Documentation Verification Report

IsFinite

📁 Source: Mathlib/Algebra/Category/Grp/IsFinite.lean

Statistics

MetricCount
DefinitionsisFinite, IsFinite, IsFinite, IsFinite, IsFinite, IsFinite
6
TheoremsinstIsSerreClassIsFinite, prop_isFinite_iff
2
Total8

AddCommGrpCat

Definitions

NameCategoryTheorems
isFinite 📖CompOp
2 mathmath: prop_isFinite_iff, instIsSerreClassIsFinite

Theorems

NameKindAssumesProvesValidatesDepends On
instIsSerreClassIsFinite 📖mathematicalCategoryTheory.ObjectProperty.IsSerreClass
AddCommGrpCat
instCategory
instAbelian
isFinite
isZero_of_subsingleton
prop_isFinite_iff
Finite.of_fintype
Finite.of_injective
mono_iff_injective
Finite.of_surjective
epi_iff_surjective
CategoryTheory.ShortComplex.ShortExact.epi_g
Function.Surjective.hasRightInverse
CategoryTheory.ShortComplex.ab_exact_iff
CategoryTheory.ShortComplex.ShortExact.exact
map_sub
AddMonoidHom.instAddMonoidHomClass
sub_self
sub_add_cancel
Finite.instProd
prop_isFinite_iff 📖mathematicalisFinite
Finite
carrier

AlgebraicGeometry

Definitions

NameCategoryTheorems
IsFinite 📖CompData
33 mathmath: IsFinite.of_isProper_of_locallyQuasiFinite, IsFinite.instMorphismRestrict, instIsFiniteFiberToSpecResidueFieldOfLocallyQuasiFiniteOfQuasiCompact, IsFinite.comp_iff, IsFinite.iff_isProper_and_isAffineHom, IsFinite.instOfIsIsoScheme, IsFinite.instIsStableUnderBaseChangeScheme, IsFinite.eq_proper_inf_locallyQuasiFinite, locallyQuasiFinite_iff_isFinite_fiber, IsFinite.instCompScheme, IsFinite.instDescScheme, IsFinite.instFstScheme, IsFinite.instOfIsClosedImmersion, IsFinite.instHasAffinePropertyAndIsAffineFiniteCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensTopHomAppTop, IsClosedImmersion.iff_isFinite_and_mono, IsFinite.instSndScheme, isFinite_iff_locallyOfFiniteType_of_jacobsonSpace, IsFinite.instIsMultiplicativeScheme, IsFinite.SpecMap_iff, IsFinite.iff_isProper_and_locallyQuasiFinite, IsClosedImmersion.eq_isFinite_inf_mono, IsFinite.eq_isProper_inf_isAffineHom, exists_isFinite_morphismRestrict_of_finite_preimage_singleton, isFinite_iff, IsFinite.of_locallyQuasiFinite, IsFinite.instIsStableUnderCompositionScheme, IsFinite.iff_isIntegralHom_and_locallyOfFiniteType, IsFinite.eq_inf, exists_finite_imageι_comp_morphismRestrict_of_finite_image_preimage, IsFinite.instContainsIdentitiesScheme, IsFinite.instHasOfPostcompPropertySchemeIsSeparated, IsFinite.of_comp, exists_etale_isCompl_of_quasiFiniteAt

CategoryTheory.Subfunctor

Definitions

NameCategoryTheorems
IsFinite 📖CompData
5 mathmath: image_isFinite, Subpresheaf.IsGeneratedBy.isFinite, Subpresheaf.image_isFinite, range_isFinite, IsGeneratedBy.isFinite

CategoryTheory.Subfunctor.Subpresheaf

Definitions

NameCategoryTheorems
IsFinite 📖MathDef

SheafOfModules.Presentation

Definitions

NameCategoryTheorems
IsFinite 📖CompData
1 mathmath: SheafOfModules.QuasicoherentData.IsFinitePresentation.isFinite_presentation

Stream'.WSeq

Definitions

NameCategoryTheorems
IsFinite 📖CompData

---

← Back to Index