Documentation Verification Report

Basic

šŸ“ Source: Mathlib/Algebra/Category/CoalgCat/Basic.lean

Statistics

MetricCount
DefinitionstoCoalgEquiv, CoalgCat, toCoalgHom, toCoalgHom', category, concreteCategory, hasForgetToModule, instCoalgebra, instCoeSortType, of, ofHom, toModuleCat, toCoalgIso
13
TheoremstoCoalgEquiv_refl, toCoalgEquiv_symm, toCoalgEquiv_toCoalgHom, toCoalgEquiv_trans, ext, ext_iff, toCoalgHom_injective, forget_reflects_isos, forgetā‚‚_map, forgetā‚‚_obj, hom_ext, hom_ext_iff, moduleCat_of_toModuleCat, of_comul, of_counit, toCoalgHom_comp, toCoalgHom_id, toCoalgIso_hom, toCoalgIso_inv, toCoalgIso_refl, toCoalgIso_symm, toCoalgIso_trans
22
Total35

CategoryTheory.Iso

Definitions

NameCategoryTheorems
toCoalgEquiv šŸ“–CompOp
4 mathmath: toCoalgEquiv_symm, toCoalgEquiv_toCoalgHom, toCoalgEquiv_refl, toCoalgEquiv_trans

Theorems

NameKindAssumesProvesValidatesDepends On
toCoalgEquiv_refl šŸ“–mathematical—toCoalgEquiv
refl
CoalgCat
CoalgCat.category
CoalgEquiv.refl
ModuleCat.carrier
CommRing.toRing
CoalgCat.toModuleCat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
Coalgebra.toCoalgebraStruct
CoalgCat.instCoalgebra
——
toCoalgEquiv_symm šŸ“–mathematical—toCoalgEquiv
symm
CoalgCat
CoalgCat.category
CoalgEquiv.symm
ModuleCat.carrier
CommRing.toRing
CoalgCat.toModuleCat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
Coalgebra.toCoalgebraStruct
CoalgCat.instCoalgebra
——
toCoalgEquiv_toCoalgHom šŸ“–mathematical—CoalgHomClass.toCoalgHom
ModuleCat.carrier
CommRing.toRing
CoalgCat.toModuleCat
CoalgEquiv
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
Coalgebra.toCoalgebraStruct
CoalgCat.instCoalgebra
CoalgEquiv.instFunLike
CoalgEquivClass.toCoalgHomClass
CoalgEquiv.instEquivLike
CoalgEquiv.instCoalgEquivClass
toCoalgEquiv
CoalgCat.Hom.toCoalgHom
hom
CoalgCat
CoalgCat.category
—CoalgEquivClass.toCoalgHomClass
CoalgEquiv.instCoalgEquivClass
toCoalgEquiv_trans šŸ“–mathematical—toCoalgEquiv
trans
CoalgCat
CoalgCat.category
CoalgEquiv.trans
ModuleCat.carrier
CommRing.toRing
CoalgCat.toModuleCat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
Coalgebra.toCoalgebraStruct
CoalgCat.instCoalgebra
——

