Documentation Verification Report

Basic

📁 Source: Mathlib/Algebra/Category/ModuleCat/Basic.lean

Statistics

MetricCount
DefinitionstoLinearEquiv, toModuleIso, instLinear, instModuleCarrier, hom, hom, hom', hom₂, instModule, carrier, endRingEquiv, equivalenceSemimoduleCat, hasForgetToAddCommGroup, homAddEquiv, homEquiv, homLinearEquiv, homMk, instAddCommGroupCarrierMkOfSMul', instAddCommGroupHom, instAddHom, instCoeSortType, instConcreteCategoryLinearMapIdCarrier, instInhabited, instLinear, instModuleCarrierMkOfSMul', instNegHom, instPreadditive, instSMulCarrierMkOfSMul', instSMulHom, instSMulIntHom, instSMulNatHom, instSubHom, instZeroHom, isAddCommGroup, isModule, mkOfSMul, mkOfSMul', moduleCategory, of, ofHom, ofHom₂, smul, smulNatTrans, «term↟_», linearEquivIsoModuleIso
45
TheoremstoLinearEquiv_apply, toLinearEquiv_symm, toLinearMap_toLinearEquiv, toModuleIso_hom, toModuleIso_inv, comp_id_moduleCat, id_moduleCat_comp, instIsScalarTowerCarrier, instSMulCommClassCarrier, ext, ext_iff, hom₂_apply, hom₂_ofHom₂, conj_eq_conj, homCongr_eq_arrowCongr, coe_of, comp_apply, endRingEquiv_apply, endRingEquiv_symm_apply_hom, forget_map, forget_obj, forget₂_addCommGrp_additive, forget₂_map, forget₂_map_homMk, forget₂_obj, forget₂_obj_moduleCat_of, homAddEquiv_apply, homAddEquiv_symm_apply_hom, homLinearEquiv_apply, homLinearEquiv_symm_apply, homMk_hom_apply, hom_add, hom_bijective, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_injective, hom_inv_apply, hom_neg, hom_nsmul, hom_ofHom, hom_smul, hom_sub, hom_sum, hom_surjective, hom_zero, hom_zsmul, id_apply, instHasZeroObject, instReflectsIsomorphismsAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrier, instReflectsIsomorphismsForgetLinearMapIdCarrier, inv_hom_apply, isZero_iff_subsingleton, isZero_of_iff_subsingleton, isZero_of_subsingleton, mkOfSMul'_smul, mkOfSMul_smul, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, ofHom₂_hom_apply_hom, ofHom₂_hom₂, of_coe, smulNatTrans_apply_app, smul_naturality, subsingleton_of_isZero, linearEquivIsoModuleIso_hom, linearEquivIsoModuleIso_inv
70
Total115

CategoryTheory.Iso

Definitions

NameCategoryTheorems
toLinearEquiv 📖CompOp
6 mathmath: ModuleCat.Iso.homCongr_eq_arrowCongr, toLinearEquiv_symm, toLinearEquiv_apply, ModuleCat.Iso.conj_eq_conj, linearEquivIsoModuleIso_inv, toLinearMap_toLinearEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
toLinearEquiv_apply 📖mathematical—DFunLike.coe
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
toLinearEquiv
CategoryTheory.ConcreteCategory.hom
ModuleCat
ModuleCat.moduleCategory
LinearMap
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
hom
—RingHomInvPair.ids
toLinearEquiv_symm 📖mathematical—LinearEquiv.symm
ModuleCat.carrier
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
toLinearEquiv
symm
ModuleCat
ModuleCat.moduleCategory
—RingHomInvPair.ids
toLinearMap_toLinearEquiv 📖mathematical—LinearEquiv.toLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
toLinearEquiv
ModuleCat.Hom.hom
hom
ModuleCat
ModuleCat.moduleCategory
—RingHomInvPair.ids

LinearEquiv

Definitions

NameCategoryTheorems
toModuleIso 📖CompOp
8 mathmath: linearEquivIsoModuleIso_hom, toModuleIso_inv, ModuleCat.MonoidalCategory.rightUnitor_def, ModuleCat.MonoidalCategory.associator_def, inhomogeneousCochains.d_eq, ModuleCat.MonoidalCategory.leftUnitor_def, groupHomology.inhomogeneousChains.d_eq, toModuleIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
toModuleIso_hom 📖mathematical—CategoryTheory.Iso.hom
ModuleCat
ModuleCat.moduleCategory
ModuleCat.of
toModuleIso
ModuleCat.ofHom
toLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
—RingHomInvPair.ids
toModuleIso_inv 📖mathematical—CategoryTheory.Iso.inv
ModuleCat
ModuleCat.moduleCategory
ModuleCat.of
toModuleIso
ModuleCat.ofHom
toLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
symm
—RingHomInvPair.ids

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
comp_id_moduleCat 📖mathematical—comp
ModuleCat.carrier
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
ModuleCat.Hom.hom
CategoryTheory.CategoryStruct.id
ModuleCat
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
——
id_moduleCat_comp 📖mathematical—comp
ModuleCat.carrier
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
ModuleCat.Hom.hom
CategoryTheory.CategoryStruct.id
ModuleCat
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
——

ModuleCat

Definitions

NameCategoryTheorems
carrier 📖CompOp
1067 mathmath: HasColimit.colimitCocone_pt_isAddCommGroup, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d, Rep.resCoindHomEquiv_symm_apply_hom, TopModuleCat.hom_cokerπ, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, Representation.repOfTprodIso_inv_apply, Rep.resCoindHomEquiv_apply_hom, groupCohomology.instEpiModuleCatH2π, hom_zero, groupHomology.π_comp_H2Iso_hom_assoc, instReflectsIsomorphismsForgetLinearMapIdCarrier, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, PresheafOfModules.Sheafify.app_eq_of_isLocallyInjective, of_coe, forget_preservesLimits, TopModuleCat.hom_zero, CommRingCat.KaehlerDifferential.map_d, MonoidalCategory.braiding_hom_apply, biproductIsoPi_inv_comp_π, FilteredColimits.colimit_smul_mk_eq, groupHomology.mapCycles₂_comp_assoc, restrictScalars.map_apply, forget₂_reflectsLimitsOfSize, groupCohomology.toCocycles_comp_isoCocycles₁_hom, CategoryTheory.linearCoyoneda_obj_obj_carrier, Rep.MonoidalClosed.linearHomEquiv_symm_hom, groupCohomology.isoCocycles₁_hom_comp_i_apply, groupCohomology.mem_cocycles₂_def, ContinuousCohomology.I_obj_V_isAddCommGroup, groupHomology.coinfNatTrans_app, CategoryTheory.Iso.toCoalgEquiv_symm, forget_preservesLimitsOfSize, groupCohomology.d₂₃_hom_apply, LightCondensed.ihomPoints_apply, LinearMap.id_fgModuleCat_comp, groupHomology.d₁₀_single_one, groupHomology.boundaries₂_le_cycles₂, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, forget₂PreservesColimitsOfSize, TopModuleCat.instPreservesLimitTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitOfModuleCatCompLinearMapForget, FGModuleCat.hom_hom_id, Rep.diagonalSuccIsoFree_inv_hom_single, groupCohomology.d₀₁_comp_d₁₂, Representation.repOfTprodIso_apply, freeHomEquiv_apply, epi_as_hom''_mkQ, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, forget₂AddCommGroup_preservesLimitsOfSize, toMatrixModCat_map, groupCohomology.toCocycles_comp_isoCocycles₂_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, LightCondensed.forget_obj_val_map, ContinuousCohomology.I_obj_V_carrier, groupCohomology.cocyclesIso₀_hom_comp_f, Rep.resCoindAdjunction_counit_app_hom_hom, CoalgCat.MonoidalCategoryAux.tensorHom_toLinearMap, groupHomology.d₃₂_single, TopModuleCat.hom_zero_apply, groupCohomology.eq_d₀₁_comp_inv, extendScalarsId_hom_app_one_tmul, groupCohomology.H1π_comp_map_assoc, groupHomology.mapCycles₁_comp_apply, groupHomology.cyclesIso₀_inv_comp_iCycles_apply, Rep.leftRegularHom_hom, groupCohomology.π_comp_H0Iso_hom, FDRep.endRingEquiv_symm_comp_ρ, groupCohomology.π_comp_H1Iso_hom_assoc, Îč_coprodIsoDirectSum_hom_apply, restrictScalarsComp'App_hom_apply, PresheafOfModules.epi_iff_surjective, CoalgCat.of_comul, LightCondensed.ihomPoints_symm_comp, isZero_iff_subsingleton, groupCohomology.eq_d₁₂_comp_inv, CategoryTheory.whiskering_linearCoyoneda, cokernel_π_cokernelIsoRangeQuotient_hom_apply, CategoryTheory.ShortComplex.moduleCatMk_X₁_carrier, Rep.indToCoindAux_self, groupCohomology.mapCocycles₂_comp_i, AlternatingMap.postcomp_apply, groupHomology.eq_d₃₂_comp_inv, QuadraticModuleCat.toIsometry_comp, Rep.coe_res_obj_ρ, Rep.invariantsFunctor_obj_carrier, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, monoidalClosed_uncurry, Rep.diagonalHomEquiv_symm_apply, groupCohomology.H0IsoOfIsTrivial_hom, CondensedMod.isDiscrete_tfae, CoalgCat.MonoidalCategoryAux.associator_hom_toLinearMap, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_i_hom, groupCohomology.coe_mapCocycles₁, groupHomology.mem_cycles₂_iff, Iso.homCongr_eq_arrowCongr, CoextendScalars.smul_apply', groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, groupHomology.cyclesMap_comp_isoCycles₂_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isModule, directLimitCocone_pt_carrier, toMatrixModCat_obj_carrier, groupCohomology.d₁₂_hom_apply, instSmallSubtypeForallCarrierObjMemSubmoduleSectionsSubmodule, groupHomology.comp_d₂₁_eq, PresheafOfModules.pushforward_map_app_apply, CategoryTheory.preadditiveYonedaObj_obj_carrier, groupCohomology.coboundariesToCocycles₁_apply, groupHomology.mapCycles₁_comp_assoc, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_assoc, groupHomology.toCycles_comp_isoCycles₂_hom_assoc, FGModuleCat.instPreservesFiniteColimitsModuleCatForget₂LinearMapIdCarrierObjIsFG, PresheafOfModules.sections_property, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, PresheafOfModules.toSheafify_app_apply', PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, Rep.coinvariantsAdjunction_counit_app, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂, forget_preservesEpimorphisms, PresheafOfModules.Derivation.d_map, QuadraticModuleCat.forget₂_map_associator_inv, LinearMap.comp_id_fgModuleCat, RestrictionCoextensionAdj.HomEquiv.toRestriction_hom_apply, TopModuleCat.instIsRightAdjointTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrier, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, groupCohomology.comp_d₁₂_eq, toMatrixModCat_obj_isAddCommGroup, groupCohomology.mem_cocycles₁_of_addMonoidHom, groupCohomology.cocycles₂.d₂₃_apply, groupCohomology.d₀₁_hom_apply, Rep.linearization_single, extendRestrictScalarsAdj_homEquiv_apply, groupHomology.d₃₂_single_one_thd, hom_surjective, TopModuleCat.coe_freeObj, hom_tensorHom, groupHomology.isoCycles₁_inv_comp_iCycles_apply, CoalgCat.tensorObj_isAddCommGroup, forget₂_addCommGrp_essSurj, groupCohomology.dArrowIso₀₁_inv_right, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.d₁₂_comp_d₂₃_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, groupCohomology.eq_d₂₃_comp_inv_assoc, PresheafOfModules.congr_map_apply, PresheafOfModules.freeYonedaEquiv_symm_app, Rep.finsuppToCoinvariantsTensorFree_single, groupCohomology.eq_d₂₃_comp_inv_apply, groupCohomology.eq_d₁₂_comp_inv_apply, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, PresheafOfModules.restrictScalarsObj_map, groupHomology.chains₁ToCoinvariantsKer_surjective, Rep.coinvariantsTensorFreeLEquiv_symm_apply, TopModuleCat.continuousSMul, Profinite.NobelingProof.GoodProducts.linearIndependent_comp_of_eval, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, forget₂AddCommGroup_reflectsLimitOfShape, forget_reflectsLimitsOfSize, groupHomology.cycles₁_eq_top_of_isTrivial, ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, Rep.resCoindAdjunction_unit_app_hom_hom, groupHomology.d₃₂_comp_d₂₁_assoc, groupCohomology.mem_cocycles₁_def, endRingEquiv_symm_apply_hom, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_right, FGModuleCat.instFiniteHomModuleCatObjIsFG, Rep.homEquiv_apply_hom, FilteredColimits.colimit_zero_eq, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, PresheafOfModules.pushforward₀_obj_obj_carrier, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, forget_preservesMonomorphisms, groupCohomology.mapCocycles₂_comp_i_apply, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom_apply, MonoidalCategory.associator_hom_apply, groupHomology.single_one_snd_sub_single_one_fst_mem_boundaries₂, CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, groupHomology.d₁₀ArrowIso_hom_left, Rep.norm_comm_apply, groupHomology.cycles₁IsoOfIsTrivial_hom_apply, HasLimit.productLimitCone_cone_π, HasColimit.colimitCocone_Îč_app, CoalgCat.moduleCat_of_toModuleCat, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_apply, groupCohomology.coboundaries₁_eq_bot_of_isTrivial, MonoidalCategory.tensorHom_tmul, groupHomology.d₂₁_single_inv_mul_ρ_add_single, QuadraticModuleCat.forget₂_map, PresheafOfModules.Derivation.postcomp_d_apply, smulShortComplex_X₃_isAddCommGroup, forget₂_addCommGroup_full, groupCohomology.cocyclesIso₀_inv_comp_iCocycles, PresheafOfModules.Derivation.d_one, groupCohomology.cocycles₂_map_one_fst, PresheafOfModules.sectionsMap_coe, groupCohomology.mapCocycles₂_comp_i_assoc, groupHomology.d₁₀_comp_coinvariantsMk_apply, ExtendRestrictScalarsAdj.Counit.map_hom_apply, Rep.