| Name | Category | Theorems |
adj 📖 | CompOp | 1 mathmath: adj_homEquiv
|
free 📖 | CompOp | 18 mathmath: freeHomEquiv_apply, PresheafOfModules.free_map_app, PresheafOfModules.freeObj_map, adj_homEquiv, free_ε_one, FreeMonoidal.εIso_inv_freeMk, PresheafOfModules.freeObj_obj, free_η_freeMk, free_μ_freeMk_tmul_freeMk, FreeMonoidal.μIso_hom_freeMk_tmul_freeMk, free_δ_freeMk, FreeMonoidal.μIso_inv_freeMk, instProjectiveObjFree, free_map_apply, FreeMonoidal.εIso_hom_one, freeHomEquiv_symm_apply, freeDesc_apply, free_hom_ext_iff
|
freeDesc 📖 | CompOp | 4 mathmath: PresheafOfModules.freeObj_map, freeHomEquiv_symm_apply, freeDesc_apply, PresheafOfModules.freeObjDesc_app
|
freeHomEquiv 📖 | CompOp | 3 mathmath: freeHomEquiv_apply, adj_homEquiv, freeHomEquiv_symm_apply
|
freeMk 📖 | CompOp | 16 mathmath: freeHomEquiv_apply, PresheafOfModules.freeYonedaEquiv_symm_app, PresheafOfModules.freeObj_map, free_ε_one, FreeMonoidal.εIso_inv_freeMk, free_η_freeMk, PresheafOfModules.freeAdjunctionUnit_app, free_μ_freeMk_tmul_freeMk, FreeMonoidal.μIso_hom_freeMk_tmul_freeMk, PresheafOfModules.Elements.fromFreeYoneda_app_apply, free_δ_freeMk, FreeMonoidal.μIso_inv_freeMk, free_map_apply, FreeMonoidal.εIso_hom_one, freeDesc_apply, free_hom_ext_iff
|
instMonoidalFree 📖 | CompOp | 4 mathmath: free_ε_one, free_η_freeMk, free_μ_freeMk_tmul_freeMk, free_δ_freeMk
|