Documentation Verification Report

Basic

šŸ“ Source: Mathlib/Algebra/Category/BialgCat/Basic.lean

Statistics

MetricCount
DefinitionsBialgCat, toBialgHom, toBialgHom', carrier, category, concreteCategory, hasForgetToAlgebra, hasForgetToCoalgebra, instBialgebra, instCoeSortType, instRing, of, ofHom, toBialgIso, toBialgEquiv
15
Theoremsext, ext_iff, toBialgHom_injective, forget_reflects_isos, forgetā‚‚_algebra_map, forgetā‚‚_algebra_obj, forgetā‚‚_coalgebra_map, forgetā‚‚_coalgebra_obj, hom_ext, hom_ext_iff, of_carrier, of_comul, of_counit, of_instBialgebra, of_instRing, toBialgHom_comp, toBialgHom_id, toBialgIso_hom, toBialgIso_inv, toBialgIso_refl, toBialgIso_symm, toBialgIso_trans, toBialgEquiv_refl, toBialgEquiv_symm, toBialgEquiv_toBialgHom, toBialgEquiv_trans
26
Total41

BialgCat

Definitions

NameCategoryTheorems
carrier šŸ“–CompOp
28 mathmath: rightUnitor_def, of_counit, associator_def, whiskerLeft_def, CategoryTheory.Iso.toBialgEquiv_refl, forget_reflects_isos, Hom.toBialgHom_injective, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, CategoryTheory.Iso.toBialgEquiv_trans, of_comul, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, forgetā‚‚_coalgebra_obj, tensorHom_def, forgetā‚‚_algebra_map, HopfAlgCat.forgetā‚‚_bialgebra_obj, CategoryTheory.Iso.toBialgEquiv_symm, whiskerRight_def, tensorObj_def, MonoidalCategory.inducingFunctorData_μIso, toBialgHom_id, of_carrier, HopfAlgCat.forgetā‚‚_bialgebra_map, forgetā‚‚_coalgebra_map, toBialgHom_comp, CategoryTheory.Iso.toBialgEquiv_toBialgHom, leftUnitor_def, forgetā‚‚_algebra_obj, MonoidalCategory.inducingFunctorData_εIso
category šŸ“–CompOp
30 mathmath: rightUnitor_def, BialgEquiv.toBialgIso_refl, associator_def, whiskerLeft_def, tensorUnit_def, CategoryTheory.Iso.toBialgEquiv_refl, forget_reflects_isos, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, CategoryTheory.Iso.toBialgEquiv_trans, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, forgetā‚‚_coalgebra_obj, tensorHom_def, forgetā‚‚_algebra_map, BialgEquiv.toBialgIso_symm, HopfAlgCat.forgetā‚‚_bialgebra_obj, CategoryTheory.Iso.toBialgEquiv_symm, whiskerRight_def, tensorObj_def, MonoidalCategory.inducingFunctorData_μIso, toBialgHom_id, HopfAlgCat.forgetā‚‚_bialgebra_map, BialgEquiv.toBialgIso_trans, forgetā‚‚_coalgebra_map, BialgEquiv.toBialgIso_hom, toBialgHom_comp, CategoryTheory.Iso.toBialgEquiv_toBialgHom, leftUnitor_def, forgetā‚‚_algebra_obj, MonoidalCategory.inducingFunctorData_εIso, BialgEquiv.toBialgIso_inv
concreteCategory šŸ“–CompOp
11 mathmath: forget_reflects_isos, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, forgetā‚‚_coalgebra_obj, forgetā‚‚_algebra_map, HopfAlgCat.forgetā‚‚_bialgebra_obj, MonoidalCategory.inducingFunctorData_μIso, HopfAlgCat.forgetā‚‚_bialgebra_map, forgetā‚‚_coalgebra_map, forgetā‚‚_algebra_obj, MonoidalCategory.inducingFunctorData_εIso
hasForgetToAlgebra šŸ“–CompOp
4 mathmath: forgetā‚‚_algebra_map, MonoidalCategory.inducingFunctorData_μIso, forgetā‚‚_algebra_obj, MonoidalCategory.inducingFunctorData_εIso
