Documentation Verification Report

Basic

📁 Source: Mathlib/Algebra/Category/ContinuousCohomology/Basic.lean

Statistics

MetricCount
DefinitionsI, Iobj, complex, d, functor, const, continuousCohomologyZeroIso, homogeneousCochains, invariants, kerHomogeneousCochainsZeroEquiv, continuousCohomology
11
TheoremsI_map_hom, I_obj_V_carrier, I_obj_V_isAddCommGroup, I_obj_V_isModule, I_obj_V_topologicalSpace, I_obj_ρ_apply, Iobj_ρ_apply, d_comp_d, d_comp_d_assoc, d_succ, d_zero, const_app_hom, instAdditiveActionTopModuleCatI, instAdditiveActionTopModuleCatInvariants, instLinearActionTopModuleCatI, instLinearActionTopModuleCatInvariants
16
Total27

ContinuousCohomology

Definitions

NameCategoryTheorems
I 📖CompOp
10 mathmath: I_obj_V_isAddCommGroup, I_obj_V_carrier, I_obj_ρ_apply, I_obj_V_isModule, I_map_hom, instLinearActionTopModuleCatI, I_obj_V_topologicalSpace, MultiInd.d_succ, const_app_hom, instAdditiveActionTopModuleCatI
Iobj 📖CompOp
2 mathmath: Iobj_ρ_apply, I_map_hom
const 📖CompOp
3 mathmath: MultiInd.d_succ, const_app_hom, MultiInd.d_zero
continuousCohomologyZeroIso 📖CompOp
homogeneousCochains 📖CompOp
invariants 📖CompOp
2 mathmath: instLinearActionTopModuleCatInvariants, instAdditiveActionTopModuleCatInvariants
kerHomogeneousCochainsZeroEquiv 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
I_map_hom 📖mathematicalAction.Hom.hom
TopModuleCat
CommRing.toRing
TopModuleCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Iobj
CategoryTheory.Functor.map
Action
Action.instCategory
I
TopModuleCat.ofHom
ContinuousMap
ModuleCat.carrier
TopModuleCat.toModuleCat
Action.V
TopModuleCat.instTopologicalSpaceCarrier
ContinuousMap.instAddCommGroupContinuousMap
ModuleCat.isAddCommGroup
ContinuousMap.module
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
ContinuousMap.compactOpen
ContinuousLinearMap.compLeftContinuous
TopModuleCat.Hom.hom
I_obj_V_carrier 📖mathematicalModuleCat.carrier
CommRing.toRing
TopModuleCat.toModuleCat
Action.V
TopModuleCat
TopModuleCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Action
Action.instCategory
I
ContinuousMap
TopModuleCat.instTopologicalSpaceCarrier
I_obj_V_isAddCommGroup 📖mathematicalModuleCat.isAddCommGroup
CommRing.toRing
TopModuleCat.toModuleCat
Action.V
TopModuleCat
TopModuleCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Action
Action.instCategory
I
ContinuousMap.instAddCommGroupContinuousMap
ModuleCat.carrier
TopModuleCat.instTopologicalSpaceCarrier
I_obj_V_isModule 📖mathematicalModuleCat.isModule
CommRing.toRing
TopModuleCat.toModuleCat
Action.V
TopModuleCat
TopModuleCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Action
Action.instCategory
I
ContinuousMap.module
ModuleCat.carrier
TopModuleCat.instTopologicalSpaceCarrier
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
I_obj_V_topologicalSpace 📖mathematicalTopModuleCat.topologicalSpace
CommRing.toRing
Action.V
TopModuleCat
TopModuleCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Action
Action.instCategory
I
ContinuousMap.compactOpen
ModuleCat.carrier
TopModuleCat.toModuleCat
TopModuleCat.instTopologicalSpaceCarrier
I_obj_ρ_apply 📖mathematicalDFunLike.coe
MonoidHom
CategoryTheory.End
TopModuleCat
CommRing.toRing
CategoryTheory.Category.toCategoryStruct
TopModuleCat.instCategory
TopModuleCat.of
ContinuousMap
ModuleCat.carrier
TopModuleCat.toModuleCat
Action.V
DivInvMonoid.toMonoid
Group.toDivInvMonoid
TopModuleCat.instTopologicalSpaceCarrier
ContinuousMap.instAddCommGroupContinuousMap
ModuleCat.isAddCommGroup
ContinuousMap.module
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
ContinuousMap.compactOpen
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
Action.ρ
CategoryTheory.Functor.obj
Action
Action.instCategory
I
TopModuleCat.ofHom
RingHom.id
Semiring.toNonAssocSemiring
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ContinuousMap.comp
toContinuousMap
ContinuousLinearMap
TopModuleCat.topologicalSpace
ContinuousLinearMap.funLike
TopModuleCat.Hom.hom
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.instContinuousMapClass
Homeomorph.mulLeft
IsTopologicalGroup.toContinuousMul
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Iobj_ρ_apply 📖mathematicalDFunLike.coe
ModuleCat.carrier
CommRing.toRing
TopModuleCat.toModuleCat
Action.V
TopModuleCat
TopModuleCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Iobj
ContinuousMap.instFunLike
TopModuleCat.instTopologicalSpaceCarrier
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TopModuleCat.topologicalSpace
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
ContinuousLinearMap.funLike
TopModuleCat.Hom.hom
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
Action.ρ
MulOne.toMul
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
const_app_hom 📖mathematicalAction.Hom.hom
TopModuleCat
CommRing.toRing
TopModuleCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Action
Action.instCategory
CategoryTheory.Functor.id
I
CategoryTheory.NatTrans.app
const
TopModuleCat.ofHom
ModuleCat.carrier
ContinuousMap
TopModuleCat.toModuleCat
Action.V
TopModuleCat.instTopologicalSpaceCarrier
ModuleCat.isAddCommGroup
ModuleCat.isModule
TopModuleCat.topologicalSpace
ContinuousMap.instAddCommGroupContinuousMap
ContinuousMap.module
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ContinuousMap.compactOpen
ContinuousLinearMap.const
instAdditiveActionTopModuleCatI 📖mathematicalCategoryTheory.Functor.Additive
Action
TopModuleCat
CommRing.toRing
TopModuleCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
Action.instPreadditive
TopModuleCat.instPreadditive
I
instAdditiveActionTopModuleCatInvariants 📖mathematicalCategoryTheory.Functor.Additive
Action
TopModuleCat
CommRing.toRing
TopModuleCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
Action.instPreadditive
TopModuleCat.instPreadditive
invariants
instLinearActionTopModuleCatI 📖mathematicalCategoryTheory.Functor.Linear
CommSemiring.toSemiring
CommRing.toCommSemiring
Action
TopModuleCat
CommRing.toRing
TopModuleCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
Action.instPreadditive
TopModuleCat.instPreadditive
Action.instLinear
TopModuleCat.instLinear
I
instLinearActionTopModuleCatInvariants 📖mathematicalCategoryTheory.Functor.Linear
CommSemiring.toSemiring
CommRing.toCommSemiring
Action
TopModuleCat
CommRing.toRing
TopModuleCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
Action.instPreadditive
TopModuleCat.instPreadditive
Action.instLinear
TopModuleCat.instLinear
invariants