ρ_hom, Rep.diagonalSuccIsoFree_inv_hom_single_single, groupCohomology.H1IsoOfIsTrivial_inv_apply, PresheafOfModules.Sheafify.map_smul_eq, PresheafOfModules.map_comp_apply, biprodIsoProd_inv_comp_snd_apply, RestrictionCoextensionAdj.counit'_app, groupHomology.chainsMap_f_3_comp_chainsIso₃, PresheafOfModules.pushforward_map_app_apply', groupHomology.mapCycles₁_id_comp_assoc, groupHomology.eq_d₂₁_comp_inv, PresheafOfModules.Derivation.d_mul, isFG_iff, groupCohomology.cocycles₁IsoOfIsTrivial_hom_hom_apply_apply, CategoryTheory.linearYoneda_obj_obj_carrier, MonoidalCategory.whiskerLeft_def, groupCohomology.H2π_comp_map_apply, groupHomology.mapCycles₁_comp, FDRep.instPreservesFiniteColimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.ihom_ev_app_hom, homLinearEquiv_symm_apply, hom_smul, groupCohomology.dArrowIso₀₁_hom_right, uliftFunctorForgetIso_hom_app, Rep.MonoidalClosed.linearHomEquivComm_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_map_app, smul_naturality, CategoryTheory.ShortComplex.moduleCat_zero_apply, groupCohomology.toCocycles_comp_isoCocycles₂_hom, Rep.coe_linearization_obj, FGModuleCat.hom_comp, ContinuousCohomology.I_obj_ρ_apply, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_assoc, imageIsoRange_hom_subtype, GradedObject.finrankSupport_subset_iff, CategoryTheory.Iso.toIsometryEquiv_toFun, groupHomology.mapCycles₁_comp_i, CoextendScalars.smul_apply, groupCohomology.shortComplexH0_f, binaryProductLimitCone_cone_π_app_right, groupCohomology.cocyclesOfIsCocycle₁_coe, exteriorPower.desc_mk, PresheafOfModules.unit_map_one, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, HasColimit.colimitCocone_pt_isModule, PresheafOfModules.toPresheaf_obj_coe, groupCohomology.coboundaries₂_le_cocycles₂, CategoryTheory.preadditiveYoneda_obj, CategoryTheory.Abelian.Pseudoelement.ModuleCat.eq_range_of_pseudoequal, Rep.standardComplex.ΔToSingle₀_comp_eq, MonoidalCategory.tensorHom_def, Rep.coindVEquiv_symm_apply_coe, groupCohomology.H1IsoOfIsTrivial_H1π_apply_apply, imageIsoRange_inv_image_Îč_apply, CategoryTheory.preadditiveYonedaMap_app, groupCohomology.comp_d₂₃_eq, CondensedMod.isDiscrete_iff_isDiscrete_forget, PresheafOfModules.map_smul, FGModuleCat.FGModuleCatEvaluation_apply, epi_iff_surjective, groupCohomology.coboundaries₂.val_eq_coe, PresheafOfModules.Monoidal.tensorObj_map_tmul, TopModuleCat.coe_of, exteriorPower.map_mk, TopModuleCat.ofHom_hom, subsingleton_of_isZero, cokernel_π_cokernelIsoRangeQuotient_hom, Rep.ofModuleMonoidAlgebra_obj_coe, groupHomology.single_one_fst_sub_single_one_snd_mem_boundaries₂, id_apply, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, groupCohomology.infNatTrans_app, FGModuleCat.instPreservesFiniteLimitsModuleCatForget₂LinearMapIdCarrierObjIsFG, groupCohomology.d₁₂_apply_mem_cocycles₂, Rep.invariantsAdjunction_unit_app, hom_inv_apply, groupHomology.mapCycles₂_id_comp, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, monoidalClosed_curry, groupCohomology.d₀₁_apply_mem_cocycles₁, QuadraticModuleCat.instMonoidalCategory.tensorObj_form, CoalgCat.tensorHom_def, Module.Flat.iff_rTensor_preserves_shortComplex_exact, MonoidalCategory.leftUnitor_hom_apply, Rep.indToCoindAux_fst_mul_inv, exteriorPower.iso₀_hom_apply, groupHomology.cyclesMap_comp_cyclesIso₀_hom_apply, Rep.coinvariantsFunctor_obj_carrier, Rep.applyAsHom_comm_apply, groupHomology.d₂₁_single_inv_self_ρ_sub_self_inv, groupHomology.chainsMap_f_single, restrictScalarsId'App_hom_apply, groupCohomology.subtype_comp_d₀₁_apply, ContinuousCohomology.Iobj_ρ_apply, SheafOfModules.pushforwardComp_inv_app_val_app, FilteredColimits.forget_preservesFilteredColimits, groupCohomology.H2π_eq_iff, CoalgCat.toComonObj_X, groupCohomology.comp_d₀₁_eq, groupCohomology.cocycles₂_map_one_snd, homAddEquiv_symm_apply_hom, Rep.coinvariantsTensorFreeLEquiv_apply, groupHomology.toCycles_comp_isoCycles₁_hom_apply, Module.Flat.iff_lTensor_preserves_shortComplex_exact, CategoryTheory.ShortComplex.moduleCatMk_X₃_carrier, groupHomology.mapCycles₂_comp_i, localizedModule_isLocalizedModule, range_eq_top_of_epi, groupCohomology.map_H0Iso_hom_f, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_zero_iff, PresheafOfModules.mono_iff_surjective, groupHomology.boundariesOfIsBoundary₁_coe, Derivation.d_mul, Rep.indToCoindAux_comm, groupCohomology.dArrowIso₀₁_inv_left, groupCohomology.π_comp_H1Iso_hom, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, ContinuousCohomology.I_obj_V_isModule, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_left, groupHomology.cyclesIso₀_comp_H0π_apply, CoalgCat.associator_def, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_assoc_apply, groupHomology.eq_d₃₂_comp_inv_apply, CondensedMod.epi_iff_surjective_on_stonean, hom_whiskerRight, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.exists_d_comp_eq_d, groupCohomology.cocycles₂_ρ_map_inv_sub_map_inv, hom_inv_associator, FGModuleCat.hom_id, Rep.toAdditive_symm_apply, lof_coprodIsoDirectSum_inv, groupHomology.single_one_fst_sub_single_one_fst_mem_boundaries₂, TopModuleCat.hom_add, BialgCat.forget₂_coalgebra_obj, CoalgCat.MonoidalCategoryAux.tensorObj_comul, CoalgCat.comul_def, inv_hom_apply, forget₂AddCommGroup_preservesLimits, directLimitIsColimit_desc, groupHomology.mapCycles₁_id_comp_apply, MonoidalCategory.rightUnitor_def, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom_assoc, CategoryTheory.Iso.toLinearEquiv_symm, PresheafOfModules.presheaf_map_apply_coe, smulShortComplex_g, Rep.ofMulDistribMulAction_ρ_apply_apply, PresheafOfModules.Derivation.congr_d, Rep.instIsTrivialCarrierVModuleCatOfCompLinearMapIdρ, groupCohomology.instEpiModuleCatH1π, MonoidalCategory.associator_def, groupCohomology.H2π_comp_map, FGModuleCat.instFiniteCarrierLimitModuleCatCompForget₂LinearMapIdObjIsFG, mono_iff_injective, groupHomology.π_comp_H2Iso_hom, forget₂_obj, Rep.indResAdjunction_counit_app_hom_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, Rep.coindToInd_apply, PresheafOfModules.forgetToPresheafModuleCatObjMap_apply, groupHomology.mapCycles₁_comp_i_apply, SheafOfModules.pushforwardCongr_hom_app_val_app, hom_whiskerLeft, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, AlgCat.forget₂Module_preservesLimitsOfSize, groupHomology.mapCycles₂_comp, comp_apply, restrictScalarsCongr_hom_app, MonoidalCategory.tensorUnit_carrier, kernelIsoKer_inv_kernel_Îč_apply, ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, groupHomology.cyclesIso₀_inv_comp_cyclesMap_apply, CategoryTheory.whiskering_linearYoneda, Rep.coe_of, MonoidalCategory.rightUnitor_hom_apply, groupCohomology.isoCocycles₂_hom_comp_i, CoalgCat.MonoidalCategory.inducingFunctorData_ÎŒIso, CoalgCat.whiskerRight_def, TopModuleCat.hom_zsmul, CoalgCat.MonoidalCategory.inducingFunctorData_ΔIso, FilteredColimits.M.mk_map, groupCohomology.π_comp_H0Iso_hom_apply, groupHomology.coe_mapCycles₂, CategoryTheory.ShortComplex.Exact.moduleCat_range_eq_ker, CategoryTheory.whiskering_linearCoyoneda₂, FGModuleCat.obj_carrier, groupCohomology.isoCocycles₁_inv_comp_iCocycles_apply, groupHomology.comp_d₁₀_eq, groupHomology.H1π_comp_map_apply, FGModuleCat.FGModuleCatCoevaluation_apply_one, groupCohomology.dArrowIso₀₁_hom_left, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom, groupHomology.toCycles_comp_isoCycles₁_hom_assoc, groupHomology.π_comp_H0Iso_hom_apply, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, groupCohomology.eq_d₀₁_comp_inv_apply, MatrixModCat.toModuleCat_obj_carrier, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_assoc, groupCohomology.cocycles₁_map_inv, Rep.freeLiftLEquiv_apply, hom_hom_leftUnitor, groupCohomology.mapCocycles₁_one, PresheafOfModules.surjective_of_epi, adj_homEquiv, instIsScalarTowerLocalizationCarrierLocalizedModule, groupHomology.H2π_comp_map_assoc, Rep.indToCoindAux_mul_fst, hom_hom_rightUnitor, LightCondensed.forget_map_val_app, biprodIsoProd_inv_comp_snd, CoalgCat.tensorUnit_carrier, groupHomology.π_comp_H0IsoOfIsTrivial_hom_apply, CategoryTheory.Iso.toCoalgEquiv_refl, piIsoPi_inv_kernel_Îč_apply, MonModuleEquivalenceAlgebra.functor_map_hom_apply, Rep.ihom_obj_ρ_apply, ker_eq_bot_of_mono, CondensedMod.hom_naturality_apply, lof_coprodIsoDirectSum_inv_apply, groupHomology.d₁₀ArrowIso_inv_right, FDRep.instFaithfulRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Derivation.desc_d, range_mkQ_cokernelIsoRangeQuotient_inv, TannakaDuality.FiniteGroup.equivApp_inv, Rep.finsuppTensorRight_hom_hom, QuadraticModuleCat.forget₂_map_associator_hom, PresheafOfModules.injective_of_mono, free_Δ_one, groupCohomology.norm_ofAlgebraAutOnUnits_eq, groupCohomology.π_comp_H0Iso_hom_assoc, MonModuleEquivalenceAlgebra.functor_obj_carrier, imageIsoRange_hom_subtype_assoc, groupCohomology.mem_cocycles₂_iff, Rep.tensor_ρ, Rep.toAdditive_apply, QuadraticModuleCat.toIsometry_whiskerRight, PresheafOfModules.pushforward_obj_map_apply, groupCohomology.H2π_comp_map_assoc, groupHomology.d₁₀_comp_coinvariantsMk, groupHomology.d₂₁_comp_d₁₀_apply, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_liftK_hom, groupHomology.mapCycles₂_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, CoalgCat.forget_reflects_isos, Rep.ofDistribMulAction_ρ_apply_apply, groupCohomology.d₀₁_ker_eq_invariants, CoalgCat.MonoidalCategoryAux.leftUnitor_hom_toLinearMap, Rep.linearization_η_hom_apply, smulNatTrans_apply_app, FGModuleCat.ihom_obj, TopModuleCat.hom_id, forget_reflectsLimits, Rep.leftRegularHomEquiv_symm_apply, TannakaDuality.FiniteGroup.equivApp_hom, uliftFunctorForgetIso_inv_app, PresheafOfModules.forgetToPresheafModuleCatObjObj_coe, groupHomology.H2π_eq_iff, FGModuleCat.instAdditiveModuleCatForget₂LinearMapIdCarrierObjIsFG, groupHomology.H1AddEquivOfIsTrivial_single, groupCohomology.mem_cocycles₁_iff, CoalgCat.ofComonObjCoalgebraStruct_comul, MonoidalCategory.tensorÎŒ_eq_tensorTensorTensorComm, groupHomology.range_d₁₀_eq_coinvariantsKer, QuadraticModuleCat.toIsometry_tensorHom, PresheafOfModules.unitHomEquiv_apply_coe, groupCohomology.inhomogeneousCochains.d_comp_d, FreeMonoidal.ΔIso_inv_freeMk, groupHomology.isoCycles₂_hom_comp_i_apply, Rep.ofModuleMonoidAlgebra_obj_ρ, groupCohomology.π_comp_H0IsoOfIsTrivial_hom_apply, QuadraticModuleCat.toIsometry_hom_leftUnitor, Rep.coinvariantsShortComplex_f, SheafOfModules.pushforwardCongr_inv_app_val_app, groupCohomology.toCocycles_comp_isoCocycles₁_hom_assoc, QuadraticModuleCat.toIsometry_hom_rightUnitor, groupCohomology.isoCocycles₂_inv_comp_iCocycles_apply, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_assoc, groupCohomology.isoCocycles₁_inv_comp_iCocycles, RestrictionCoextensionAdj.unit'_app, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierOfCarrierStalkAbPresheafPrimeComplAsIdealHomToStalk, groupHomology.eq_d₂₁_comp_inv_assoc, imageIsoRange_inv_image_Îč, smulShortComplex_X₃_carrier, free_η_freeMk, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_apply, groupHomology.cyclesMap_comp_isoCycles₂_hom_assoc, ContinuousCohomology.I_map_hom, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom, groupHomology.inhomogeneousChains.d_single, groupCohomology.coboundariesOfIsCoboundary₁_coe, exteriorPower.iso₁_hom_apply, TopModuleCat.freeMap_map, Representation.coind'_apply_apply, groupCohomology.d₁₂_comp_d₂₃_assoc, QuadraticModuleCat.Hom.toIsometry_injective, CoalgCat.Hom.toCoalgHom_injective, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_map, SheafOfModules.pushforwardPushforwardAdj_unit_app_val_app, PresheafOfModules.presheaf_obj_coe, hom_inv_rightUnitor, ExtendScalars.smul_tmul, hom_sum, QuadraticModuleCat.forget₂_obj, FGModuleCat.instFiniteCarrierColimitModuleCatCompForget₂LinearMapIdObjIsFG, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_apply, CategoryTheory.Iso.toCoalgEquiv_trans, groupHomology.mapCycles₂_id_comp_assoc, groupHomology.