| Name | Category | Theorems |
carrier š | CompOp | 28 mathmath: rightUnitor_def, of_counit, associator_def, whiskerLeft_def, CategoryTheory.Iso.toBialgEquiv_refl, forget_reflects_isos, Hom.toBialgHom_injective, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, CategoryTheory.Iso.toBialgEquiv_trans, of_comul, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, forgetā_coalgebra_obj, tensorHom_def, forgetā_algebra_map, HopfAlgCat.forgetā_bialgebra_obj, CategoryTheory.Iso.toBialgEquiv_symm, whiskerRight_def, tensorObj_def, MonoidalCategory.inducingFunctorData_μIso, toBialgHom_id, of_carrier, HopfAlgCat.forgetā_bialgebra_map, forgetā_coalgebra_map, toBialgHom_comp, CategoryTheory.Iso.toBialgEquiv_toBialgHom, leftUnitor_def, forgetā_algebra_obj, MonoidalCategory.inducingFunctorData_εIso
|
category š | CompOp | 30 mathmath: rightUnitor_def, BialgEquiv.toBialgIso_refl, associator_def, whiskerLeft_def, tensorUnit_def, CategoryTheory.Iso.toBialgEquiv_refl, forget_reflects_isos, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, CategoryTheory.Iso.toBialgEquiv_trans, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, forgetā_coalgebra_obj, tensorHom_def, forgetā_algebra_map, BialgEquiv.toBialgIso_symm, HopfAlgCat.forgetā_bialgebra_obj, CategoryTheory.Iso.toBialgEquiv_symm, whiskerRight_def, tensorObj_def, MonoidalCategory.inducingFunctorData_μIso, toBialgHom_id, HopfAlgCat.forgetā_bialgebra_map, BialgEquiv.toBialgIso_trans, forgetā_coalgebra_map, BialgEquiv.toBialgIso_hom, toBialgHom_comp, CategoryTheory.Iso.toBialgEquiv_toBialgHom, leftUnitor_def, forgetā_algebra_obj, MonoidalCategory.inducingFunctorData_εIso, BialgEquiv.toBialgIso_inv
|
concreteCategory š | CompOp | 11 mathmath: forget_reflects_isos, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, forgetā_coalgebra_obj, forgetā_algebra_map, HopfAlgCat.forgetā_bialgebra_obj, MonoidalCategory.inducingFunctorData_μIso, HopfAlgCat.forgetā_bialgebra_map, forgetā_coalgebra_map, forgetā_algebra_obj, MonoidalCategory.inducingFunctorData_εIso
|
hasForgetToAlgebra š | CompOp | 4 mathmath: forgetā_algebra_map, MonoidalCategory.inducingFunctorData_μIso, forgetā_algebra_obj, MonoidalCategory.inducingFunctorData_εIso
|
hasForgetToCoalgebra š | CompOp | 2 mathmath: forgetā_coalgebra_obj, forgetā_coalgebra_map
|
instBialgebra š | CompOp | 28 mathmath: rightUnitor_def, of_counit, associator_def, whiskerLeft_def, CategoryTheory.Iso.toBialgEquiv_refl, forget_reflects_isos, Hom.toBialgHom_injective, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, CategoryTheory.Iso.toBialgEquiv_trans, of_comul, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, forgetā_coalgebra_obj, tensorHom_def, forgetā_algebra_map, HopfAlgCat.forgetā_bialgebra_obj, CategoryTheory.Iso.toBialgEquiv_symm, whiskerRight_def, tensorObj_def, MonoidalCategory.inducingFunctorData_μIso, toBialgHom_id, HopfAlgCat.forgetā_bialgebra_map, of_instBialgebra, forgetā_coalgebra_map, toBialgHom_comp, CategoryTheory.Iso.toBialgEquiv_toBialgHom, leftUnitor_def, forgetā_algebra_obj, MonoidalCategory.inducingFunctorData_εIso
|
instCoeSortType š | CompOp | ā |
instRing š | CompOp | 28 mathmath: rightUnitor_def, of_counit, associator_def, whiskerLeft_def, CategoryTheory.Iso.toBialgEquiv_refl, forget_reflects_isos, Hom.toBialgHom_injective, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, CategoryTheory.Iso.toBialgEquiv_trans, of_comul, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, forgetā_coalgebra_obj, tensorHom_def, forgetā_algebra_map, HopfAlgCat.forgetā_bialgebra_obj, CategoryTheory.Iso.toBialgEquiv_symm, whiskerRight_def, tensorObj_def, MonoidalCategory.inducingFunctorData_μIso, toBialgHom_id, HopfAlgCat.forgetā_bialgebra_map, forgetā_coalgebra_map, toBialgHom_comp, CategoryTheory.Iso.toBialgEquiv_toBialgHom, of_instRing, leftUnitor_def, forgetā_algebra_obj, MonoidalCategory.inducingFunctorData_εIso
|
of š | CompOp | 13 mathmath: BialgEquiv.toBialgIso_refl, of_counit, tensorUnit_def, of_comul, BialgEquiv.toBialgIso_symm, HopfAlgCat.forgetā_bialgebra_obj, tensorObj_def, of_carrier, BialgEquiv.toBialgIso_trans, of_instBialgebra, BialgEquiv.toBialgIso_hom, of_instRing, BialgEquiv.toBialgIso_inv
|
ofHom š | CompOp | 6 mathmath: whiskerLeft_def, tensorHom_def, whiskerRight_def, HopfAlgCat.forgetā_bialgebra_map, BialgEquiv.toBialgIso_hom, BialgEquiv.toBialgIso_inv
|