CoalgCat

Definitions

NameCategoryTheorems
category šŸ“–CompOp
49 mathmath: CategoryTheory.Iso.toCoalgEquiv_symm, MonoidalCategoryAux.tensorHom_toLinearMap, MonoidalCategoryAux.associator_hom_toLinearMap, tensorObj_isAddCommGroup, CoalgEquiv.toCoalgIso_refl, comonEquivalence_inverse, MonoidalCategoryAux.counit_tensorObj_tensorObj_right, CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, comonEquivalence_counitIso, tensorHom_def, MonoidalCategoryAux.comul_tensorObj_tensorObj_left, associator_def, BialgCat.forgetā‚‚_coalgebra_obj, MonoidalCategoryAux.tensorObj_comul, MonoidalCategory.inducingFunctorData_μIso, whiskerRight_def, MonoidalCategory.inducingFunctorData_εIso, tensorUnit_instCoalgebra, tensorUnit_carrier, CategoryTheory.Iso.toCoalgEquiv_refl, forget_reflects_isos, MonoidalCategoryAux.leftUnitor_hom_toLinearMap, comonEquivalence_functor, tensorUnit_isAddCommGroup, CoalgEquiv.toCoalgIso_inv, CategoryTheory.Iso.toCoalgEquiv_trans, comonEquivalence_unitIso, MonoidalCategoryAux.counit_tensorObj, MonoidalCategoryAux.counit_tensorObj_tensorObj_left, forgetā‚‚_obj, whiskerLeft_def, MonoidalCategoryAux.comul_tensorObj_tensorObj_right, forgetā‚‚_map, MonoidalCategoryAux.comul_tensorObj, toComon_map_hom, rightUnitor_def, BialgCat.forgetā‚‚_coalgebra_map, tensorObj_carrier, tensorObj_instCoalgebra, tensorObj_isModule, CoalgEquiv.toCoalgIso_symm, toCoalgHom_id, tensorUnit_isModule, toCoalgHom_comp, MonoidalCategoryAux.rightUnitor_hom_toLinearMap, leftUnitor_def, CoalgEquiv.toCoalgIso_trans, CoalgEquiv.toCoalgIso_hom, toComon_obj
concreteCategory šŸ“–CompOp
7 mathmath: BialgCat.forgetā‚‚_coalgebra_obj, MonoidalCategory.inducingFunctorData_μIso, MonoidalCategory.inducingFunctorData_εIso, forget_reflects_isos, forgetā‚‚_obj, forgetā‚‚_map, BialgCat.forgetā‚‚_coalgebra_map
hasForgetToModule šŸ“–CompOp
4 mathmath: MonoidalCategory.inducingFunctorData_μIso, MonoidalCategory.inducingFunctorData_εIso, forgetā‚‚_obj, forgetā‚‚_map
instCoalgebra šŸ“–CompOp
36 mathmath: CategoryTheory.Iso.toCoalgEquiv_symm, MonoidalCategoryAux.tensorHom_toLinearMap, MonoidalCategoryAux.associator_hom_toLinearMap, MonoidalCategoryAux.counit_tensorObj_tensorObj_right, CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, tensorHom_def, MonoidalCategoryAux.comul_tensorObj_tensorObj_left, associator_def, BialgCat.forgetā‚‚_coalgebra_obj, MonoidalCategoryAux.tensorObj_comul, comul_def, MonoidalCategory.inducingFunctorData_μIso, whiskerRight_def, MonoidalCategory.inducingFunctorData_εIso, tensorUnit_instCoalgebra, CategoryTheory.Iso.toCoalgEquiv_refl, forget_reflects_isos, MonoidalCategoryAux.leftUnitor_hom_toLinearMap, Hom.toCoalgHom_injective, CategoryTheory.Iso.toCoalgEquiv_trans, MonoidalCategoryAux.counit_tensorObj, counit_def, MonoidalCategoryAux.counit_tensorObj_tensorObj_left, forgetā‚‚_obj, whiskerLeft_def, MonoidalCategoryAux.comul_tensorObj_tensorObj_right, forgetā‚‚_map, MonoidalCategoryAux.comul_tensorObj, toComon_map_hom, rightUnitor_def, BialgCat.forgetā‚‚_coalgebra_map, tensorObj_instCoalgebra, toCoalgHom_id, toCoalgHom_comp, MonoidalCategoryAux.rightUnitor_hom_toLinearMap, leftUnitor_def
instCoeSortType šŸ“–CompOp—
of šŸ“–CompOp
18 mathmath: MonoidalCategoryAux.tensorHom_toLinearMap, of_comul, MonoidalCategoryAux.associator_hom_toLinearMap, CoalgEquiv.toCoalgIso_refl, MonoidalCategoryAux.counit_tensorObj_tensorObj_right, MonoidalCategoryAux.comul_tensorObj_tensorObj_left, BialgCat.forgetā‚‚_coalgebra_obj, MonoidalCategoryAux.leftUnitor_hom_toLinearMap, CoalgEquiv.toCoalgIso_inv, MonoidalCategoryAux.counit_tensorObj, MonoidalCategoryAux.counit_tensorObj_tensorObj_left, MonoidalCategoryAux.comul_tensorObj_tensorObj_right, MonoidalCategoryAux.comul_tensorObj, CoalgEquiv.toCoalgIso_symm, MonoidalCategoryAux.rightUnitor_hom_toLinearMap, of_counit, CoalgEquiv.toCoalgIso_trans, CoalgEquiv.toCoalgIso_hom
ofHom šŸ“–CompOp
7 mathmath: MonoidalCategoryAux.tensorHom_toLinearMap, tensorHom_def, whiskerRight_def, CoalgEquiv.toCoalgIso_inv, whiskerLeft_def, BialgCat.forgetā‚‚_coalgebra_map, CoalgEquiv.toCoalgIso_hom
toModuleCat šŸ“–CompOp
45 mathmath: CategoryTheory.Iso.toCoalgEquiv_symm, MonoidalCategoryAux.tensorHom_toLinearMap, of_comul, MonoidalCategoryAux.associator_hom_toLinearMap, tensorObj_isAddCommGroup, MonoidalCategoryAux.counit_tensorObj_tensorObj_right, CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, moduleCat_of_toModuleCat, tensorHom_def, toComonObj_X, MonoidalCategoryAux.comul_tensorObj_tensorObj_left, associator_def, BialgCat.forgetā‚‚_coalgebra_obj, MonoidalCategoryAux.tensorObj_comul, comul_def, MonoidalCategory.inducingFunctorData_μIso, whiskerRight_def, MonoidalCategory.inducingFunctorData_εIso, tensorUnit_carrier, CategoryTheory.Iso.toCoalgEquiv_refl, forget_reflects_isos, MonoidalCategoryAux.leftUnitor_hom_toLinearMap, tensorUnit_isAddCommGroup, Hom.toCoalgHom_injective, CategoryTheory.Iso.toCoalgEquiv_trans, MonoidalCategoryAux.counit_tensorObj, counit_def, MonoidalCategoryAux.counit_tensorObj_tensorObj_left, forgetā‚‚_obj, whiskerLeft_def, MonoidalCategoryAux.comul_tensorObj_tensorObj_right, forgetā‚‚_map, MonoidalCategoryAux.comul_tensorObj, toComon_map_hom, rightUnitor_def, BialgCat.forgetā‚‚_coalgebra_map, tensorObj_carrier, tensorObj_instCoalgebra, tensorObj_isModule, toCoalgHom_id, tensorUnit_isModule, toCoalgHom_comp, MonoidalCategoryAux.rightUnitor_hom_toLinearMap, leftUnitor_def, of_counit