π_comp_H1Iso_hom_apply, Rep.coindIso_inv_hom_hom, hom_nsmul, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.cocycles₁_map_mul_of_isTrivial, forget_obj, groupCohomology.subtype_comp_d₀₁_assoc, groupHomology.chainsMap_id_f_hom_eq_mapRange, PresheafOfModules.toPresheaf_map_app_apply, groupHomology.toCycles_comp_isoCycles₂_hom, CategoryTheory.ShortComplex.ShortExact.moduleCat_exact_iff_function_exact, groupCohomology.map_id_comp_H0Iso_hom, groupHomology.cyclesMap_comp_isoCycles₂_hom_apply, PresheafOfModules.Derivation'.d_app, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_assoc_apply, HasColimit.instPreservesColimitAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrier, groupHomology.mapCycles₁_id_comp, Rep.indToCoindAux_mul_snd, FilteredColimits.forget₂AddCommGroup_preservesFilteredColimits, instIsRightAdjointForgetLinearMapIdCarrier, coe_of, CategoryTheory.Iso.toIsometryEquiv_refl, QuadraticModuleCat.toIsometry_inv_rightUnitor, groupCohomology.cocycles₁IsoOfIsTrivial_inv_hom_apply_coe, ExtendScalars.map_tmul, FilteredColimits.colimit_add_mk_eq', QuadraticModuleCat.cliffordAlgebra_map, FilteredColimits.forget_reflectsFilteredColimits, groupCohomology.cocyclesOfIsMulCocycle₂_coe, LinearMap.id_moduleCat_comp, free_ÎŒ_freeMk_tmul_freeMk, forget₂_obj_moduleCat_of, QuadraticModuleCat.toIsometry_whiskerLeft, groupHomology.eq_d₁₀_comp_inv, CategoryTheory.Iso.toLinearEquiv_apply, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, Derivation.d_map, groupHomology.isoShortComplexH1_inv, groupCohomology.coboundariesOfIsMulCoboundary₁_coe, SheafOfModules.pushforwardComp_hom_app_val_app, groupHomology.eq_d₁₀_comp_inv_assoc, groupCohomology.d₁₂_comp_d₂₃, HomologicalComplex.eulerChar_eq_sum_finSet_of_finrankSupport_subset, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, Rep.linearization_obj_ρ, Rep.toCoinvariantsMkQ_hom, groupHomology.chainsMap_f_1_comp_chainsIso₁_assoc, MonoidalCategory.tensorObj, groupHomology.isoCycles₁_hom_comp_i_apply, SheafOfModules.Presentation.map_relations_I, instPreservesColimitsOfSizeAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrierOfHasColimitsOfSizeAddCommGrpMax, groupCohomology.cocyclesIso₀_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, FreeMonoidal.ÎŒIso_hom_freeMk_tmul_freeMk, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, CategoryTheory.ShortComplex.exact_iff_surjective_moduleCatToCycles, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_descH_hom, imageIsoRange_inv_image_Îč_assoc, MonoidalCategory.rightUnitor_inv_apply, groupCohomology.H1π_eq_zero_iff, groupHomology.H1AddEquivOfIsTrivial_symm_apply, Rep.invariantsAdjunction_counit_app_hom, Profinite.NobelingProof.GoodProducts.square_commutes, groupCohomology.cochainsMap_f, groupCohomology.coboundaries₁.val_eq_coe, groupHomology.d₃₂_single_one_fst, inhomogeneousCochains.d_hom_apply, CoalgCat.MonoidalCategoryAux.counit_tensorObj, Rep.coind'_ext_iff, CoalgCat.counit_def, PresheafOfModules.DifferentialsConstruction.relativeDifferentials'_map_d, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom_apply, TopModuleCat.instPreservesLimitsOfShapeTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitsOfShapeOfModuleCatForgetLinearMap, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, groupHomology.d₂₁_comp_d₁₀, PresheafOfModules.Elements.fromFreeYoneda_app_apply, binaryProductLimitCone_cone_π_app_left, HasColimit.coconePointSMul_apply, groupHomology.d₂₁_single_self_inv_ρ_sub_inv_self, kernelIsoKer_hom_ker_subtype, smulShortComplex_f, SheafOfModules.Presentation.mapRelations_mapGenerators, groupHomology.chainsMap_f_3_comp_chainsIso₃_assoc, hom_add, groupHomology.single_ρ_self_add_single_inv_mem_boundaries₁, groupHomology.H1ToTensorOfIsTrivial_H1π_single, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, FGModuleCat.hom_hom_comp, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_carrier, groupCohomology.cocyclesMk₁_eq, AlgCat.forget₂_module_obj, MonoidalCategory.leftUnitor_inv_apply, Îč_coprodIsoDirectSum_hom, instReflectsIsomorphismsAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrier, SheafOfModules.relationsOfIsCokernelFree_I, MonModuleEquivalenceAlgebra.algebraMap, MonoidalCategory.tensorÎŒ_apply, groupHomology.cyclesOfIsCycle₁_coe, Rep.quotientToInvariantsFunctor_obj_V, MonoidalCategory.tensorObj_isModule, groupHomology.inhomogeneousChains.ext_iff, MonoidalCategory.tensorObj_isAddCommGroup, groupHomology.d₂₁_apply_mem_cycles₁, groupCohomology.coboundariesToCocycles₂_apply, ihom_map_apply, MonModuleEquivalenceAlgebra.inverseObj_mul, ihom_coev_app, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCycles₁_hom_apply, groupHomology.toCycles_comp_isoCycles₂_hom_apply, groupCohomology.cocyclesOfIsMulCocycle₁_coe, groupCohomology.H2π_eq_zero_iff, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_left, groupCohomology.mapCocycles₁_comp_i_assoc, Rep.standardComplex.quasiIso_forget₂_ΔToSingle₀, groupCohomology.cocycles₁.val_eq_coe, TopModuleCat.isTopologicalAddGroup, groupCohomology.H1π_comp_map_apply, free_shortExact, PresheafOfModules.ofPresheaf_obj_carrier, Rep.leftRegularHom_hom_single, groupCohomology.cocycles₁_map_one, groupHomology.eq_d₃₂_comp_inv_assoc, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f, hom_hom_associator, CoalgCat.forget₂_obj, groupCohomology.π_comp_H2Iso_hom_assoc, groupCohomology.toCocycles_comp_isoCocycles₂_hom_assoc, Rep.finsuppTensorRight_inv_hom, Rep.coinvariantsMk_app_hom, Rep.ihom_obj_V_isAddCommGroup, PresheafOfModules.Îč_fromFreeYonedaCoproduct_apply, CategoryTheory.ShortComplex.moduleCat_exact_iff_ker_sub_range, CategoryTheory.ShortComplex.moduleCat_exact_iff, groupHomology.mapCycles₂_hom, groupHomology.isoCycles₂_inv_comp_iCycles_apply, range_mkQ_cokernelIsoRangeQuotient_inv_apply, groupHomology.isoCycles₂_inv_comp_iCycles_assoc, mkOfSMul_smul, MatrixModCat.isScalarTower_toModuleCat, restrictScalars.smul_def, CoalgCat.whiskerLeft_def, TopModuleCat.hom_sub, kernelIsoKer_hom_ker_subtype_apply, QuadraticModuleCat.toIsometry_id, groupHomology.cyclesMk₂_eq, groupHomology.chainsMap_f_1_comp_chainsIso₁, Rep.coindVEquiv_apply_hom, PresheafOfModules.Derivation.d_app, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.kernel_Îč_d_comp_d, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom_assoc, groupHomology.H1π_eq_zero_iff, groupHomology.isoCycles₁_inv_comp_iCycles_assoc, groupHomology.π_comp_H1Iso_hom_assoc, LightCondMod.hom_naturality_apply, TopModuleCat.forget₂_TopCat_obj, groupHomology.chainsMap_f_2_comp_chainsIso₂, groupHomology.d₂₁_single_one_fst, SheafOfModules.unitToPushforwardObjUnit_val_app_apply, HasLimit.productLimitCone_cone_pt_isModule, groupHomology.H2π_comp_map, Rep.trivialFunctor_map_hom, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_apply, TopModuleCat.hom_nsmul, groupCohomology.cocycles₂.val_eq_coe, groupCohomology.eq_d₂₃_comp_inv, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_iff, LightCondensed.ihomPoints_symm_apply, Derivation.d_add, groupHomology.H1π_comp_map_assoc, Rep.ihom_map_hom, groupHomology.instEpiModuleCatH1π, piIsoPi_hom_ker_subtype_apply, reflectsColimitsOfShape, groupHomology.H1AddEquivOfIsTrivial_apply, MonoidalCategory.whiskerRight_apply, groupCohomology.isoCocycles₂_inv_comp_iCocycles, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, Rep.coinvariantsTensor_hom_ext_iff, Rep.finsuppTensorLeft_inv_hom, TopModuleCat.instIsTopologicalAddGroupCarrier, free_ÎŽ_freeMk, forget₂AddCommGroup_reflectsLimitOfSize, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_right, PresheafOfModules.Derivation'.app_apply, CoalgCat.forget₂_map, groupHomology.single_one_snd_sub_single_one_snd_mem_boundaries₂, Rep.unit_iso_comm, Rep.leftRegularHomEquiv_symm_single, inhomogeneousCochains.d_eq, HasLimit.productLimitCone_cone_pt_carrier, groupHomology.instEpiModuleCatH2π, piIsoPi_hom_ker_subtype, directLimitDiagram_obj_carrier, hom_id, groupCohomology.cocyclesMk₂_eq, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, LinearEquiv.toFGModuleCatIso_hom, TopModuleCat.instIsRightAdjointModuleCatForget₂ContinuousLinearMapIdCarrierLinearMap, groupHomology.H1π_comp_map, groupHomology.chainsMap_f_hom, AlgCat.forget₂Module_preservesLimits, groupHomology.d₃₂_apply_mem_cycles₂, piIsoPi_inv_kernel_Îč, Rep.norm_hom, ExtendRestrictScalarsAdj.HomEquiv.evalAt_apply, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, TopModuleCat.instIsLeftAdjointModuleCatForget₂ContinuousLinearMapIdCarrierLinearMap, Rep.indResAdjunction_unit_app_hom_hom, Rep.ofHom_ρ, groupCohomology.toCocycles_comp_isoCocycles₁_hom_apply, groupHomology.map_id_comp_H0Iso_hom_apply, groupHomology.boundariesOfIsBoundary₂_coe, groupHomology.cyclesMk₁_eq, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, LightCondensed.ihom_map_val_app, groupHomology.mapCycles₂_comp_i_assoc, groupCohomology.isoCocycles₁_hom_comp_i, TopModuleCat.cokerπ_surjective, FreeMonoidal.ÎŒIso_inv_freeMk, uliftFunctor_map, Rep.Action_ρ_eq_ρ, groupCohomology.mapCocycles₁_comp_i_apply, hom_zsmul, ofHom_hom, Rep.coindMap_hom, groupHomology.mapCycles₂_id_comp_apply, Rep.trivial_def, groupCohomology.cocycles₂_ext_iff, instFiniteCarrierObjModuleCatIsFG, Rep.MonoidalClosed.linearHomEquiv_hom, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃, Rep.invariantsAdjunction_homEquiv_apply_hom, FGModuleCat.instLinearModuleCatForget₂LinearMapIdCarrierObjIsFG, AlgebraicGeometry.tilde.isUnit_algebraMap_end_basicOpen, localizedModuleMap_hom_apply, Rep.hom_comm_apply, SheafOfModules.pushforwardNatTrans_app_val_app, groupHomology.H2π_comp_map_apply, Hom.hom₂_apply, CategoryTheory.Iso.toIsometryEquiv_invFun, TopModuleCat.hom_smul, HasColimit.colimitCocone_pt_carrier, CondensedMod.epi_iff_locallySurjective_on_compHaus, CategoryTheory.ShortComplex.moduleCat_exact_iff_range_eq_ker, uliftFunctor_obj, forget₂_addCommGrp_additive, Module.Flat.iff_preservesFiniteLimits_tensorLeft, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, AlternatingMap.ext_iff, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, CoalgCat.MonoidalCategoryAux.comul_tensorObj, groupCohomology.coboundaries₁_ext_iff, Rep.finsuppTensorLeft_hom_hom, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, groupHomology.inhomogeneousChains.d_comp_d, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_K, projective_of_module_projective, MatrixModCat.toModuleCat_map, MonoidalCategory.leftUnitor_def, groupCohomology.π_comp_H2Iso_hom_apply, HasLimit.lift_hom_apply, binaryProductLimitCone_isLimit_lift, TopModuleCat.instPreservesLimitsTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrier, homLinearEquiv_apply, Rep.coinvariantsTensorMk_apply, TopModuleCat.kerÎč_apply, Rep.indMap_hom, ContinuousCohomology.I_obj_V_topologicalSpace, groupHomology.isoCycles₁_hom_comp_i_assoc, Rep.homEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, AlgCat.forget₂_module_map, FilteredColimits.M.mk_surjective, FDRep.forget₂_ρ, extendScalarsComp_hom_app_one_tmul, Rep.invariantsFunctor_map_hom, Iso.conj_eq_conj, groupHomology.d₁₀_eq_zero_of_isTrivial, CoalgCat.toComon_map_hom, groupCohomology.π_comp_H1Iso_hom_apply, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, groupCohomology.d₀₁_comp_d₁₂_assoc, MonoidalCategory.tensorObj_def, FDRep.instPreservesFiniteLimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, groupHomology.d₂₁_single_one_snd, SheafOfModules.pushforwardPushforwardEquivalence_unit_app_val_app, biprodIsoProd_inv_comp_fst, groupHomology.π_map_apply, CoalgCat.rightUnitor_def, BialgCat.forget₂_coalgebra_map, groupHomology.d₃₂_comp_d₂₁, groupHomology.d₃₂_single_one_snd, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, QuadraticModuleCat.cliffordAlgebra_obj_carrier, groupHomology.π_comp_H2Iso_hom_apply, CoalgCat.tensorObj_carrier, SheafOfModules.relationsOfIsCokernelFree_s, forget₂_reflectsLimits, FDRep.of_ρ, forget₂PreservesColimitsOfShape, MatrixModCat.toModuleCat_obj_isAddCommGroup, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, Rep.ihom_coev_app_hom, biproductIsoPi_inv_comp_π_apply, groupHomology.mapCycles₁_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_π_hom, Rep.leftRegularHomEquiv_apply, restrictScalars.smul_def', PresheafOfModules.pushforward_obj_map_apply', groupHomology.isoCycles₁_inv_comp_iCycles, free_shortExact_rank_add, groupHomology.cyclesMap_comp_isoCycles₁_hom_assoc, FGModuleCat.FGModuleCatEvaluation_apply', forget₂AddCommGroup_reflectsLimit, groupHomology.isoShortComplexH2_inv, groupHomology.coe_mapCycles₁, groupHomology.toCycles_comp_isoCycles₁_hom, HasLimit.productLimitCone_cone_pt_isAddCommGroup, hom_inv_leftUnitor, TopModuleCat.instReflectsIsomorphismsTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrier, groupCohomology.d₀₁_comp_d₁₂_apply, free_map_apply, groupHomology.chainsMap_f_2_comp_chainsIso₂_assoc, Representation.linHom.mem_invariants_iff_comm, groupHomology.mapCycles₂_comp_i_apply, binaryProductLimitCone_cone_pt, groupCohomology.cocyclesIso₀_hom_comp_f_apply, ofHom₂_hom_apply_hom, SheafOfModules.pushforwardPushforwardAdj_counit_app_val_app, groupHomology.boundariesToCycles₂_apply, groupCohomology.subtype_comp_d₀₁, MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, groupHomology.cyclesOfIsCycle₂_coe, Rep.freeLift_hom, groupHomology.isoCycles₂_hom_comp_i, CoalgCat.tensorObj_instCoalgebra, groupHomology.