTheory.Iso.toAlgEquiv_symm_apply, forget_preservesLimits, forgetā‚‚Module_preservesLimitsOfSize, hom_hom_rightUnitor, BialgCat.forgetā‚‚_algebra_map, ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply, ModuleCat.MonModuleEquivalenceAlgebra.functor_obj_carrier, hom_inv_leftUnitor, CategoryTheory.Iso.toAlgEquiv_apply, free_obj, hom_hom_leftUnitor, hom_whiskerLeft, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_mon, ofHom_id, QuadraticModuleCat.cliffordAlgebra_map, CommAlgCat.forgetā‚‚_algCat_obj, algEquivIsoAlgebraIso_inv, AlgEquiv.toAlgebraIso_inv, forgetā‚‚_module_obj, forget_preservesLimitsOfSize, BialgCat.MonoidalCategory.inducingFunctorData_μIso, free_map, instSmallSubtypeForallCarrierObjMemSubalgebraSectionsSubalgebra, forgetā‚‚Module_preservesLimits, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, comp_apply, forget_reflects_isos, forgetā‚‚_module_map, algEquivIsoAlgebraIso_hom, QuadraticModuleCat.cliffordAlgebra_obj_carrier, hom_id, forgetā‚‚Ring_preservesLimits, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, hom_comp, hom_tensorHom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, BialgCat.forgetā‚‚_algebra_obj, hom_whiskerRight, ofHom_apply, BialgCat.MonoidalCategory.inducingFunctorData_εIso, hasLimits, instIsRightAdjointForgetAlgHomCarrier, hasLimitsOfSize, AlgEquiv.toAlgebraIso_hom
instCoeSortType šŸ“–CompOp—
instConcreteCategoryAlgHomCarrier šŸ“–CompOp
25 mathmath: hom_inv_apply, forget_obj, inv_hom_apply, forget_map, CommAlgCat.forgetā‚‚_algCat_map, id_apply, forgetā‚‚Ring_preservesLimitsOfSize, CategoryTheory.Iso.toAlgEquiv_symm_apply, forget_preservesLimits, forgetā‚‚Module_preservesLimitsOfSize, BialgCat.forgetā‚‚_algebra_map, CategoryTheory.Iso.toAlgEquiv_apply, CommAlgCat.forgetā‚‚_algCat_obj, forgetā‚‚_module_obj, forget_preservesLimitsOfSize, BialgCat.MonoidalCategory.inducingFunctorData_μIso, forgetā‚‚Module_preservesLimits, comp_apply, forget_reflects_isos, forgetā‚‚_module_map, forgetā‚‚Ring_preservesLimits, BialgCat.forgetā‚‚_algebra_obj, ofHom_apply, BialgCat.MonoidalCategory.inducingFunctorData_εIso, instIsRightAdjointForgetAlgHomCarrier
instInhabited šŸ“–CompOp—
instRingObjForgetAlgHomCarrier šŸ“–CompOp—
isAlgebra šŸ“–CompOp
45 mathmath: hom_inv_apply, hom_inv_associator, hom_inv_rightUnitor, forget_obj, inv_hom_apply, forget_map, CommAlgCat.forgetā‚‚_algCat_map, id_apply, forgetā‚‚Ring_preservesLimitsOfSize, hom_hom_associator, CategoryTheory.Iso.toAlgEquiv_symm_apply, forget_preservesLimits, forgetā‚‚Module_preservesLimitsOfSize, hom_hom_rightUnitor, BialgCat.forgetā‚‚_algebra_map, hom_inv_leftUnitor, CategoryTheory.Iso.toAlgEquiv_apply, hom_hom_leftUnitor, hom_whiskerLeft, CommAlgCat.forgetā‚‚_algCat_obj, forgetā‚‚_module_obj, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_mul, forget_preservesLimitsOfSize, BialgCat.MonoidalCategory.inducingFunctorData_μIso, instMonoidalCategory.tensorObj_carrier, instSmallSubtypeForallCarrierObjMemSubalgebraSectionsSubalgebra, forgetā‚‚Module_preservesLimits, comp_apply, forget_reflects_isos, forgetā‚‚_module_map, CSA.fin_dim, hom_id, forgetā‚‚Ring_preservesLimits, hom_comp, hom_tensorHom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, CSA.isCentral, BialgCat.forgetā‚‚_algebra_obj, hom_whiskerRight, ofHom_apply, BialgCat.MonoidalCategory.inducingFunctorData_εIso, ofHom_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_one, instIsRightAdjointForgetAlgHomCarrier