Theorems

NameKindAssumesProvesValidatesDepends On
forget_reflects_isos šŸ“–mathematical—CategoryTheory.Functor.ReflectsIsomorphisms
CoalgCat
category
CategoryTheory.types
CategoryTheory.forget
CoalgHom
ModuleCat.carrier
CommRing.toRing
toModuleCat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
Coalgebra.toCoalgebraStruct
instCoalgebra
CoalgHom.funLike
concreteCategory
—Equiv.left_inv
Equiv.right_inv
CategoryTheory.IsIso.out
CategoryTheory.Iso.isIso_hom
forgetā‚‚_map šŸ“–mathematical—CategoryTheory.Functor.map
CoalgCat
category
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.forgetā‚‚
CoalgHom
ModuleCat.carrier
toModuleCat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
Coalgebra.toCoalgebraStruct
instCoalgebra
CoalgHom.funLike
concreteCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
hasForgetToModule
ModuleCat.ofHom
SemilinearMapClass.semilinearMap
CommSemiring.toSemiring
Hom.toCoalgHom
CoalgHomClass.toSemilinearMapClass
CoalgHom.coalgHomClass
——
forgetā‚‚_obj šŸ“–mathematical—CategoryTheory.Functor.obj
CoalgCat
category
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.forgetā‚‚
CoalgHom
ModuleCat.carrier
toModuleCat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
Coalgebra.toCoalgebraStruct
instCoalgebra
CoalgHom.funLike
concreteCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
hasForgetToModule
ModuleCat.of
——
hom_ext šŸ“–ā€”Hom.toCoalgHom——Hom.ext
hom_ext_iff šŸ“–mathematical—Hom.toCoalgHom—hom_ext
moduleCat_of_toModuleCat šŸ“–mathematical—ModuleCat.of
CommRing.toRing
ModuleCat.carrier
toModuleCat
ModuleCat.isAddCommGroup
ModuleCat.isModule
——
of_comul šŸ“–mathematical—CoalgebraStruct.comul
ModuleCat.carrier
CommRing.toRing
toModuleCat
of
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Coalgebra.toCoalgebraStruct
——
of_counit šŸ“–mathematical—CoalgebraStruct.counit
ModuleCat.carrier
CommRing.toRing
toModuleCat
of
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Coalgebra.toCoalgebraStruct
——
toCoalgHom_comp šŸ“–mathematical—Hom.toCoalgHom
CategoryTheory.CategoryStruct.comp
CoalgCat
CategoryTheory.Category.toCategoryStruct
category
CoalgHom.comp
ModuleCat.carrier
CommRing.toRing
toModuleCat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
Coalgebra.toCoalgebraStruct
instCoalgebra
——
toCoalgHom_id šŸ“–mathematical—Hom.toCoalgHom
CategoryTheory.CategoryStruct.id
CoalgCat
CategoryTheory.Category.toCategoryStruct
category
CoalgHom.id
ModuleCat.carrier
CommRing.toRing
toModuleCat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
Coalgebra.toCoalgebraStruct
instCoalgebra
——

CoalgCat.Hom

Definitions

NameCategoryTheorems
toCoalgHom šŸ“–CompOp
5 mathmath: CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, CoalgCat.forgetā‚‚_map, CoalgCat.toCoalgHom_id, CoalgCat.toCoalgHom_comp, CoalgCat.hom_ext_iff
toCoalgHom' šŸ“–CompOp
10 mathmath: CoalgCat.MonoidalCategoryAux.tensorHom_toLinearMap, CoalgCat.MonoidalCategoryAux.associator_hom_toLinearMap, ext_iff, CoalgCat.tensorHom_def, CoalgCat.whiskerRight_def, CoalgCat.MonoidalCategoryAux.leftUnitor_hom_toLinearMap, toCoalgHom_injective, CoalgCat.whiskerLeft_def, CoalgCat.toComon_map_hom, CoalgCat.MonoidalCategoryAux.rightUnitor_hom_toLinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
ext šŸ“–ā€”toCoalgHom'———
ext_iff šŸ“–mathematical—toCoalgHom'—ext
toCoalgHom_injective šŸ“–mathematical—CoalgCat.Hom
CoalgHom
ModuleCat.carrier
CommRing.toRing
CoalgCat.toModuleCat
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
Coalgebra.toCoalgebraStruct
CoalgCat.instCoalgebra
toCoalgHom'
——