π_comp_H1Iso_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, groupHomology.isoCycles₂_inv_comp_iCycles, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_apply, groupHomology.d₁₀_single_inv, groupHomology.mkH1OfIsTrivial_apply, groupCohomology.π_map_apply, Rep.indToCoindAux_snd_mul_inv, hom_sub, CoalgCat.ofComonObjCoalgebraStruct_counit, groupCohomology.isoCocycles₁_inv_comp_iCocycles_assoc, Rep.res_obj_ρ, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom, CategoryTheory.Presieve.FamilyOfElements.isCompatible_map_smul_aux, ofHom₂_compr₂, Algebra.instSMulCommClassCarrier, PresheafOfModules.freeYonedaEquiv_comp, forget₂AddCommGroup_preservesLimit, groupCohomology.coboundaries₁_le_cocycles₁, Rep.ihom_obj_V_isModule, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_iff, CoalgCat.tensorObj_isModule, FreeMonoidal.ΔIso_hom_one, CategoryTheory.preadditiveCoyonedaObj_obj_carrier, groupHomology.d₁₀ArrowIso_hom_right, QuadraticModuleCat.toIsometry_inv_leftUnitor, Rep.freeLift_hom_single_single, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, groupHomology.single_one_mem_boundaries₁, mono_iff_ker_eq_bot, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_assoc, groupHomology.π_comp_H1Iso_inv_apply, FGModuleCat.instFullModuleCatForget₂LinearMapIdCarrierObjIsFG, groupCohomology.isoCocycles₂_hom_comp_i_apply, extendRestrictScalarsAdj_unit_app_apply, hom_bijective, Rep.diagonalHomEquiv_apply, groupHomology.d₂₁_single, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, SheafOfModules.Presentation.IsFinite.finite_relations, Rep.freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, groupHomology.cycles₁IsoOfIsTrivial_inv_apply, groupHomology.eq_d₂₁_comp_inv_apply, Rep.epi_iff_surjective, SheafOfModules.pushforwardNatTrans_app_val_app_apply, CategoryTheory.whiskering_linearYoneda₂, CategoryTheory.ShortComplex.moduleCatMk_X₂_carrier, groupCohomology.coboundaries₂_ext_iff, groupHomology.d₁₀_comp_coinvariantsMk_assoc, MonoidalCategory.whiskerLeft_apply, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, Rep.indToCoindAux_of_not_rel, groupCohomology.cocyclesOfIsCocycle₂_coe, groupHomology.cyclesMk₀_eq, groupHomology.isoCycles₁_hom_comp_i, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_apply, Rep.applyAsHom_hom, CoalgCat.toCoalgHom_id, forget_map, groupHomology.chainsMap_f_0_comp_chainsIso₀_apply, groupCohomology.H1π_comp_map, TopModuleCat.hom_comp, groupHomology.single_inv_ρ_self_add_single_mem_boundaries₁, smulShortComplex_X₃_isModule, Rep.indResHomEquiv_apply_hom, homAddEquiv_apply, PresheafOfModules.ofPresheaf_map, CommRingCat.KaehlerDifferential.ext_iff, GradedObject.eulerChar_eq_sum_finSet_of_finrankSupport_subset, PresheafOfModules.germ_ringCat_smul, groupCohomology.cocyclesMk₀_eq, endRingEquiv_apply, groupHomology.lsingle_comp_chainsMap_f_assoc, HasColimit.reflectsColimit, PresheafOfModules.naturality_apply, groupHomology.single_mem_cycles₂_iff, groupCohomology.isoShortComplexH1_inv, groupHomology.boundaries₁_le_cycles₁, CoalgCat.toCoalgHom_comp, mono_as_hom'_subtype, extendScalarsId_inv_app_apply, semilinearMapAddEquiv_symm_apply_apply, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, PresheafOfModules.fromFreeYonedaCoproduct_app_mk, hom_comp, MonoidalCategory.braiding_inv_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, Rep.diagonalSuccIsoFree_hom_hom_single, CoalgCat.MonoidalCategoryAux.rightUnitor_hom_toLinearMap, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d_assoc, sMulCommClass_mk, AlgebraicGeometry.structurePresheafInModuleCat_obj_carrier, QuadraticModuleCat.moduleCat_of_toModuleCat, PresheafOfModules.germ_smul, CoalgCat.leftUnitor_def, CoalgCat.of_counit, hom_neg, Rep.ihom_obj_ρ, instInvertibleCarrierOutModuleCatValSkeleton, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁, Rep.free_ext_iff, PresheafOfModules.toSheafify_app_apply, MonoidalCategory.whiskerRight_def, isScalarTower_of_algebra_moduleCat, Rep.instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, groupCohomology.cocycles₁_ext_iff, Algebra.instIsScalarTowerCarrier, groupCohomology.map_H0Iso_hom_f_assoc, ofHom_apply, TannakaDuality.FiniteGroup.ofRightFDRep_hom, kernelIsoKer_inv_kernel_Îč, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, simple_iff_isSimpleModule', restrictScalarsCongr_inv_app, groupCohomology.eq_d₁₂_comp_inv_assoc, Representation.linHom.invariantsEquivRepHom_apply_hom, groupCohomology.H1InfRes_f, imageIsoRange_hom_subtype_apply, LinearMap.comp_id_moduleCat, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, TopModuleCat.hom_neg, MatrixModCat.toModuleCat_obj_isModule, epi_iff_range_eq_top, instFreeCarrierX₂ModuleCatProjectiveShortComplex, forget₂AddCommGroupIsEquivalence, groupHomology.d₁₀ArrowIso_inv_left, monoidalClosed_pre_app, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, groupHomology.single_mem_cycles₁_iff, Rep.coinvariantsFunctor_map_hom, groupHomology.d₂₁_single_ρ_add_single_inv_mul, HasLimit.productLimitCone_isLimit_lift, hom_injective, MonoidalCategory.tensorObj_carrier, Rep.linearization_map_hom_single, groupCohomology.isoShortComplexH2_inv, CategoryTheory.preadditiveCoyoneda_obj, groupCohomology.map_id_comp_H0Iso_hom_assoc, groupCohomology.isoCocycles₂_hom_comp_i_assoc, groupHomology.eq_d₁₀_comp_inv_apply, Rep.ihom_obj_V_carrier, LinearEquiv.toFGModuleCatIso_inv, ContinuousCohomology.const_app_hom, semilinearMapAddEquiv_apply, CoextendScalars.map'_hom_apply_apply, Rep.coindIso_hom_hom_hom, RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply, SheafOfModules.pushforwardPushforwardEquivalence_counit_app_val_app, groupHomology.H0π_comp_H0Iso_hom_apply, Rep.barComplex.d_single, freeDesc_apply, CategoryTheory.ShortComplex.ShortExact.moduleCat_surjective_g, Rep.mono_iff_injective, FDRep.dualTensorIsoLinHom_hom_hom, ExtendScalars.hom_ext_iff, groupHomology.d₂₁_comp_d₁₀_assoc, groupCohomology.coe_mapCocycles₂, groupCohomology.eq_d₀₁_comp_inv_assoc, isSimpleModule_of_simple, toKernelSubobject_arrow, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isAddCommGroup, CategoryTheory.Iso.toLinearMap_toLinearEquiv, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_assoc, Condensed.instAB4CondensedMod, groupCohomology.H1π_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, groupCohomology.isoCocycles₁_hom_comp_i_assoc, Rep.instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, HomologicalComplex.homologyEulerChar_eq_sum_finSet_of_finrankSupport_subset, CategoryTheory.ShortComplex.ShortExact.moduleCat_injective_f, groupHomology.mapCycles₁_quotientGroupMk'_epi, groupHomology.mapCycles₁_comp_i_assoc, groupHomology.H0π_comp_map_apply, restrictScalarsId'App_inv_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, PresheafOfModules.Sheafify.SMulCandidate.h, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, groupHomology.π_comp_H2Iso_inv_apply, FDRep.instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, groupCohomology.coboundariesOfIsCoboundary₂_coe, Rep.FiniteCyclicGroup.resolution.π_f, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, restrictScalarsComp'App_inv_apply, FDRep.endRingEquiv_comp_ρ, CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForget₂LinearMapIdCarrierAddMonoidHomCarrier, groupHomology.mem_cycles₁_iff, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, groupCohomology.mapCocycles₁_comp_i, groupHomology.boundariesToCycles₁_apply, groupHomology.single_mem_cycles₂_iff_inv, groupHomology.d₁₀_single, TopModuleCat.hom_forget₂_TopCat_map, ihom_ev_app, groupCohomology.cocycles₁.d₁₂_apply, Rep.indResHomEquiv_symm_apply_hom, groupHomology.isoCycles₂_hom_comp_i_assoc, FilteredColimits.colimit_add_mk_eq, groupHomology.comp_d₃₂_eq, groupCohomology.π_comp_H2Iso_hom, free_hom_ext_iff, CategoryTheory.Iso.toIsometryEquiv_symm, groupHomology.H2π_eq_zero_iff, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierObjOppositeOpensCarrierCarrierCommRingCatSpecModuleCatPresheafModulesSheafModulesSpecToSheafOpBasicOpenPowersHomToOpen, CategoryTheory.Iso.toIsometryEquiv_trans, MonoidalCategory.associator_inv_apply, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, groupCohomology.isoCocycles₂_inv_comp_iCocycles_assoc, QuadraticModuleCat.hom_hom_associator, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, groupHomology.H1π_eq_iff, biprodIsoProd_inv_comp_fst_apply, groupHomology.d₃₂_comp_d₂₁_apply, CoextendScalars.map_apply, groupHomology.chainsMap_f, Rep.quotientToCoinvariantsFunctor_obj_V, SheafOfModules.unitHomEquiv_apply_coe, groupHomology.chainsMap_f_2_comp_chainsIso₂_apply, groupHomology.cyclesMap_comp_isoCycles₁_hom, QuadraticModuleCat.hom_inv_associator, forget₂_map, groupCohomology.d₀₁_eq_zero, toMatrixModCat_obj_isModule
endRingEquiv 📖CompOp
7 mathmath: FDRep.endRingEquiv_symm_comp_ρ, endRingEquiv_symm_apply_hom, Rep.Action_ρ_eq_ρ, FDRep.of_ρ, endRingEquiv_apply, Rep.ihom_obj_ρ, FDRep.endRingEquiv_comp_ρ
equivalenceSemimoduleCat 📖CompOp—
hasForgetToAddCommGroup 📖CompOp
38 mathmath: HasColimit.colimitCocone_pt_isAddCommGroup, forget₂_reflectsLimitsOfSize, forget₂PreservesColimitsOfSize, forget₂AddCommGroup_preservesLimitsOfSize, forget₂_addCommGrp_essSurj, forget₂AddCommGroup_reflectsLimitOfShape, HasColimit.colimitCocone_Îč_app, forget₂_addCommGroup_full, FGModuleCat.instFiniteCarrierSigmaObjModuleCatOfFinite, smul_naturality, HasColimit.colimitCocone_pt_isModule, CategoryTheory.preadditiveYoneda_obj, forget₂AddCommGroup_preservesLimits, forget₂_obj, CategoryTheory.whiskering_linearCoyoneda₂, smulNatTrans_apply_app, FGModuleCat.instFiniteCarrierColimitModuleCatCompForget₂LinearMapIdObjIsFG, HasColimit.instPreservesColimitAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrier, FilteredColimits.forget₂AddCommGroup_preservesFilteredColimits, forget₂_obj_moduleCat_of, instPreservesColimitsOfSizeAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrierOfHasColimitsOfSizeAddCommGrpMax, HasColimit.coconePointSMul_apply, instReflectsIsomorphismsAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrier, mkOfSMul_smul, reflectsColimitsOfShape, forget₂AddCommGroup_reflectsLimitOfSize, HasColimit.colimitCocone_pt_carrier, forget₂_addCommGrp_additive, forget₂_reflectsLimits, forget₂PreservesColimitsOfShape, forget₂AddCommGroup_reflectsLimit, forget₂AddCommGroup_preservesLimit, CategoryTheory.whiskering_linearYoneda₂, HasColimit.reflectsColimit, forget₂AddCommGroupIsEquivalence, CategoryTheory.preadditiveCoyoneda_obj, CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForget₂LinearMapIdCarrierAddMonoidHomCarrier, forget₂_map
homAddEquiv 📖CompOp
4 mathmath: homLinearEquiv_symm_apply, homAddEquiv_symm_apply_hom, homLinearEquiv_apply, homAddEquiv_apply
homEquiv 📖CompOp—
homLinearEquiv 📖CompOp
5 mathmath: homLinearEquiv_symm_apply, Hom.hom₂_apply, homLinearEquiv_apply, monoidalClosed_pre_app, ihom_ev_app
homMk 📖CompOp
3 mathmath: HasColimit.colimitCocone_Îč_app, forget₂_map_homMk, homMk_hom_apply
instAddCommGroupCarrierMkOfSMul' 📖CompOp
1 mathmath: HasColimit.colimitCocone_pt_isAddCommGroup
instAddCommGroupHom 📖CompOp
10 mathmath: FGModuleCat.instFiniteHomModuleCatObjIsFG, homLinearEquiv_symm_apply, FGModuleCat.ihom_obj, hom_sum, Hom.hom₂_apply, homLinearEquiv_apply, ofHom₂_hom_apply_hom, ofHom₂_compr₂, monoidalClosed_pre_app, ihom_ev_app
instAddHom 📖CompOp
9 mathmath: PresheafOfModules.add_app, homLinearEquiv_symm_apply, homAddEquiv_symm_apply_hom, hom_add, AlgebraicGeometry.tilde.map_add, homLinearEquiv_apply, homAddEquiv_apply, semilinearMapAddEquiv_symm_apply_apply, semilinearMapAddEquiv_apply
instCoeSortType 📖CompOp—
instConcreteCategoryLinearMapIdCarrier 📖CompOp