hasForgetToCoalgebra šŸ“–CompOp
2 mathmath: forgetā‚‚_coalgebra_obj, forgetā‚‚_coalgebra_map
instBialgebra šŸ“–CompOp
28 mathmath: rightUnitor_def, of_counit, associator_def, whiskerLeft_def, CategoryTheory.Iso.toBialgEquiv_refl, forget_reflects_isos, Hom.toBialgHom_injective, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, CategoryTheory.Iso.toBialgEquiv_trans, of_comul, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, forgetā‚‚_coalgebra_obj, tensorHom_def, forgetā‚‚_algebra_map, HopfAlgCat.forgetā‚‚_bialgebra_obj, CategoryTheory.Iso.toBialgEquiv_symm, whiskerRight_def, tensorObj_def, MonoidalCategory.inducingFunctorData_μIso, toBialgHom_id, HopfAlgCat.forgetā‚‚_bialgebra_map, of_instBialgebra, forgetā‚‚_coalgebra_map, toBialgHom_comp, CategoryTheory.Iso.toBialgEquiv_toBialgHom, leftUnitor_def, forgetā‚‚_algebra_obj, MonoidalCategory.inducingFunctorData_εIso
instCoeSortType šŸ“–CompOp—
instRing šŸ“–CompOp
28 mathmath: rightUnitor_def, of_counit, associator_def, whiskerLeft_def, CategoryTheory.Iso.toBialgEquiv_refl, forget_reflects_isos, Hom.toBialgHom_injective, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, CategoryTheory.Iso.toBialgEquiv_trans, of_comul, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, forgetā‚‚_coalgebra_obj, tensorHom_def, forgetā‚‚_algebra_map, HopfAlgCat.forgetā‚‚_bialgebra_obj, CategoryTheory.Iso.toBialgEquiv_symm, whiskerRight_def, tensorObj_def, MonoidalCategory.inducingFunctorData_μIso, toBialgHom_id, HopfAlgCat.forgetā‚‚_bialgebra_map, forgetā‚‚_coalgebra_map, toBialgHom_comp, CategoryTheory.Iso.toBialgEquiv_toBialgHom, of_instRing, leftUnitor_def, forgetā‚‚_algebra_obj, MonoidalCategory.inducingFunctorData_εIso
of šŸ“–CompOp
13 mathmath: BialgEquiv.toBialgIso_refl, of_counit, tensorUnit_def, of_comul, BialgEquiv.toBialgIso_symm, HopfAlgCat.forgetā‚‚_bialgebra_obj, tensorObj_def, of_carrier, BialgEquiv.toBialgIso_trans, of_instBialgebra, BialgEquiv.toBialgIso_hom, of_instRing, BialgEquiv.toBialgIso_inv
ofHom šŸ“–CompOp
6 mathmath: whiskerLeft_def, tensorHom_def, whiskerRight_def, HopfAlgCat.forgetā‚‚_bialgebra_map, BialgEquiv.toBialgIso_hom, BialgEquiv.toBialgIso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
forget_reflects_isos šŸ“–mathematical—CategoryTheory.Functor.ReflectsIsomorphisms
BialgCat
category
CategoryTheory.types
CategoryTheory.forget
BialgHom
carrier
CommRing.toCommSemiring
Ring.toSemiring
instRing
Bialgebra.toAlgebra
instBialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
concreteCategory
—Equiv.left_inv
Equiv.right_inv
BialgHom.map_mul'
CategoryTheory.IsIso.out
CategoryTheory.Iso.isIso_hom
forgetā‚‚_algebra_map šŸ“–mathematical—CategoryTheory.Functor.map
BialgCat
category
AlgCat
AlgCat.instCategory
CategoryTheory.forgetā‚‚
BialgHom
carrier
CommRing.toCommSemiring
Ring.toSemiring
instRing
Bialgebra.toAlgebra
instBialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
concreteCategory
AlgHom
AlgCat.carrier
AlgCat.isRing
AlgCat.isAlgebra
AlgHom.funLike
AlgCat.instConcreteCategoryAlgHomCarrier
hasForgetToAlgebra