CoalgEquiv

Definitions

NameCategoryTheorems
toCoalgIso šŸ“–CompOp
8 mathmath: toCoalgIso_refl, CoalgCat.associator_def, toCoalgIso_inv, CoalgCat.rightUnitor_def, toCoalgIso_symm, CoalgCat.leftUnitor_def, toCoalgIso_trans, toCoalgIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
toCoalgIso_hom šŸ“–mathematical—CategoryTheory.Iso.hom
CoalgCat
CoalgCat.category
CoalgCat.of
toCoalgIso
CoalgCat.ofHom
CoalgHomClass.toCoalgHom
CoalgEquiv
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Coalgebra.toCoalgebraStruct
instFunLike
——
toCoalgIso_inv šŸ“–mathematical—CategoryTheory.Iso.inv
CoalgCat
CoalgCat.category
CoalgCat.of
toCoalgIso
CoalgCat.ofHom
CoalgHomClass.toCoalgHom
CoalgEquiv
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Coalgebra.toCoalgebraStruct
instFunLike
symm
——
toCoalgIso_refl šŸ“–mathematical—toCoalgIso
refl
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Coalgebra.toCoalgebraStruct
CategoryTheory.Iso.refl
CoalgCat
CoalgCat.category
CoalgCat.of
——
toCoalgIso_symm šŸ“–mathematical—toCoalgIso
symm
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Coalgebra.toCoalgebraStruct
CategoryTheory.Iso.symm
CoalgCat
CoalgCat.category
CoalgCat.of
——
toCoalgIso_trans šŸ“–mathematical—toCoalgIso
trans
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Coalgebra.toCoalgebraStruct
CategoryTheory.Iso.trans
CoalgCat
CoalgCat.category
CoalgCat.of
——

(root)

Definitions

NameCategoryTheorems
CoalgCat šŸ“–CompData
49 mathmath: CategoryTheory.Iso.toCoalgEquiv_symm, CoalgCat.MonoidalCategoryAux.tensorHom_toLinearMap, CoalgCat.MonoidalCategoryAux.associator_hom_toLinearMap, CoalgCat.tensorObj_isAddCommGroup, CoalgEquiv.toCoalgIso_refl, CoalgCat.comonEquivalence_inverse, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_right, CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, CoalgCat.comonEquivalence_counitIso, CoalgCat.tensorHom_def, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_left, CoalgCat.associator_def, BialgCat.forgetā‚‚_coalgebra_obj, CoalgCat.MonoidalCategoryAux.tensorObj_comul, CoalgCat.MonoidalCategory.inducingFunctorData_μIso, CoalgCat.whiskerRight_def, CoalgCat.MonoidalCategory.inducingFunctorData_εIso, CoalgCat.tensorUnit_instCoalgebra, CoalgCat.tensorUnit_carrier, CategoryTheory.Iso.toCoalgEquiv_refl, CoalgCat.forget_reflects_isos, CoalgCat.MonoidalCategoryAux.leftUnitor_hom_toLinearMap, CoalgCat.comonEquivalence_functor, CoalgCat.tensorUnit_isAddCommGroup, CoalgEquiv.toCoalgIso_inv, CategoryTheory.Iso.toCoalgEquiv_trans, CoalgCat.comonEquivalence_unitIso, CoalgCat.MonoidalCategoryAux.counit_tensorObj, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_left, CoalgCat.forgetā‚‚_obj, CoalgCat.whiskerLeft_def, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_right, CoalgCat.forgetā‚‚_map, CoalgCat.MonoidalCategoryAux.comul_tensorObj, CoalgCat.toComon_map_hom, CoalgCat.rightUnitor_def, BialgCat.forgetā‚‚_coalgebra_map, CoalgCat.tensorObj_carrier, CoalgCat.tensorObj_instCoalgebra, CoalgCat.tensorObj_isModule, CoalgEquiv.toCoalgIso_symm, CoalgCat.toCoalgHom_id, CoalgCat.tensorUnit_isModule, CoalgCat.toCoalgHom_comp, CoalgCat.MonoidalCategoryAux.rightUnitor_hom_toLinearMap, CoalgCat.leftUnitor_def, CoalgEquiv.toCoalgIso_trans, CoalgEquiv.toCoalgIso_hom, CoalgCat.toComon_obj

---

← Back to Index