427 mathmath: HasColimit.colimitCocone_pt_isAddCommGroup, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, Representation.repOfTprodIso_inv_apply, instReflectsIsomorphismsForgetLinearMapIdCarrier, forget_preservesLimits, CommRingCat.KaehlerDifferential.map_d, MonoidalCategory.braiding_hom_apply, restrictScalars.map_apply, forget₂_reflectsLimitsOfSize, groupCohomology.isoCocycles₁_hom_comp_i_apply, forget_preservesLimitsOfSize, groupHomology.d₁₀_single_one, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, forget₂PreservesColimitsOfSize, Rep.diagonalSuccIsoFree_inv_hom_single, Representation.repOfTprodIso_apply, freeHomEquiv_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, forget₂AddCommGroup_preservesLimitsOfSize, groupCohomology.toCocycles_comp_isoCocycles₂_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, LightCondensed.forget_obj_val_map, groupHomology.d₃₂_single, extendScalarsId_hom_app_one_tmul, groupHomology.mapCycles₁_comp_apply, groupHomology.cyclesIso₀_inv_comp_iCycles_apply, Îč_coprodIsoDirectSum_hom_apply, restrictScalarsComp'App_hom_apply, PresheafOfModules.epi_iff_surjective, LightCondensed.ihomPoints_symm_comp, CategoryTheory.whiskering_linearCoyoneda, cokernel_π_cokernelIsoRangeQuotient_hom_apply, AlternatingMap.postcomp_apply, linearIndependent_shortExact, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, monoidalClosed_uncurry, Rep.diagonalHomEquiv_symm_apply, CondensedMod.isDiscrete_tfae, groupCohomology.coe_mapCocycles₁, PresheafOfModules.pushforward_map_app_apply, FGModuleCat.instPreservesFiniteColimitsModuleCatForget₂LinearMapIdCarrierObjIsFG, PresheafOfModules.sections_property, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, forget_preservesEpimorphisms, PresheafOfModules.Derivation.d_map, QuadraticModuleCat.forget₂_map_associator_inv, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, groupCohomology.cocycles₂.d₂₃_apply, extendRestrictScalarsAdj_homEquiv_apply, groupHomology.d₃₂_single_one_thd, groupHomology.isoCycles₁_inv_comp_iCycles_apply, forget₂_addCommGrp_essSurj, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.d₁₂_comp_d₂₃_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, PresheafOfModules.congr_map_apply, PresheafOfModules.freeYonedaEquiv_symm_app, groupCohomology.eq_d₂₃_comp_inv_apply, groupCohomology.eq_d₁₂_comp_inv_apply, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, PresheafOfModules.restrictScalarsObj_map, groupHomology.chains₁ToCoinvariantsKer_surjective, Profinite.NobelingProof.GoodProducts.linearIndependent_comp_of_eval, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, forget₂AddCommGroup_reflectsLimitOfShape, forget_reflectsLimitsOfSize, ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, forget_preservesMonomorphisms, groupCohomology.mapCocycles₂_comp_i_apply, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom_apply, MonoidalCategory.associator_hom_apply, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, Rep.norm_comm_apply, groupHomology.cycles₁IsoOfIsTrivial_hom_apply, HasColimit.colimitCocone_Îč_app, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_apply, MonoidalCategory.tensorHom_tmul, groupHomology.d₂₁_single_inv_mul_ρ_add_single, QuadraticModuleCat.forget₂_map, forget₂_addCommGroup_full, PresheafOfModules.sectionsMap_coe, groupHomology.d₁₀_comp_coinvariantsMk_apply, Rep.diagonalSuccIsoFree_inv_hom_single_single, groupCohomology.H1IsoOfIsTrivial_inv_apply, PresheafOfModules.map_comp_apply, biprodIsoProd_inv_comp_snd_apply, PresheafOfModules.pushforward_map_app_apply', groupCohomology.H2π_comp_map_apply, FDRep.instPreservesFiniteColimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, FGModuleCat.instFiniteCarrierSigmaObjModuleCatOfFinite, uliftFunctorForgetIso_hom_app, smul_naturality, CategoryTheory.ShortComplex.moduleCat_zero_apply, exteriorPower.desc_mk, PresheafOfModules.unit_map_one, HasColimit.colimitCocone_pt_isModule, CategoryTheory.preadditiveYoneda_obj, Rep.standardComplex.ΔToSingle₀_comp_eq, Rep.coindVEquiv_symm_apply_coe, groupCohomology.H1IsoOfIsTrivial_H1π_apply_apply, imageIsoRange_inv_image_Îč_apply, CondensedMod.isDiscrete_iff_isDiscrete_forget, PresheafOfModules.map_smul, FGModuleCat.FGModuleCatEvaluation_apply, epi_iff_surjective, PresheafOfModules.Monoidal.tensorObj_map_tmul, exteriorPower.map_mk, id_apply, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, FGModuleCat.instPreservesFiniteLimitsModuleCatForget₂LinearMapIdCarrierObjIsFG, groupCohomology.d₁₂_apply_mem_cocycles₂, hom_inv_apply, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, monoidalClosed_curry, groupCohomology.d₀₁_apply_mem_cocycles₁, MonoidalCategory.leftUnitor_hom_apply, exteriorPower.iso₀_hom_apply, groupHomology.cyclesMap_comp_cyclesIso₀_hom_apply, Rep.applyAsHom_comm_apply, groupHomology.d₂₁_single_inv_self_ρ_sub_self_inv, groupHomology.chainsMap_f_single, restrictScalarsId'App_hom_apply, groupCohomology.subtype_comp_d₀₁_apply, SheafOfModules.pushforwardComp_inv_app_val_app, FilteredColimits.forget_preservesFilteredColimits, groupCohomology.H2π_eq_iff, groupHomology.toCycles_comp_isoCycles₁_hom_apply, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_zero_iff, PresheafOfModules.mono_iff_surjective, Rep.indToCoindAux_comm, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, groupHomology.cyclesIso₀_comp_H0π_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_assoc_apply, groupHomology.eq_d₃₂_comp_inv_apply, CondensedMod.epi_iff_surjective_on_stonean, inv_hom_apply, forget₂AddCommGroup_preservesLimits, groupHomology.mapCycles₁_id_comp_apply, PresheafOfModules.presheaf_map_apply_coe, FGModuleCat.instFiniteCarrierLimitModuleCatCompForget₂LinearMapIdObjIsFG, mono_iff_injective, forget₂_obj, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, PresheafOfModules.forgetToPresheafModuleCatObjMap_apply, groupHomology.mapCycles₁_comp_i_apply, SheafOfModules.pushforwardCongr_hom_app_val_app, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, AlgCat.forget₂Module_preservesLimitsOfSize, comp_apply, restrictScalarsCongr_hom_app, kernelIsoKer_inv_kernel_Îč_apply, groupHomology.cyclesIso₀_inv_comp_cyclesMap_apply, CategoryTheory.whiskering_linearYoneda, MonoidalCategory.rightUnitor_hom_apply, CoalgCat.MonoidalCategory.inducingFunctorData_ÎŒIso, CoalgCat.MonoidalCategory.inducingFunctorData_ΔIso, FilteredColimits.M.mk_map, groupCohomology.π_comp_H0Iso_hom_apply, groupHomology.coe_mapCycles₂, CategoryTheory.whiskering_linearCoyoneda₂, groupCohomology.isoCocycles₁_inv_comp_iCocycles_apply, groupHomology.H1π_comp_map_apply, FGModuleCat.FGModuleCatCoevaluation_apply_one, groupHomology.π_comp_H0Iso_hom_apply, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, groupCohomology.eq_d₀₁_comp_inv_apply, MonoidalCategory.tensorLift_tmul, Rep.freeLiftLEquiv_apply, PresheafOfModules.surjective_of_epi, FGModuleCat.instFiniteCarrierPiObjModuleCatOfFinite, adj_homEquiv, LightCondensed.forget_map_val_app, groupHomology.π_comp_H0IsoOfIsTrivial_hom_apply, piIsoPi_inv_kernel_Îč_apply, MonModuleEquivalenceAlgebra.functor_map_hom_apply, CondensedMod.hom_naturality_apply, lof_coprodIsoDirectSum_inv_apply, FDRep.instFaithfulRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Derivation.desc_d, QuadraticModuleCat.forget₂_map_associator_hom, PresheafOfModules.injective_of_mono, free_Δ_one, groupCohomology.norm_ofAlgebraAutOnUnits_eq, PresheafOfModules.pushforward_obj_map_apply, groupHomology.d₂₁_comp_d₁₀_apply, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_liftK_hom, groupHomology.mapCycles₂_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, Rep.linearization_η_hom_apply, smulNatTrans_apply_app, forget_reflectsLimits, uliftFunctorForgetIso_inv_app, groupHomology.H2π_eq_iff, FGModuleCat.instAdditiveModuleCatForget₂LinearMapIdCarrierObjIsFG, groupHomology.H1AddEquivOfIsTrivial_single, PresheafOfModules.unitHomEquiv_apply_coe, FreeMonoidal.ΔIso_inv_freeMk, groupHomology.isoCycles₂_hom_comp_i_apply, groupCohomology.π_comp_H0IsoOfIsTrivial_hom_apply, SheafOfModules.pushforwardCongr_inv_app_val_app, groupCohomology.isoCocycles₂_inv_comp_iCocycles_apply, free_η_freeMk, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_apply, groupHomology.inhomogeneousChains.d_single, exteriorPower.iso₁_hom_apply, SheafOfModules.pushforwardPushforwardAdj_unit_app_val_app, QuadraticModuleCat.forget₂_obj, FGModuleCat.instFiniteCarrierColimitModuleCatCompForget₂LinearMapIdObjIsFG, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_apply, groupHomology.π_comp_H1Iso_hom_apply, groupCohomology.map_id_comp_H0Iso_hom_apply, forget_obj, PresheafOfModules.toPresheaf_map_app_apply, CategoryTheory.ShortComplex.ShortExact.moduleCat_exact_iff_function_exact, groupHomology.cyclesMap_comp_isoCycles₂_hom_apply, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_assoc_apply, HasColimit.instPreservesColimitAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrier, FilteredColimits.forget₂AddCommGroup_preservesFilteredColimits, instIsRightAdjointForgetLinearMapIdCarrier, ExtendScalars.map_tmul, FilteredColimits.forget_reflectsFilteredColimits, free_ÎŒ_freeMk_tmul_freeMk, forget₂_obj_moduleCat_of, CategoryTheory.Iso.toLinearEquiv_apply, SheafOfModules.pushforwardComp_hom_app_val_app, groupHomology.isoCycles₁_hom_comp_i_apply, SheafOfModules.Presentation.map_relations_I, instPreservesColimitsOfSizeAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrierOfHasColimitsOfSizeAddCommGrpMax, FreeMonoidal.ÎŒIso_hom_freeMk_tmul_freeMk, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, MonoidalCategory.rightUnitor_inv_apply, groupCohomology.H1π_eq_zero_iff, Profinite.NobelingProof.GoodProducts.square_commutes, groupHomology.d₃₂_single_one_fst, Rep.coind'_ext_iff, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom_apply, PresheafOfModules.Elements.fromFreeYoneda_app_apply, HasColimit.coconePointSMul_apply, groupHomology.d₂₁_single_self_inv_ρ_sub_inv_self, SheafOfModules.Presentation.mapRelations_mapGenerators, groupHomology.H1ToTensorOfIsTrivial_H1π_single, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, groupCohomology.cocyclesMk₁_eq, AlgCat.forget₂_module_obj, MonoidalCategory.leftUnitor_inv_apply, instReflectsIsomorphismsAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrier, SheafOfModules.relationsOfIsCokernelFree_I, MonModuleEquivalenceAlgebra.algebraMap, MonoidalCategory.tensorÎŒ_apply, groupHomology.d₂₁_apply_mem_cycles₁, ihom_map_apply, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCycles₁_hom_apply, groupHomology.toCycles_comp_isoCycles₂_hom_apply, groupCohomology.H2π_eq_zero_iff, Rep.standardComplex.quasiIso_forget₂_ΔToSingle₀, groupCohomology.H1π_comp_map_apply, Rep.leftRegularHom_hom_single, CoalgCat.forget₂_obj, PresheafOfModules.Îč_fromFreeYonedaCoproduct_apply, CategoryTheory.ShortComplex.moduleCat_exact_iff, groupHomology.isoCycles₂_inv_comp_iCycles_apply, range_mkQ_cokernelIsoRangeQuotient_inv_apply, mkOfSMul_smul, kernelIsoKer_hom_ker_subtype_apply, groupHomology.cyclesMk₂_eq, groupHomology.H1π_eq_zero_iff, LightCondMod.hom_naturality_apply, groupHomology.d₂₁_single_one_fst, SheafOfModules.unitToPushforwardObjUnit_val_app_apply, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_apply, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_iff, piIsoPi_hom_ker_subtype_apply, reflectsColimitsOfShape, MonoidalCategory.whiskerRight_apply, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, free_ÎŽ_freeMk, forget₂AddCommGroup_reflectsLimitOfSize, CoalgCat.forget₂_map, Rep.leftRegularHomEquiv_symm_single, groupCohomology.cocyclesMk₂_eq, LinearEquiv.toFGModuleCatIso_hom, TopModuleCat.instIsRightAdjointModuleCatForget₂ContinuousLinearMapIdCarrierLinearMap, AlgCat.forget₂Module_preservesLimits, groupHomology.d₃₂_apply_mem_cycles₂, ExtendRestrictScalarsAdj.HomEquiv.evalAt_apply, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, TopModuleCat.instIsLeftAdjointModuleCatForget₂ContinuousLinearMapIdCarrierLinearMap, groupCohomology.toCocycles_comp_isoCocycles₁_hom_apply, groupHomology.map_id_comp_H0Iso_hom_apply, groupHomology.cyclesMk₁_eq, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, LightCondensed.ihom_map_val_app, FreeMonoidal.ÎŒIso_inv_freeMk, groupCohomology.mapCocycles₁_comp_i_apply, groupHomology.mapCycles₂_id_comp_apply, FGModuleCat.instLinearModuleCatForget₂LinearMapIdCarrierObjIsFG, Rep.hom_comm_apply, SheafOfModules.pushforwardNatTrans_app_val_app, groupHomology.H2π_comp_map_apply, HasColimit.colimitCocone_pt_carrier, CondensedMod.epi_iff_locallySurjective_on_compHaus, forget₂_addCommGrp_additive, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, groupCohomology.