ContinuousCohomology.MultiInd

Definitions

NameCategoryTheorems
complex 📖CompOp
d 📖CompOp
4 mathmath: d_comp_d_assoc, d_comp_d, d_succ, d_zero
functor 📖CompOp
3 mathmath: d_comp_d_assoc, d_comp_d, d_succ

Theorems

NameKindAssumesProvesValidatesDepends On
d_comp_d 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Action
TopModuleCat
CommRing.toRing
TopModuleCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
functor
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.instZeroHomFunctor
Action.instPreadditive
TopModuleCat.instPreadditive
d_succ
CategoryTheory.Preadditive.comp_sub
sub_eq_zero
CategoryTheory.Preadditive.sub_comp
CategoryTheory.Functor.whiskerRight_comp
CategoryTheory.Functor.whiskerRight_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
ContinuousCohomology.instAdditiveActionTopModuleCatI
sub_zero
d_comp_d_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
Action
TopModuleCat
CommRing.toRing
TopModuleCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
functor
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.instZeroHomFunctor
Action.instPreadditive
TopModuleCat.instPreadditive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
d_comp_d
d_succ 📖mathematicald
Quiver.Hom
CategoryTheory.Functor
Action
TopModuleCat
CommRing.toRing
TopModuleCat.instCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
functor
CategoryTheory.Functor.id
ContinuousCohomology.I
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
CategoryTheory.functorCategoryPreadditive
Action.instPreadditive
TopModuleCat.instPreadditive
CategoryTheory.Functor.whiskerLeft
ContinuousCohomology.const
CategoryTheory.Functor.whiskerRight
d_zero 📖mathematicald
ContinuousCohomology.const

(root)

Definitions

NameCategoryTheorems
continuousCohomology 📖CompOp

---

← Back to Index