Documentation Verification Report

Abelian

📁 Source: Mathlib/Algebra/Category/ModuleCat/Abelian.lean

Statistics

MetricCount
Definitionsabelian, normalEpi, normalMono
3
Theoremsforget_reflectsLimits, forget_reflectsLimitsOfSize, forget₂_reflectsLimits, forget₂_reflectsLimitsOfSize, instHasLimitsOfSize
5
Total8

ModuleCat

Definitions

NameCategoryTheorems
abelian 📖CompOp
62 mathmath: CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, groupCohomology.mapShortComplex₃_exact, postcomp_extClass_surjective_of_projective_X₂, imageIsoRange_hom_subtype, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, Rep.standardComplex.ΔToSingle₀_comp_eq, imageIsoRange_inv_image_Îč_apply, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_zero_iff, Rep.barResolution_complex, groupHomology.mapShortComplex₃_exact, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_assoc_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i, precomp_extClass_surjective_of_projective_X₂, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, instHasExtModuleCatOfSmall, imageIsoRange_hom_subtype_assoc, Rep.Tor_map, imageIsoRange_inv_image_Îč, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_assoc_apply, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, imageIsoRange_inv_image_Îč_assoc, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, Rep.standardComplex.quasiIso_forget₂_ΔToSingle₀, groupCohomology.mapShortComplex₁_exact, groupHomology.pOpcycles_comp_opcyclesIso_hom, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_apply, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv, inhomogeneousCochains.d_eq, Rep.FiniteCyclicGroup.resolution_complex, groupHomology.mapShortComplex₁_exact, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, Rep.standardComplex.instQuasiIsoNatΔToSingle₀, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_assoc, finite_ext, Rep.FiniteCyclicGroup.resolution_quasiIso, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_assoc, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_apply, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_iff, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, instIsGrothendieckAbelianModuleCat, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, imageIsoRange_hom_subtype_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π, Rep.Tor_obj, Rep.FiniteCyclicGroup.resolution_π, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, Rep.FiniteCyclicGroup.resolution.π_f, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply
normalEpi 📖CompOp—
normalMono 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
forget_reflectsLimits 📖mathematical—CategoryTheory.Limits.ReflectsLimits
ModuleCat
moduleCategory
CategoryTheory.types
CategoryTheory.forget
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
—forget_reflectsLimitsOfSize
forget_reflectsLimitsOfSize 📖mathematical—CategoryTheory.Limits.ReflectsLimitsOfSize
ModuleCat
moduleCategory
CategoryTheory.types
CategoryTheory.forget
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
—CategoryTheory.Limits.reflectsLimits_of_reflectsIsomorphisms
instReflectsIsomorphismsForgetLinearMapIdCarrier
instHasLimitsOfSize
forget_preservesLimitsOfSize
univLE_of_max
UnivLE.self
forget₂_reflectsLimits 📖mathematical—CategoryTheory.Limits.ReflectsLimits
ModuleCat
moduleCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.forget₂
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
hasForgetToAddCommGroup
—forget₂_reflectsLimitsOfSize
forget₂_reflectsLimitsOfSize 📖mathematical—CategoryTheory.Limits.ReflectsLimitsOfSize
ModuleCat
moduleCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.forget₂
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
hasForgetToAddCommGroup
—CategoryTheory.Limits.reflectsLimits_of_reflectsIsomorphisms
instReflectsIsomorphismsAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrier
instHasLimitsOfSize
forget₂AddCommGroup_preservesLimitsOfSize
univLE_of_max
UnivLE.self
instHasLimitsOfSize 📖mathematical—CategoryTheory.Limits.HasLimitsOfSize
ModuleCat
moduleCategory
—hasLimitsOfSize
univLE_of_max
UnivLE.self

---

← Back to Index