isRing šŸ“–CompOp
47 mathmath: hom_inv_apply, hom_inv_associator, hom_inv_rightUnitor, forget_obj, inv_hom_apply, forget_map, CommAlgCat.forgetā‚‚_algCat_map, id_apply, forgetā‚‚Ring_preservesLimitsOfSize, CSA.isSimple, hom_hom_associator, CategoryTheory.Iso.toAlgEquiv_symm_apply, forget_preservesLimits, forgetā‚‚Module_preservesLimitsOfSize, hom_hom_rightUnitor, BialgCat.forgetā‚‚_algebra_map, hom_inv_leftUnitor, CategoryTheory.Iso.toAlgEquiv_apply, hom_hom_leftUnitor, hom_whiskerLeft, CommAlgCat.forgetā‚‚_algCat_obj, forgetā‚‚_module_obj, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_mul, forget_preservesLimitsOfSize, BialgCat.MonoidalCategory.inducingFunctorData_μIso, instMonoidalCategory.tensorObj_carrier, instSmallSubtypeForallCarrierObjMemSubalgebraSectionsSubalgebra, forgetā‚‚Module_preservesLimits, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, comp_apply, forget_reflects_isos, forgetā‚‚_module_map, CSA.fin_dim, hom_id, forgetā‚‚Ring_preservesLimits, hom_comp, hom_tensorHom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, CSA.isCentral, BialgCat.forgetā‚‚_algebra_obj, hom_whiskerRight, ofHom_apply, BialgCat.MonoidalCategory.inducingFunctorData_εIso, ofHom_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverseObj_one, instIsRightAdjointForgetAlgHomCarrier
of šŸ“–CompOp
13 mathmath: ofHom_comp, ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply, coe_of, free_obj, ofHom_id, CommAlgCat.forgetā‚‚_algCat_obj, algEquivIsoAlgebraIso_inv, AlgEquiv.toAlgebraIso_inv, algEquivIsoAlgebraIso_hom, BialgCat.forgetā‚‚_algebra_obj, ofHom_apply, hom_ofHom, AlgEquiv.toAlgebraIso_hom
ofHom šŸ“–CompOp
11 mathmath: CommAlgCat.forgetā‚‚_algCat_map, ofHom_comp, BialgCat.forgetā‚‚_algebra_map, ofHom_id, QuadraticModuleCat.cliffordAlgebra_map, AlgEquiv.toAlgebraIso_inv, free_map, ofHom_apply, ofHom_hom, hom_ofHom, AlgEquiv.toAlgebraIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_of šŸ“–mathematical—carrier
of
——
comp_apply šŸ“–mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AlgCat
instCategory
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
isRing
isAlgebra
AlgHom.funLike
instConcreteCategoryAlgHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
——
forget_map šŸ“–mathematical—CategoryTheory.Functor.map
AlgCat
instCategory
CategoryTheory.types
CategoryTheory.forget
AlgHom
carrier
CommRing.toCommSemiring
Ring.toSemiring
isRing
isAlgebra
AlgHom.funLike
instConcreteCategoryAlgHomCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
——
forget_obj šŸ“–mathematical—CategoryTheory.Functor.obj
AlgCat
instCategory
CategoryTheory.types
CategoryTheory.forget
AlgHom
carrier
CommRing.toCommSemiring
Ring.toSemiring
isRing
isAlgebra
AlgHom.funLike
instConcreteCategoryAlgHomCarrier
——
forget_reflects_isos šŸ“–mathematical—CategoryTheory.Functor.ReflectsIsomorphisms
AlgCat
instCategory
CategoryTheory.types
CategoryTheory.forget
AlgHom
carrier
CommRing.toCommSemiring
Ring.toSemiring
isRing
isAlgebra
AlgHom.funLike
instConcreteCategoryAlgHomCarrier
—Equiv.left_inv
Equiv.right_inv
MonoidHom.map_mul'
RingHom.map_add'
AlgHom.commutes'
CategoryTheory.Iso.isIso_hom
forgetā‚‚_module_map šŸ“–mathematical—CategoryTheory.Functor.map
AlgCat
instCategory
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.forgetā‚‚
AlgHom
carrier
CommRing.toCommSemiring
Ring.toSemiring
isRing
isAlgebra
AlgHom.funLike
instConcreteCategoryAlgHomCarrier
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