π_comp_H2Iso_hom_apply, HasLimit.lift_hom_apply, AlgCat.forget₂_module_map, FDRep.forget₂_ρ, extendScalarsComp_hom_app_one_tmul, groupCohomology.π_comp_H1Iso_hom_apply, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, FDRep.instPreservesFiniteLimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, groupHomology.d₂₁_single_one_snd, SheafOfModules.pushforwardPushforwardEquivalence_unit_app_val_app, groupHomology.π_map_apply, groupHomology.d₃₂_single_one_snd, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, groupHomology.π_comp_H2Iso_hom_apply, SheafOfModules.relationsOfIsCokernelFree_s, forget₂_reflectsLimits, forget₂PreservesColimitsOfShape, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, biproductIsoPi_inv_comp_π_apply, Rep.leftRegularHomEquiv_apply, PresheafOfModules.pushforward_obj_map_apply', forget₂AddCommGroup_reflectsLimit, groupHomology.coe_mapCycles₁, groupCohomology.d₀₁_comp_d₁₂_apply, free_map_apply, groupHomology.mapCycles₂_comp_i_apply, groupCohomology.cocyclesIso₀_hom_comp_f_apply, SheafOfModules.pushforwardPushforwardAdj_counit_app_val_app, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_apply, groupHomology.d₁₀_single_inv, groupHomology.mkH1OfIsTrivial_apply, groupCohomology.π_map_apply, CategoryTheory.Presieve.FamilyOfElements.isCompatible_map_smul_aux, PresheafOfModules.freeYonedaEquiv_comp, forget₂AddCommGroup_preservesLimit, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_iff, FreeMonoidal.ΔIso_hom_one, Rep.freeLift_hom_single_single, groupHomology.π_comp_H1Iso_inv_apply, FGModuleCat.instFullModuleCatForget₂LinearMapIdCarrierObjIsFG, groupCohomology.isoCocycles₂_hom_comp_i_apply, extendRestrictScalarsAdj_unit_app_apply, Rep.diagonalHomEquiv_apply, groupHomology.d₂₁_single, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, SheafOfModules.Presentation.IsFinite.finite_relations, groupHomology.cycles₁IsoOfIsTrivial_inv_apply, groupHomology.eq_d₂₁_comp_inv_apply, Rep.epi_iff_surjective, SheafOfModules.pushforwardNatTrans_app_val_app_apply, CategoryTheory.whiskering_linearYoneda₂, MonoidalCategory.whiskerLeft_apply, groupHomology.cyclesMk₀_eq, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_apply, forget_map, groupHomology.chainsMap_f_0_comp_chainsIso₀_apply, span_rightExact, CommRingCat.KaehlerDifferential.ext_iff, groupCohomology.cocyclesMk₀_eq, HasColimit.reflectsColimit, PresheafOfModules.naturality_apply, extendScalarsId_inv_app_apply, semilinearMapAddEquiv_symm_apply_apply, PresheafOfModules.fromFreeYonedaCoproduct_app_mk, MonoidalCategory.braiding_inv_apply, Rep.diagonalSuccIsoFree_hom_hom_single, Rep.free_ext_iff, Rep.instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, ofHom_apply, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, restrictScalarsCongr_inv_app, imageIsoRange_hom_subtype_apply, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, forget₂AddCommGroupIsEquivalence, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, groupHomology.d₂₁_single_ρ_add_single_inv_mul, Rep.linearization_map_hom_single, CategoryTheory.preadditiveCoyoneda_obj, groupHomology.eq_d₁₀_comp_inv_apply, LinearEquiv.toFGModuleCatIso_inv, RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply, SheafOfModules.pushforwardPushforwardEquivalence_counit_app_val_app, groupHomology.H0π_comp_H0Iso_hom_apply, Rep.barComplex.d_single, freeDesc_apply, CategoryTheory.ShortComplex.ShortExact.moduleCat_surjective_g, Rep.mono_iff_injective, FDRep.dualTensorIsoLinHom_hom_hom, ExtendScalars.hom_ext_iff, groupCohomology.coe_mapCocycles₂, toKernelSubobject_arrow, Condensed.instAB4CondensedMod, groupCohomology.H1π_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, Rep.instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, CategoryTheory.ShortComplex.ShortExact.moduleCat_injective_f, groupHomology.H0π_comp_map_apply, restrictScalarsId'App_inv_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, groupHomology.π_comp_H2Iso_inv_apply, FDRep.instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, restrictScalarsComp'App_inv_apply, CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForget₂LinearMapIdCarrierAddMonoidHomCarrier, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, groupHomology.d₁₀_single, groupCohomology.cocycles₁.d₁₂_apply, FilteredColimits.colimit_add_mk_eq, free_hom_ext_iff, groupHomology.H2π_eq_zero_iff, MonoidalCategory.associator_inv_apply, groupHomology.H1π_eq_iff, biprodIsoProd_inv_comp_fst_apply, groupHomology.d₃₂_comp_d₂₁_apply, CoextendScalars.map_apply, SheafOfModules.unitHomEquiv_apply_coe, groupHomology.chainsMap_f_2_comp_chainsIso₂_apply, forget₂_map
instInhabited 📖CompOp—
instLinear 📖CompOp
9 mathmath: Rep.instLinearModuleCatObjFunctorCoinvariantsTensor, FGModuleCat.instFiniteHom, Rep.instLinearModuleCatCoinvariantsFunctor, Rep.instLinearModuleCatInvariantsFunctor, instMonoidalLinear, finite_ext, FGModuleCat.instLinearModuleCatForget₂LinearMapIdCarrierObjIsFG, ofHom₂_compr₂, instLinearUliftFunctor
instModuleCarrierMkOfSMul' 📖CompOp
1 mathmath: HasColimit.colimitCocone_pt_isModule
instNegHom 📖CompOp
3 mathmath: PresheafOfModules.neg_app, AlgebraicGeometry.tilde.map_neg, hom_neg
instPreadditive 📖CompOp
473 mathmath: groupHomology.mapShortComplexH2_τ₁, Rep.resCoindHomEquiv_symm_apply_hom, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, Rep.resCoindHomEquiv_apply_hom, groupCohomology.mapShortComplexH1_τ₂, groupHomology.π_comp_H2Iso_hom_assoc, CategoryTheory.linearCoyoneda_obj_additive, biproductIsoPi_inv_comp_π, simple_of_finrank_eq_one, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom, CategoryTheory.additive_yonedaObj, groupCohomology.toCocycles_comp_isoCocycles₁_hom, Rep.MonoidalClosed.linearHomEquiv_symm_hom, groupCohomology.isoCocycles₁_hom_comp_i_apply, MoritaEquivalence.linear, cokernel_π_ext, groupHomology.mapShortComplexH2_id, groupHomology.shortComplexH1_f, groupCohomology.inhomogeneousCochains.d_def, groupCohomology.π_comp_H0IsoOfIsTrivial_hom_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, groupCohomology.cocyclesIso₀_hom_comp_f, groupCohomology.eq_d₀₁_comp_inv, groupHomology.mapShortComplexH1_zero, FDRep.endRingEquiv_symm_comp_ρ, groupCohomology.π_comp_H1Iso_hom_assoc, groupHomology.mapShortComplexH2_zero, groupCohomology.eq_d₁₂_comp_inv, cokernel_π_cokernelIsoRangeQuotient_hom_apply, CategoryTheory.ShortComplex.moduleCatMk_X₁_carrier, groupCohomology.instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor, groupCohomology.mapCocycles₂_comp_i, groupHomology.H1CoresCoinf_exact, groupHomology.eq_d₃₂_comp_inv, CategoryTheory.ShortComplex.moduleCatMk_X₁_isAddCommGroup, groupHomology.chainsMap_id, Rep.barComplex.d_def, Rep.diagonalHomEquiv_symm_apply, groupCohomology.H0IsoOfIsTrivial_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_i_hom, groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_g, groupHomology.comp_d₂₁_eq, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_assoc, CategoryTheory.ShortComplex.moduleCatMk_X₂_isModule, groupHomology.toCycles_comp_isoCycles₂_hom_assoc, groupHomology.H1CoresCoinf_X₃, groupCohomology.mapShortComplexH1_τ₃, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂, groupCohomology.cochainsMap_comp, groupCohomology.comp_d₁₂_eq, groupHomology.π_comp_H1Iso_inv, CategoryTheory.ShortComplex.moduleCatMk_g, groupHomology.isoCycles₁_inv_comp_iCycles_apply, groupHomology.instPreservesZeroMorphismsRepModuleCatFunctor, groupCohomology.dArrowIso₀₁_inv_right, groupCohomology.map_H0Iso_hom_f_apply, shortExact_projectiveShortComplex, groupCohomology.eq_d₂₃_comp_inv_assoc, groupCohomology.eq_d₂₃_comp_inv_apply, groupCohomology.eq_d₁₂_comp_inv_apply, groupHomology.mapShortComplexH1_τ₂, Rep.standardComplex.d_eq, endRingEquiv_symm_apply_hom, groupHomology.H1CoresCoinfOfTrivial_X₁, groupHomology.chainsMap_id_f_map_mono, groupCohomology.mapShortComplexH2_comp_assoc, Rep.FiniteCyclicGroup.chainComplexFunctor_obj, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupCohomology.mapCocycles₂_comp_i_apply, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, groupHomology.d₁₀ArrowIso_hom_left, AlgebraicGeometry.instAdditiveModuleCatCarrierModulesSpecOfFunctor, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_apply, instAdditiveLocalizationLocalizedModule_functor, groupCohomology.instMonoModuleCatFH1InfRes, smulShortComplex_X₃_isAddCommGroup, groupCohomology.cocyclesIso₀_inv_comp_iCocycles, groupCohomology.mapCocycles₂_comp_i_assoc, groupHomology.π_comp_H2Iso_inv_assoc, biprodIsoProd_inv_comp_snd_apply, groupHomology.chainsMap_f_3_comp_chainsIso₃, groupHomology.eq_d₂₁_comp_inv, groupHomology.shortComplexH2_f, Rep.instLinearModuleCatObjFunctorCoinvariantsTensor, Profinite.NobelingProof.succ_exact, groupCohomology.dArrowIso₀₁_hom_right, Rep.MonoidalClosed.linearHomEquivComm_hom, CategoryTheory.ShortComplex.moduleCat_zero_apply, groupCohomology.toCocycles_comp_isoCocycles₂_hom, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_assoc, groupHomology.mapCycles₁_comp_i, groupCohomology.shortComplexH0_f, groupCohomology.shortComplexH0_g, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, groupCohomology.shortComplexH1_f, Rep.standardComplex.ΔToSingle₀_comp_eq, groupHomology.inhomogeneousChains.d_def, Rep.coindVEquiv_symm_apply_coe, groupCohomology.comp_d₂₃_eq, cokernel_π_cokernelIsoRangeQuotient_hom, groupHomology.H1CoresCoinf_X₁, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_assoc, CategoryTheory.ShortComplex.moduleCatMk_X₃_isAddCommGroup, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc, Module.Flat.iff_rTensor_preserves_shortComplex_exact, groupHomology.chainsMap_f_single, groupCohomology.π_comp_H0IsoOfIsTrivial_hom, cokernel_π_imageSubobject_ext, groupCohomology.cochainsMap_f_map_epi, groupCohomology.comp_d₀₁_eq, LinearMap.shortExact_shortComplexKer, Module.Flat.iff_lTensor_preserves_shortComplex_exact, CategoryTheory.ShortComplex.moduleCatMk_X₃_carrier, groupHomology.mapCycles₂_comp_i, groupCohomology.map_H0Iso_hom_f, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_zero_iff, Rep.barResolution_complex, FGModuleCat.instFiniteHom, groupCohomology.cochainsMap_zero, smulShortComplex_X₁, groupCohomology.dArrowIso₀₁_inv_left, groupCohomology.π_comp_H1Iso_hom, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_assoc_apply, groupHomology.eq_d₃₂_comp_inv_apply, Rep.instAdditiveModuleCatObjFunctorCoinvariantsTensor, groupCohomology.H1InfRes_X₂, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i, groupHomology.H1CoresCoinf_g, groupCohomology.cochainsMap_id_comp, smulShortComplex_g, groupCohomology.mapShortComplexH2_comp, groupCohomology.shortComplexH2_f, simple_iff_isSimpleModule, groupHomology.H1CoresCoinfOfTrivial_X₂, groupHomology.H1CoresCoinf_X₂, groupCohomology.cochainsMap_comp_assoc, groupHomology.π_comp_H2Iso_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, groupHomology.mapCycles₁_comp_i_apply, groupHomology.chainsMap_f_map_epi, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, kernelIsoKer_inv_kernel_Îč_apply, groupHomology.isoShortComplexH1_hom, groupCohomology.isoCocycles₂_hom_comp_i, Rep.resIndAdjunction_homEquiv_symm_apply, groupCohomology.isoCocycles₁_inv_comp_iCocycles_apply, groupHomology.comp_d₁₀_eq, Rep.instLinearModuleCatCoinvariantsFunctor, Rep.coindMap'_hom, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_X₂, groupCohomology.dArrowIso₀₁_hom_left, groupHomology.toCycles_comp_isoCycles₁_hom_assoc, groupCohomology.eq_d₀₁_comp_inv_apply, groupCohomology.H1InfRes_X₃, simple_of_isSimpleModule, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_assoc, Rep.freeLiftLEquiv_apply, groupHomology.chainsFunctor_obj, groupCohomology.instMonoModuleCatFShortComplexH0, biprodIsoProd_inv_comp_snd, Rep.instPreservesZeroMorphismsModuleCatInvariantsFunctor, Rep.FiniteCyclicGroup.chainComplexFunctor_map_f, groupHomology.d₁₀ArrowIso_inv_right, range_mkQ_cokernelIsoRangeQuotient_inv, groupCohomology.mapShortComplexH2_zero, Rep.resIndAdjunction_homEquiv_apply, groupHomology.chainsMap_id_f_map_epi, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, groupCohomology.cochainsMap_id_f_map_mono, groupHomology.chainsMap_id_comp, Rep.leftRegularHomEquiv_symm_apply, groupHomology.instEpiModuleCatGH1CoresCoinf, groupCohomology.mapShortComplexH1_id, Rep.coinvariantsShortComplex_g, FGModuleCat.instAdditiveModuleCatForget₂LinearMapIdCarrierObjIsFG, groupHomology.mapShortComplexH1_id_comp, groupHomology.mapShortComplexH1_comp, Rep.coindResAdjunction_homEquiv_apply, groupHomology.isoCycles₂_hom_comp_i_apply, groupCohomology.