AlgCat.ofHom
AlgHomClass.toAlgHom
BialgHomClass.toAlgHomClass
BialgHom.bialgHomClass
Hom.toBialgHom
——
forgetā‚‚_algebra_obj šŸ“–mathematical—CategoryTheory.Functor.obj
BialgCat
category
AlgCat
AlgCat.instCategory
CategoryTheory.forgetā‚‚
BialgHom
carrier
CommRing.toCommSemiring
Ring.toSemiring
instRing
Bialgebra.toAlgebra
instBialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
concreteCategory
AlgHom
AlgCat.carrier
AlgCat.isRing
AlgCat.isAlgebra
AlgHom.funLike
AlgCat.instConcreteCategoryAlgHomCarrier
hasForgetToAlgebra
AlgCat.of
——
forgetā‚‚_coalgebra_map šŸ“–mathematical—CategoryTheory.Functor.map
BialgCat
category
CoalgCat
CoalgCat.category
CategoryTheory.forgetā‚‚
BialgHom
carrier
CommRing.toCommSemiring
Ring.toSemiring
instRing
Bialgebra.toAlgebra
instBialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
concreteCategory
CoalgHom
ModuleCat.carrier
CommRing.toRing
CoalgCat.toModuleCat
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
CoalgCat.instCoalgebra
CoalgHom.funLike
CoalgCat.concreteCategory
hasForgetToCoalgebra
CoalgCat.ofHom
Ring.toAddCommGroup
CoalgHomClass.toCoalgHom
BialgHomClass.toCoalgHomClass
BialgHom.bialgHomClass
Hom.toBialgHom
——
forgetā‚‚_coalgebra_obj šŸ“–mathematical—CategoryTheory.Functor.obj
BialgCat
category
CoalgCat
CoalgCat.category
CategoryTheory.forgetā‚‚
BialgHom
carrier
CommRing.toCommSemiring
Ring.toSemiring
instRing
Bialgebra.toAlgebra
instBialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgHom.funLike
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
concreteCategory
CoalgHom
ModuleCat.carrier
CommRing.toRing
CoalgCat.toModuleCat
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
CoalgCat.instCoalgebra
CoalgHom.funLike
CoalgCat.concreteCategory
hasForgetToCoalgebra
CoalgCat.of
Ring.toAddCommGroup
——
hom_ext šŸ“–ā€”Hom.toBialgHom——Hom.ext
hom_ext_iff šŸ“–mathematical—Hom.toBialgHom—hom_ext
of_carrier šŸ“–mathematical—carrier
of
——
of_comul šŸ“–mathematical—CoalgebraStruct.comul
carrier
of
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
Bialgebra.toAlgebra
Coalgebra.toCoalgebraStruct
Bialgebra.toCoalgebra
instRing
instBialgebra
——
of_counit šŸ“–mathematical—CoalgebraStruct.counit
carrier
of
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
Bialgebra.toAlgebra
Coalgebra.toCoalgebraStruct
Bialgebra.toCoalgebra
instRing
instBialgebra
——
of_instBialgebra šŸ“–mathematical—instBialgebra
of
——
of_instRing šŸ“–mathematical—instRing
of
——
toBialgHom_comp šŸ“–mathematical—Hom.toBialgHom
CategoryTheory.CategoryStruct.comp
BialgCat
CategoryTheory.Category.toCategoryStruct
category
BialgHom.comp
carrier
CommRing.toCommSemiring
Ring.toSemiring
instRing
Bialgebra.toAlgebra
instBialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
——
toBialgHom_id šŸ“–mathematical—Hom.toBialgHom
CategoryTheory.CategoryStruct.id
BialgCat
CategoryTheory.Category.toCategoryStruct
category
BialgHom.id
carrier
CommRing.toCommSemiring
Ring.toSemiring
instRing
Bialgebra.toAlgebra
instBialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
——