hasForgetToModule
ModuleCat.ofHom
Ring.toAddCommGroup
Algebra.toModule
AlgHom.toLinearMap
Hom.hom
——
forgetā‚‚_module_obj šŸ“–mathematical—CategoryTheory.Functor.obj
AlgCat
instCategory
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.forgetā‚‚
AlgHom
carrier
CommRing.toCommSemiring
Ring.toSemiring
isRing
isAlgebra
AlgHom.funLike
instConcreteCategoryAlgHomCarrier
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
hasForgetToModule
ModuleCat.of
Ring.toAddCommGroup
Algebra.toModule
——
free_map šŸ“–mathematical—CategoryTheory.Functor.map
CategoryTheory.types
AlgCat
instCategory
free
ofHom
FreeAlgebra
CommRing.toCommSemiring
FreeAlgebra.instRing
FreeAlgebra.instAlgebra
Algebra.id
DFunLike.coe
Equiv
AlgHom
FreeAlgebra.instSemiring
Ring.toSemiring
EquivLike.toFunLike
Equiv.instEquivLike
FreeAlgebra.lift
FreeAlgebra.ι
——
free_obj šŸ“–mathematical—CategoryTheory.Functor.obj
CategoryTheory.types
AlgCat
instCategory
free
of
FreeAlgebra
CommRing.toCommSemiring
FreeAlgebra.instRing
FreeAlgebra.instAlgebra
Algebra.id
——
hom_comp šŸ“–mathematical—Hom.hom
CategoryTheory.CategoryStruct.comp
AlgCat
CategoryTheory.Category.toCategoryStruct
instCategory
AlgHom.comp
carrier
CommRing.toCommSemiring
Ring.toSemiring
isRing
isAlgebra
——
hom_ext šŸ“–ā€”Hom.hom——Hom.ext
hom_ext_iff šŸ“–mathematical—Hom.hom—hom_ext
hom_id šŸ“–mathematical—Hom.hom
CategoryTheory.CategoryStruct.id
AlgCat
CategoryTheory.Category.toCategoryStruct
instCategory
AlgHom.id
carrier
CommRing.toCommSemiring
Ring.toSemiring
isRing
isAlgebra
——
hom_inv_apply šŸ“–mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AlgCat
instCategory
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
isRing
isAlgebra
AlgHom.funLike
instConcreteCategoryAlgHomCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
—CategoryTheory.Iso.inv_hom_id_apply
hom_ofHom šŸ“–mathematical—Hom.hom
of
ofHom
——
id_apply šŸ“–mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AlgCat
instCategory
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
isRing
isAlgebra
AlgHom.funLike
instConcreteCategoryAlgHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
instIsRightAdjointForgetAlgHomCarrier šŸ“–mathematical—CategoryTheory.Functor.IsRightAdjoint
CategoryTheory.types
AlgCat
instCategory
CategoryTheory.forget
AlgHom
carrier
CommRing.toCommSemiring
Ring.toSemiring
isRing
isAlgebra
AlgHom.funLike
instConcreteCategoryAlgHomCarrier
—CategoryTheory.Adjunction.isRightAdjoint
inv_hom_apply šŸ“–mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
AlgCat
instCategory
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
isRing
isAlgebra
AlgHom.funLike
instConcreteCategoryAlgHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
—CategoryTheory.Iso.hom_inv_id_apply
ofHom_apply šŸ“–mathematical—DFunLike.coe
of
carrier
CategoryTheory.ConcreteCategory.hom
AlgCat
instCategory
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
isRing
isAlgebra
AlgHom.funLike
instConcreteCategoryAlgHomCarrier
ofHom
——
ofHom_comp šŸ“–mathematical—ofHom
AlgHom.comp
CommRing.toCommSemiring
Ring.toSemiring
CategoryTheory.CategoryStruct.comp
AlgCat
CategoryTheory.Category.toCategoryStruct
instCategory
of
——
ofHom_hom šŸ“–mathematical—ofHom
carrier
isRing
isAlgebra
Hom.hom
——
ofHom_id šŸ“–mathematical—ofHom
AlgHom.id
CommRing.toCommSemiring
Ring.toSemiring
CategoryTheory.CategoryStruct.id
AlgCat
CategoryTheory.Category.toCategoryStruct
instCategory
of
——