π_comp_H0IsoOfIsTrivial_hom_apply, Rep.coinvariantsShortComplex_f, groupCohomology.toCocycles_comp_isoCocycles₁_hom_assoc, groupCohomology.isoCocycles₂_inv_comp_iCocycles_apply, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_assoc, groupCohomology.isoCocycles₁_inv_comp_iCocycles, groupHomology.eq_d₂₁_comp_inv_assoc, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom, smulShortComplex_X₃_carrier, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_apply, CategoryTheory.preservesHomology_preadditiveCoyonedaObj_of_projective, Algebra.instLinearRestrictScalars, groupCohomology.mapShortComplexH2_τ₁, groupHomology.cyclesIso₀_inv_comp_iCycles, Representation.coind'_apply_apply, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_apply, groupCohomology.mapShortComplexH2_id_comp_assoc, groupHomology.π_comp_H1Iso_hom_apply, Rep.coindIso_inv_hom_hom, groupHomology.mapShortComplexH2_comp, groupHomology.chainsMap_id_f_hom_eq_mapRange, groupHomology.toCycles_comp_isoCycles₂_hom, CategoryTheory.ShortComplex.ShortExact.moduleCat_exact_iff_function_exact, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_assoc_apply, groupHomology.mapShortComplexH2_τ₂, groupHomology.chainsMap_f_map_mono, groupHomology.shortComplexH0_f, groupHomology.eq_d₁₀_comp_inv, FDRep.instHasKernels, groupHomology.isoShortComplexH1_inv, groupHomology.eq_d₁₀_comp_inv_assoc, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, groupHomology.chainsMap_f_1_comp_chainsIso₁_assoc, groupHomology.isoCycles₁_hom_comp_i_apply, groupHomology.mapShortComplexH1_τ₁, hasCokernels_moduleCat, groupCohomology.cocyclesIso₀_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, CategoryTheory.ShortComplex.exact_iff_surjective_moduleCatToCycles, groupCohomology.cochainsMap_f, groupHomology.chainsMap_comp, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, Rep.instLinearModuleCatInvariantsFunctor, kernelIsoKer_hom_ker_subtype, smulShortComplex_f, groupHomology.chainsMap_f_3_comp_chainsIso₃_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, groupCohomology.cocyclesMk₁_eq, groupHomology.chainsMap_f_0_comp_chainsIso₀_assoc, groupCohomology.H1InfRes_X₁, groupHomology.shortComplexH0_exact, instAdditiveRestrictScalars, PresheafOfModules.instAdditiveModuleCatCarrierObjOppositeRingCatEvaluation, groupCohomology.mapCocycles₁_comp_i_assoc, Rep.standardComplex.quasiIso_forget₂_ΔToSingle₀, instAdditiveUliftFunctor, groupHomology.eq_d₃₂_comp_inv_assoc, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f, groupCohomology.π_comp_H2Iso_hom_assoc, groupCohomology.H1InfRes_g, CategoryTheory.preservesHomology_preadditiveYonedaObj_of_injective, Rep.standardComplex.d_comp_Δ, groupCohomology.toCocycles_comp_isoCocycles₂_hom_assoc, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_X₃, FDRep.simple_iff_end_is_rank_one, CategoryTheory.linearYoneda_obj_additive, groupHomology.shortComplexH2_g, groupCohomology.mapShortComplexH1_id_comp, CategoryTheory.ShortComplex.moduleCat_exact_iff_ker_sub_range, CategoryTheory.ShortComplex.moduleCat_exact_iff, groupHomology.isoCycles₂_inv_comp_iCycles_apply, range_mkQ_cokernelIsoRangeQuotient_inv_apply, groupHomology.isoCycles₂_inv_comp_iCycles_assoc, groupCohomology.instPreservesZeroMorphismsRepModuleCatFunctor, groupHomology.isoShortComplexH2_hom, Rep.coindResAdjunction_homEquiv_symm_apply, kernelIsoKer_hom_ker_subtype_apply, groupHomology.cyclesMk₂_eq, groupHomology.chainsMap_f_1_comp_chainsIso₁, Rep.coindVEquiv_apply_hom, groupCohomology.mapShortComplexH1_comp, groupHomology.isoCycles₁_inv_comp_iCycles_assoc, groupHomology.π_comp_H1Iso_hom_assoc, groupHomology.chainsMap_f_2_comp_chainsIso₂, groupHomology.pOpcycles_comp_opcyclesIso_hom, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_apply, groupHomology.π_comp_H2Iso_inv, groupCohomology.eq_d₂₃_comp_inv, instMonoidalLinear, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_iff, groupCohomology.cochainsMap_f_map_mono, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_f, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv, groupCohomology.isoShortComplexH1_hom, groupHomology.mapShortComplexH1_id, groupCohomology.isoCocycles₂_inv_comp_iCocycles, Rep.leftRegularHomEquiv_symm_single, restrictScalarsEquivalenceOfRingEquiv_additive, inhomogeneousCochains.d_eq, groupHomology.H1CoresCoinfOfTrivial_exact, MoritaEquivalence.instAdditiveModuleCatFunctorEqv, Rep.FiniteCyclicGroup.resolution_complex, groupHomology.chainsFunctor_map, groupCohomology.cocyclesMk₂_eq, groupHomology.instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, groupCohomology.cochainsMap_id_f_map_epi, groupHomology.chainsMap_f_hom, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_f'_hom, groupHomology.cyclesMk₁_eq, groupHomology.H1CoresCoinfOfTrivial_f, groupHomology.mapCycles₂_comp_i_assoc, groupCohomology.isoCocycles₁_hom_comp_i, Rep.Action_ρ_eq_ρ, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀, groupCohomology.H1InfRes_exact, groupCohomology.mapShortComplexH2_τ₂, groupCohomology.mapCocycles₁_comp_i_apply, ChainComplex.linearYonedaObj_d, Rep.standardComplex.instQuasiIsoNatΔToSingle₀, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_assoc, Rep.standardComplex.x_projective, CategoryTheory.ShortComplex.moduleCatMk_X₁_isModule, groupCohomology.instAdditiveRepCochainComplexModuleCatNatCochainsFunctor, Rep.MonoidalClosed.linearHomEquiv_hom, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃, FGModuleCat.instLinearModuleCatForget₂LinearMapIdCarrierObjIsFG, CategoryTheory.ShortComplex.moduleCat_exact_iff_range_eq_ker, Rep.FiniteCyclicGroup.resolution_quasiIso, forget₂_addCommGrp_additive, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_X₁, groupHomology.H1CoresCoinfOfTrivial_g, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_K, groupCohomology.mapShortComplexH1_id_comp_assoc, groupCohomology.π_comp_H2Iso_hom_apply, groupCohomology.mapShortComplexH1_zero, IsSMulRegular.smulShortComplex_shortExact, CategoryTheory.ShortComplex.moduleCatMk_f, groupCohomology.mapShortComplexH1_comp_assoc, groupHomology.isoCycles₁_hom_comp_i_assoc, Rep.coinvariantsShortComplex_X₁, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, groupCohomology.isoShortComplexH2_hom, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_assoc, groupCohomology.π_comp_H1Iso_hom_apply, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, groupCohomology.mapShortComplexH2_id_comp, CategoryTheory.ShortComplex.moduleCatMk_X₃_isModule, biprodIsoProd_inv_comp_fst, groupHomology.instEpiModuleCatGShortComplexH0, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, groupHomology.π_comp_H2Iso_hom_apply, FDRep.of_ρ, biproductIsoPi_inv_comp_π_apply, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_π_hom, Rep.leftRegularHomEquiv_apply, groupHomology.isoCycles₁_inv_comp_iCycles, groupHomology.chainsMap_zero, groupHomology.H1CoresCoinfOfTrivial_g_epi, groupHomology.mapShortComplexH2_id_comp, groupHomology.isoShortComplexH2_inv, groupHomology.toCycles_comp_isoCycles₁_hom, groupHomology.chainsMap_f_2_comp_chainsIso₂_assoc, groupHomology.mapCycles₂_comp_i_apply, groupCohomology.cocyclesIso₀_hom_comp_f_apply, groupCohomology.iCocycles_mk, groupHomology.isoCycles₂_hom_comp_i, groupHomology.π_comp_H1Iso_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, groupHomology.isoCycles₂_inv_comp_iCycles, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_apply, groupCohomology.isoCocycles₁_inv_comp_iCocycles_assoc, ofHom₂_compr₂, hasKernels_moduleCat, groupHomology.shortComplexH0_g, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_iff, groupCohomology.mapShortComplexH2_id, groupHomology.d₁₀ArrowIso_hom_right, groupCohomology.shortComplexH0_exact, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_assoc, groupHomology.π_comp_H1Iso_inv_apply, groupCohomology.isoCocycles₂_hom_comp_i_apply, instMonoidalPreadditive, groupHomology.H1CoresCoinfOfTrivial_X₃, Rep.diagonalHomEquiv_apply, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, Rep.freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, groupHomology.eq_d₂₁_comp_inv_apply, CategoryTheory.ShortComplex.moduleCatMk_X₂_carrier, groupCohomology.cochainsFunctor_map, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, groupHomology.cyclesMk₀_eq, groupHomology.isoCycles₁_hom_comp_i, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_apply, groupCohomology.shortComplexH2_g, Rep.coinvariantsShortComplex_X₂, groupHomology.chainsMap_f_0_comp_chainsIso₀_apply, smulShortComplex_X₃_isModule, Rep.indResHomEquiv_apply_hom, groupHomology.mapShortComplexH1_τ₃, instLinearUliftFunctor, groupCohomology.cocyclesMk₀_eq, endRingEquiv_apply, groupHomology.lsingle_comp_chainsMap_f_assoc, groupCohomology.isoShortComplexH1_inv, CategoryTheory.additive_coyonedaObj, groupHomology.cyclesIso₀_inv_comp_iCycles_assoc, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, groupHomology.H1CoresCoinf_f, Rep.ihom_obj_ρ, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁, groupCohomology.cochainsMap_id_comp_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_assoc, groupCohomology.map_H0Iso_hom_f_assoc, CategoryTheory.ShortComplex.Exact.moduleCat_of_range_eq_ker, kernelIsoKer_inv_kernel_Îč, simple_iff_isSimpleModule', groupHomology.shortComplexH1_g, Rep.instPreservesZeroMorphismsModuleCatCoinvariantsFunctor, groupCohomology.eq_d₁₂_comp_inv_assoc, Representation.linHom.invariantsEquivRepHom_apply_hom, groupCohomology.H1InfRes_f, Rep.instAdditiveModuleCatInvariantsFunctor, smulShortComplex_X₂, instFreeCarrierX₂ModuleCatProjectiveShortComplex, Rep.barComplex.d_comp_diagonalSuccIsoFree_inv_eq, groupHomology.d₁₀ArrowIso_inv_left, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π, groupCohomology.mapShortComplexH2_τ₃, groupCohomology.isoShortComplexH2_inv, Algebra.restrictScalarsEquivalenceOfRingEquiv_linear, groupCohomology.isoCocycles₂_hom_comp_i_assoc, groupHomology.eq_d₁₀_comp_inv_apply, Rep.coinvariantsShortComplex_X₃, Rep.coindIso_hom_hom_hom, groupHomology.mapShortComplexH2_τ₃, groupCohomology.eq_d₀₁_comp_inv_assoc, toKernelSubobject_arrow, instHasBinaryBiproducts, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, smulShortComplex_g_epi, groupCohomology.isoCocycles₁_hom_comp_i_assoc, Rep.coinvariantsShortComplex_shortExact, groupHomology.π_comp_H1Iso_inv_assoc, Rep.FiniteCyclicGroup.resolution_π, groupHomology.mapCycles₁_comp_i_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc, groupCohomology.mapShortComplexH1_τ₁, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, smulShortComplex_exact, groupHomology.π_comp_H2Iso_inv_apply, Rep.FiniteCyclicGroup.resolution.π_f, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, Rep.instAdditiveModuleCatCoinvariantsFunctor, groupCohomology.cochainsFunctor_obj, FDRep.endRingEquiv_comp_ρ, CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForget₂LinearMapIdCarrierAddMonoidHomCarrier, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, groupCohomology.mapCocycles₁_comp_i, FDRep.simple_iff_char_is_norm_one, Rep.indResHomEquiv_symm_apply_hom, groupHomology.isoCycles₂_hom_comp_i_assoc, groupHomology.comp_d₃₂_eq, groupCohomology.π_comp_H2Iso_hom, groupHomology.chainsMap_f_0_comp_chainsIso₀, CategoryTheory.ShortComplex.moduleCatMk_X₂_isAddCommGroup, groupCohomology.isoCocycles₂_inv_comp_iCocycles_assoc, instHasFiniteBiproducts, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, biprodIsoProd_inv_comp_fst_apply, FGModuleCat.instIsIsoCoimageImageComparison, groupCohomology.shortComplexH1_g, groupHomology.chainsMap_f, groupHomology.chainsMap_f_2_comp_chainsIso₂_apply, groupCohomology.cochainsMap_id, ChainComplex.linearYonedaObj_X
instSMulCarrierMkOfSMul' 📖CompOp
1 mathmath: mkOfSMul'_smul
instSMulHom 📖CompOp
1 mathmath: hom_smul
instSMulIntHom 📖CompOp
2 mathmath: PresheafOfModules.zsmul_app, hom_zsmul
instSMulNatHom 📖CompOp
1 mathmath: hom_nsmul
instSubHom 📖CompOp