BialgCat.Hom

Definitions

NameCategoryTheorems
toBialgHom šŸ“–CompOp
6 mathmath: toBialgHom_injective, BialgCat.forgetā‚‚_algebra_map, BialgCat.hom_ext_iff, BialgCat.toBialgHom_id, BialgCat.forgetā‚‚_coalgebra_map, BialgCat.toBialgHom_comp
toBialgHom' šŸ“–CompOp
5 mathmath: BialgCat.whiskerLeft_def, BialgCat.tensorHom_def, BialgCat.whiskerRight_def, ext_iff, CategoryTheory.Iso.toBialgEquiv_toBialgHom

Theorems

NameKindAssumesProvesValidatesDepends On
ext šŸ“–ā€”toBialgHom'———
ext_iff šŸ“–mathematical—toBialgHom'—ext
toBialgHom_injective šŸ“–mathematical—BialgCat.Hom
BialgHom
BialgCat.carrier
CommRing.toCommSemiring
Ring.toSemiring
BialgCat.instRing
Bialgebra.toAlgebra
BialgCat.instBialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
toBialgHom
——

BialgEquiv

Definitions

NameCategoryTheorems
toBialgIso šŸ“–CompOp
8 mathmath: BialgCat.rightUnitor_def, toBialgIso_refl, BialgCat.associator_def, toBialgIso_symm, toBialgIso_trans, toBialgIso_hom, BialgCat.leftUnitor_def, toBialgIso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
toBialgIso_hom šŸ“–mathematical—CategoryTheory.Iso.hom
BialgCat
BialgCat.category
BialgCat.of
toBialgIso
BialgCat.ofHom
BialgHomClass.toBialgHom
BialgEquiv
CommRing.toCommSemiring
Ring.toSemiring
Bialgebra.toAlgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
instFunLike
——
toBialgIso_inv šŸ“–mathematical—CategoryTheory.Iso.inv
BialgCat
BialgCat.category
BialgCat.of
toBialgIso
BialgCat.ofHom
BialgHomClass.toBialgHom
BialgEquiv
CommRing.toCommSemiring
Ring.toSemiring
Bialgebra.toAlgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
instFunLike
symm
——
toBialgIso_refl šŸ“–mathematical—toBialgIso
refl
CommRing.toCommSemiring
Ring.toSemiring
Bialgebra.toAlgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
CategoryTheory.Iso.refl
BialgCat
BialgCat.category
BialgCat.of
——
toBialgIso_symm šŸ“–mathematical—toBialgIso
symm
CommRing.toCommSemiring
Ring.toSemiring
Bialgebra.toAlgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
CategoryTheory.Iso.symm
BialgCat
BialgCat.category
BialgCat.of
——
toBialgIso_trans šŸ“–mathematical—toBialgIso
trans
CommRing.toCommSemiring
Ring.toSemiring
Bialgebra.toAlgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
CategoryTheory.Iso.trans
BialgCat
BialgCat.category
BialgCat.of
——

CategoryTheory.Iso

Definitions

NameCategoryTheorems
toBialgEquiv šŸ“–CompOp
4 mathmath: toBialgEquiv_refl, toBialgEquiv_trans, toBialgEquiv_symm, toBialgEquiv_toBialgHom

Theorems

NameKindAssumesProvesValidatesDepends On
toBialgEquiv_refl šŸ“–mathematical—toBialgEquiv
refl
BialgCat
BialgCat.category
BialgEquiv.refl
BialgCat.carrier
CommRing.toCommSemiring
Ring.toSemiring
BialgCat.instRing
Bialgebra.toAlgebra
BialgCat.instBialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
——
toBialgEquiv_symm šŸ“–mathematical—toBialgEquiv
symm
BialgCat
BialgCat.category
BialgEquiv.symm
BialgCat.carrier
CommRing.toCommSemiring
Ring.toSemiring
BialgCat.instRing
Bialgebra.toAlgebra
BialgCat.instBialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
——
toBialgEquiv_toBialgHom šŸ“–mathematical—BialgHomClass.toBialgHom
BialgCat.carrier
BialgEquiv
CommRing.toCommSemiring
Ring.toSemiring
BialgCat.instRing
Bialgebra.toAlgebra
BialgCat.instBialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
BialgEquiv.instFunLike
BialgEquivClass.toBialgHomClass
BialgEquiv.instEquivLike
BialgEquiv.instBialgEquivClass
toBialgEquiv
BialgCat.Hom.toBialgHom'
hom
BialgCat
BialgCat.category
—BialgEquivClass.toBialgHomClass
BialgEquiv.instBialgEquivClass
toBialgEquiv_trans šŸ“–mathematical—toBialgEquiv
trans
BialgCat
BialgCat.category
BialgEquiv.trans
BialgCat.carrier
CommRing.toCommSemiring
Ring.toSemiring
BialgCat.instRing
Bialgebra.toAlgebra
BialgCat.instBialgebra
Coalgebra.toCoalgebraStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Bialgebra.toCoalgebra
——

(root)

Definitions

NameCategoryTheorems
BialgCat šŸ“–CompData
30 mathmath: BialgCat.rightUnitor_def, BialgEquiv.toBialgIso_refl, BialgCat.associator_def, BialgCat.whiskerLeft_def, BialgCat.tensorUnit_def, CategoryTheory.Iso.toBialgEquiv_refl, BialgCat.forget_reflects_isos, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, CategoryTheory.Iso.toBialgEquiv_trans, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, BialgCat.forgetā‚‚_coalgebra_obj, BialgCat.tensorHom_def, BialgCat.forgetā‚‚_algebra_map, BialgEquiv.toBialgIso_symm, HopfAlgCat.forgetā‚‚_bialgebra_obj, CategoryTheory.Iso.toBialgEquiv_symm, BialgCat.whiskerRight_def, BialgCat.tensorObj_def, BialgCat.MonoidalCategory.inducingFunctorData_μIso, BialgCat.toBialgHom_id, HopfAlgCat.forgetā‚‚_bialgebra_map, BialgEquiv.toBialgIso_trans, BialgCat.forgetā‚‚_coalgebra_map, BialgEquiv.toBialgIso_hom, BialgCat.toBialgHom_comp, CategoryTheory.Iso.toBialgEquiv_toBialgHom, BialgCat.leftUnitor_def, BialgCat.forgetā‚‚_algebra_obj, BialgCat.MonoidalCategory.inducingFunctorData_εIso, BialgEquiv.toBialgIso_inv

---

← Back to Index