AlgCat.Hom

Definitions

NameCategoryTheorems
hom šŸ“–CompOp
17 mathmath: AlgCat.hom_inv_associator, AlgCat.hom_inv_rightUnitor, AlgCat.hom_ext_iff, AlgCat.hom_hom_associator, AlgCat.hom_hom_rightUnitor, ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply, AlgCat.hom_inv_leftUnitor, AlgCat.hom_hom_leftUnitor, AlgCat.hom_whiskerLeft, AlgCat.forgetā‚‚_module_map, AlgCat.hom_id, AlgCat.hom_comp, AlgCat.hom_tensorHom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom, AlgCat.hom_whiskerRight, AlgCat.ofHom_hom, AlgCat.hom_ofHom
hom' šŸ“–CompOp
1 mathmath: ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext šŸ“–ā€”hom'———
ext_iff šŸ“–mathematical—hom'—ext

AlgCat.Hom.Simps

Definitions

NameCategoryTheorems
hom šŸ“–CompOp—

AlgEquiv

Definitions

NameCategoryTheorems
toAlgebraIso šŸ“–CompOp
3 mathmath: toAlgebraIso_inv, algEquivIsoAlgebraIso_hom, toAlgebraIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
toAlgebraIso_hom šŸ“–mathematical—CategoryTheory.Iso.hom
AlgCat
AlgCat.instCategory
AlgCat.of
toAlgebraIso
AlgCat.ofHom
AlgHomClass.toAlgHom
CommRing.toCommSemiring
Ring.toSemiring
AlgEquiv
instFunLike
——
toAlgebraIso_inv šŸ“–mathematical—CategoryTheory.Iso.inv
AlgCat
AlgCat.instCategory
AlgCat.of
toAlgebraIso
AlgCat.ofHom
AlgHomClass.toAlgHom
CommRing.toCommSemiring
Ring.toSemiring
AlgEquiv
instFunLike
symm
——

CategoryTheory.Iso

Definitions

NameCategoryTheorems
toAlgEquiv šŸ“–CompOp
3 mathmath: toAlgEquiv_symm_apply, toAlgEquiv_apply, algEquivIsoAlgebraIso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
toAlgEquiv_apply šŸ“–mathematical—DFunLike.coe
AlgEquiv
AlgCat.carrier
CommRing.toCommSemiring
Ring.toSemiring
AlgCat.isRing
AlgCat.isAlgebra
AlgEquiv.instFunLike
toAlgEquiv
CategoryTheory.ConcreteCategory.hom
AlgCat
AlgCat.instCategory
AlgHom
AlgHom.funLike
AlgCat.instConcreteCategoryAlgHomCarrier
hom
——
toAlgEquiv_symm_apply šŸ“–mathematical—DFunLike.coe
AlgEquiv
AlgCat.carrier
CommRing.toCommSemiring
Ring.toSemiring
AlgCat.isRing
AlgCat.isAlgebra
AlgEquiv.instFunLike
AlgEquiv.symm
toAlgEquiv
CategoryTheory.ConcreteCategory.hom
AlgCat
AlgCat.instCategory
AlgHom
AlgHom.funLike
AlgCat.instConcreteCategoryAlgHomCarrier
inv
——

(root)

Definitions

NameCategoryTheorems
AlgCat šŸ“–CompData
56 mathmath: AlgCat.hom_inv_apply, AlgCat.hom_inv_associator, AlgCat.hom_inv_rightUnitor, AlgCat.forget_obj, AlgCat.inv_hom_apply, AlgCat.forget_map, CommAlgCat.forgetā‚‚_algCat_map, AlgCat.id_apply, AlgCat.forgetā‚‚Ring_preservesLimitsOfSize, AlgCat.ofHom_comp, AlgCat.hom_hom_associator, CategoryTheory.Iso.toAlgEquiv_symm_apply, AlgCat.forget_preservesLimits, AlgCat.forgetā‚‚Module_preservesLimitsOfSize, AlgCat.hom_hom_rightUnitor, BialgCat.forgetā‚‚_algebra_map, ModuleCat.MonModuleEquivalenceAlgebra.functor_map_hom_apply, ModuleCat.MonModuleEquivalenceAlgebra.functor_obj_carrier, AlgCat.hom_inv_leftUnitor, CategoryTheory.Iso.toAlgEquiv_apply, AlgCat.free_obj, AlgCat.hom_hom_leftUnitor, AlgCat.hom_whiskerLeft, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_mon, AlgCat.ofHom_id, QuadraticModuleCat.cliffordAlgebra_map, CommAlgCat.forgetā‚‚_algCat_obj, algEquivIsoAlgebraIso_inv, AlgEquiv.toAlgebraIso_inv, AlgCat.forgetā‚‚_module_obj, AlgCat.forget_preservesLimitsOfSize, BialgCat.MonoidalCategory.inducingFunctorData_μIso, AlgCat.free_map, AlgCat.instSmallSubtypeForallCarrierObjMemSubalgebraSectionsSubalgebra, AlgCat.forgetā‚‚Module_preservesLimits, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, AlgCat.comp_apply, AlgCat.forget_reflects_isos, AlgCat.forgetā‚‚_module_map, algEquivIsoAlgebraIso_hom, QuadraticModuleCat.cliffordAlgebra_obj_carrier, AlgCat.hom_id, AlgCat.forgetā‚‚Ring_preservesLimits, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, AlgCat.hom_comp, AlgCat.hom_tensorHom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_map_hom, ModuleCat.MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, BialgCat.forgetā‚‚_algebra_obj, AlgCat.hom_whiskerRight, AlgCat.ofHom_apply, BialgCat.MonoidalCategory.inducingFunctorData_εIso, AlgCat.hasLimits, AlgCat.instIsRightAdjointForgetAlgHomCarrier, AlgCat.hasLimitsOfSize, AlgEquiv.toAlgebraIso_hom
algEquivIsoAlgebraIso šŸ“–CompOp
2 mathmath: algEquivIsoAlgebraIso_inv, algEquivIsoAlgebraIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
algEquivIsoAlgebraIso_hom šŸ“–mathematical—CategoryTheory.Iso.hom
CategoryTheory.types
AlgEquiv
CommRing.toCommSemiring
Ring.toSemiring
CategoryTheory.Iso
AlgCat
AlgCat.instCategory
AlgCat.of
algEquivIsoAlgebraIso
AlgEquiv.toAlgebraIso
——
algEquivIsoAlgebraIso_inv šŸ“–mathematical—CategoryTheory.Iso.inv
CategoryTheory.types
AlgEquiv
CommRing.toCommSemiring
Ring.toSemiring
CategoryTheory.Iso
AlgCat
AlgCat.instCategory
AlgCat.of
algEquivIsoAlgebraIso
CategoryTheory.Iso.toAlgEquiv
——

---

← Back to Index