3 mathmath: AlgebraicGeometry.tilde.map_sub, PresheafOfModules.sub_app, hom_sub
instZeroHom 📖CompOp
22 mathmath: hom_zero, groupHomology.map₁_one, groupCohomology.d₀₁_comp_d₁₂, groupHomology.d₃₂_comp_d₂₁_assoc, groupCohomology.map₁_one, groupCohomology.mapCocycles₁_one, groupHomology.d₁₀_comp_coinvariantsMk, groupCohomology.inhomogeneousCochains.d_comp_d, groupCohomology.d₁₂_comp_d₂₃_assoc, groupCohomology.subtype_comp_d₀₁_assoc, groupCohomology.d₁₂_comp_d₂₃, groupHomology.d₂₁_comp_d₁₀, groupHomology.inhomogeneousChains.d_comp_d, groupHomology.d₁₀_eq_zero_of_isTrivial, groupCohomology.d₀₁_comp_d₁₂_assoc, AlgebraicGeometry.tilde.map_zero, groupHomology.d₃₂_comp_d₂₁, groupCohomology.subtype_comp_d₀₁, groupHomology.d₁₀_comp_coinvariantsMk_assoc, groupHomology.d₂₁_comp_d₁₀_assoc, PresheafOfModules.zero_app, groupCohomology.d₀₁_eq_zero
isAddCommGroup 📖CompOp
822 mathmath: HasColimit.colimitCocone_pt_isAddCommGroup, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d, Rep.resCoindHomEquiv_symm_apply_hom, TopModuleCat.hom_cokerπ, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, Representation.repOfTprodIso_inv_apply, Rep.resCoindHomEquiv_apply_hom, hom_zero, instReflectsIsomorphismsForgetLinearMapIdCarrier, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, PresheafOfModules.Sheafify.app_eq_of_isLocallyInjective, of_coe, forget_preservesLimits, TopModuleCat.hom_zero, CommRingCat.KaehlerDifferential.map_d, MonoidalCategory.braiding_hom_apply, biproductIsoPi_inv_comp_π, FilteredColimits.colimit_smul_mk_eq, restrictScalars.map_apply, forget₂_reflectsLimitsOfSize, Rep.MonoidalClosed.linearHomEquiv_symm_hom, groupCohomology.isoCocycles₁_hom_comp_i_apply, ContinuousCohomology.I_obj_V_isAddCommGroup, groupHomology.coinfNatTrans_app, CategoryTheory.Iso.toCoalgEquiv_symm, forget_preservesLimitsOfSize, LinearMap.id_fgModuleCat_comp, groupHomology.d₁₀_single_one, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, forget₂PreservesColimitsOfSize, TopModuleCat.instPreservesLimitTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitOfModuleCatCompLinearMapForget, FGModuleCat.hom_hom_id, Rep.diagonalSuccIsoFree_inv_hom_single, Representation.repOfTprodIso_apply, freeHomEquiv_apply, epi_as_hom''_mkQ, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, forget₂AddCommGroup_preservesLimitsOfSize, toMatrixModCat_map, groupCohomology.toCocycles_comp_isoCocycles₂_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, LightCondensed.forget_obj_val_map, groupCohomology.cocyclesIso₀_hom_comp_f, Rep.resCoindAdjunction_counit_app_hom_hom, CoalgCat.MonoidalCategoryAux.tensorHom_toLinearMap, groupHomology.d₃₂_single, TopModuleCat.hom_zero_apply, Rep.coindToInd_of_support_subset_orbit, extendScalarsId_hom_app_one_tmul, groupHomology.mapCycles₁_comp_apply, groupHomology.cyclesIso₀_inv_comp_iCycles_apply, Rep.leftRegularHom_hom, groupCohomology.π_comp_H0Iso_hom, FDRep.endRingEquiv_symm_comp_ρ, Îč_coprodIsoDirectSum_hom_apply, restrictScalarsComp'App_hom_apply, PresheafOfModules.epi_iff_surjective, LightCondensed.ihomPoints_symm_comp, CategoryTheory.whiskering_linearCoyoneda, cokernel_π_cokernelIsoRangeQuotient_hom_apply, AlternatingMap.postcomp_apply, CategoryTheory.ShortComplex.moduleCatMk_X₁_isAddCommGroup, QuadraticModuleCat.toIsometry_comp, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, monoidalClosed_uncurry, Rep.diagonalHomEquiv_symm_apply, groupCohomology.H0IsoOfIsTrivial_hom, CondensedMod.isDiscrete_tfae, CoalgCat.MonoidalCategoryAux.associator_hom_toLinearMap, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_i_hom, groupCohomology.coe_mapCocycles₁, Iso.homCongr_eq_arrowCongr, CoextendScalars.smul_apply', groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isModule, instSmallSubtypeForallCarrierObjMemSubmoduleSectionsSubmodule, PresheafOfModules.pushforward_map_app_apply, FGModuleCat.instPreservesFiniteColimitsModuleCatForget₂LinearMapIdCarrierObjIsFG, PresheafOfModules.sections_property, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, PresheafOfModules.toSheafify_app_apply', PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, Rep.coinvariantsAdjunction_counit_app, forget_preservesEpimorphisms, PresheafOfModules.Derivation.d_map, QuadraticModuleCat.forget₂_map_associator_inv, LinearMap.comp_id_fgModuleCat, RestrictionCoextensionAdj.HomEquiv.toRestriction_hom_apply, TopModuleCat.instIsRightAdjointTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrier, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, toMatrixModCat_obj_isAddCommGroup, groupCohomology.cocycles₂.d₂₃_apply, groupCohomology.d₀₁_hom_apply, extendRestrictScalarsAdj_homEquiv_apply, groupHomology.d₃₂_single_one_thd, hom_surjective, hom_tensorHom, groupHomology.isoCycles₁_inv_comp_iCycles_apply, CoalgCat.tensorObj_isAddCommGroup, forget₂_addCommGrp_essSurj, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.d₁₂_comp_d₂₃_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, PresheafOfModules.congr_map_apply, PresheafOfModules.freeYonedaEquiv_symm_app, Rep.finsuppToCoinvariantsTensorFree_single, groupCohomology.eq_d₂₃_comp_inv_apply, groupCohomology.eq_d₁₂_comp_inv_apply, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, PresheafOfModules.restrictScalarsObj_map, groupHomology.chains₁ToCoinvariantsKer_surjective, Rep.coinvariantsTensorFreeLEquiv_symm_apply, TopModuleCat.continuousSMul, Profinite.NobelingProof.GoodProducts.linearIndependent_comp_of_eval, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, forget₂AddCommGroup_reflectsLimitOfShape, forget_reflectsLimitsOfSize, ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, Rep.resCoindAdjunction_unit_app_hom_hom, endRingEquiv_symm_apply_hom, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_right, FGModuleCat.instFiniteHomModuleCatObjIsFG, Rep.homEquiv_apply_hom, FilteredColimits.colimit_zero_eq, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, forget_preservesMonomorphisms, groupCohomology.mapCocycles₂_comp_i_apply, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom_apply, MonoidalCategory.associator_hom_apply, CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, Rep.norm_comm_apply, groupHomology.cycles₁IsoOfIsTrivial_hom_apply, HasLimit.productLimitCone_cone_π, HasColimit.colimitCocone_Îč_app, CoalgCat.moduleCat_of_toModuleCat, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_apply, MonoidalCategory.tensorHom_tmul, groupHomology.d₂₁_single_inv_mul_ρ_add_single, QuadraticModuleCat.forget₂_map, PresheafOfModules.Derivation.postcomp_d_apply, smulShortComplex_X₃_isAddCommGroup, forget₂_addCommGroup_full, groupCohomology.cocyclesIso₀_inv_comp_iCocycles, PresheafOfModules.Derivation.d_one, PresheafOfModules.sectionsMap_coe, groupHomology.d₁₀_comp_coinvariantsMk_apply, ExtendRestrictScalarsAdj.Counit.map_hom_apply, Rep.diagonalSuccIsoFree_inv_hom_single_single, groupCohomology.H1IsoOfIsTrivial_inv_apply, PresheafOfModules.Sheafify.map_smul_eq, PresheafOfModules.map_comp_apply, biprodIsoProd_inv_comp_snd_apply, RestrictionCoextensionAdj.counit'_app, PresheafOfModules.pushforward_map_app_apply', PresheafOfModules.Derivation.d_mul, isFG_iff, MonoidalCategory.whiskerLeft_def, groupCohomology.H2π_comp_map_apply, FDRep.instPreservesFiniteColimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.ihom_ev_app_hom, homLinearEquiv_symm_apply, hom_smul, uliftFunctorForgetIso_hom_app, Rep.MonoidalClosed.linearHomEquivComm_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_map_app, smul_naturality, CategoryTheory.ShortComplex.moduleCat_zero_apply, FGModuleCat.hom_comp, ContinuousCohomology.I_obj_ρ_apply, imageIsoRange_hom_subtype, GradedObject.finrankSupport_subset_iff, CategoryTheory.Iso.toIsometryEquiv_toFun, CoextendScalars.smul_apply, groupCohomology.shortComplexH0_f, binaryProductLimitCone_cone_π_app_right, exteriorPower.desc_mk, PresheafOfModules.unit_map_one, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, HasColimit.colimitCocone_pt_isModule, CategoryTheory.preadditiveYoneda_obj, CategoryTheory.linearCoyoneda_obj_obj_isAddCommGroup, CategoryTheory.Abelian.Pseudoelement.ModuleCat.eq_range_of_pseudoequal, Rep.standardComplex.ΔToSingle₀_comp_eq, MonoidalCategory.tensorHom_def, Rep.subtype_hom, Rep.coindVEquiv_symm_apply_coe, groupCohomology.H1IsoOfIsTrivial_H1π_apply_apply, imageIsoRange_inv_image_Îč_apply, CategoryTheory.preadditiveYonedaMap_app, CondensedMod.isDiscrete_iff_isDiscrete_forget, PresheafOfModules.map_smul, FGModuleCat.FGModuleCatEvaluation_apply, epi_iff_surjective, PresheafOfModules.Monoidal.tensorObj_map_tmul, exteriorPower.map_mk, TopModuleCat.ofHom_hom, cokernel_π_cokernelIsoRangeQuotient_hom, id_apply, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, FGModuleCat.instPreservesFiniteLimitsModuleCatForget₂LinearMapIdCarrierObjIsFG, groupCohomology.d₁₂_apply_mem_cocycles₂, Rep.invariantsAdjunction_unit_app, hom_inv_apply, CategoryTheory.ShortComplex.moduleCatMk_X₃_isAddCommGroup, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, monoidalClosed_curry, groupCohomology.d₀₁_apply_mem_cocycles₁, QuadraticModuleCat.instMonoidalCategory.tensorObj_form, CoalgCat.tensorHom_def, Module.Flat.iff_rTensor_preserves_shortComplex_exact, MonoidalCategory.leftUnitor_hom_apply, exteriorPower.iso₀_hom_apply, groupHomology.cyclesMap_comp_cyclesIso₀_hom_apply, Rep.coinvariantsFunctor_obj_carrier, Rep.applyAsHom_comm_apply, groupHomology.d₂₁_single_inv_self_ρ_sub_self_inv, groupHomology.chainsMap_f_single, restrictScalarsId'App_hom_apply, groupCohomology.subtype_comp_d₀₁_apply, ContinuousCohomology.Iobj_ρ_apply, SheafOfModules.pushforwardComp_inv_app_val_app, FilteredColimits.forget_preservesFilteredColimits, groupCohomology.H2π_eq_iff, CoalgCat.toComonObj_X, homAddEquiv_symm_apply_hom, Rep.coinvariantsTensorFreeLEquiv_apply, PresheafOfModules.pushforward₀_obj_obj_isAddCommGroup, groupHomology.toCycles_comp_isoCycles₁_hom_apply, Module.Flat.iff_lTensor_preserves_shortComplex_exact, localizedModule_isLocalizedModule, range_eq_top_of_epi, groupCohomology.map_H0Iso_hom_f, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_zero_iff, PresheafOfModules.mono_iff_surjective, Derivation.d_mul, Rep.indToCoindAux_comm, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, ContinuousCohomology.I_obj_V_isModule, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_left, groupHomology.cyclesIso₀_comp_H0π_apply, CoalgCat.associator_def, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_assoc_apply, groupHomology.eq_d₃₂_comp_inv_apply, CondensedMod.epi_iff_surjective_on_stonean, hom_whiskerRight, hom_inv_associator, FGModuleCat.hom_id, lof_coprodIsoDirectSum_inv, TopModuleCat.hom_add, BialgCat.forget₂_coalgebra_obj, CoalgCat.MonoidalCategoryAux.tensorObj_comul, CoalgCat.comul_def, inv_hom_apply, forget₂AddCommGroup_preservesLimits, directLimitIsColimit_desc, groupHomology.mapCycles₁_id_comp_apply, MonoidalCategory.rightUnitor_def, CategoryTheory.Iso.toLinearEquiv_symm, PresheafOfModules.presheaf_map_apply_coe, smulShortComplex_g, directLimitCocone_pt_isAddCommGroup, CategoryTheory.linearYoneda_obj_obj_isAddCommGroup, PresheafOfModules.Derivation.congr_d, MonoidalCategory.associator_def, FGModuleCat.instFiniteCarrierLimitModuleCatCompForget₂LinearMapIdObjIsFG, mono_iff_injective, forget₂_obj, Rep.indResAdjunction_counit_app_hom_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, Rep.coindToInd_apply, PresheafOfModules.forgetToPresheafModuleCatObjMap_apply, groupHomology.mapCycles₁_comp_i_apply, SheafOfModules.pushforwardCongr_hom_app_val_app, hom_whiskerLeft, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, AlgCat.forget₂Module_preservesLimitsOfSize, comp_apply, restrictScalarsCongr_hom_app, kernelIsoKer_inv_kernel_Îč_apply, ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, groupHomology.cyclesIso₀_inv_comp_cyclesMap_apply, CategoryTheory.whiskering_linearYoneda, MonoidalCategory.rightUnitor_hom_apply, CoalgCat.MonoidalCategory.inducingFunctorData_ÎŒIso, CoalgCat.whiskerRight_def, TopModuleCat.hom_zsmul, CoalgCat.MonoidalCategory.inducingFunctorData_ΔIso, FilteredColimits.M.mk_map, groupCohomology.π_comp_H0Iso_hom_apply, groupHomology.coe_mapCycles₂, CategoryTheory.ShortComplex.Exact.moduleCat_range_eq_ker, CategoryTheory.whiskering_linearCoyoneda₂, groupCohomology.isoCocycles₁_inv_comp_iCocycles_apply, groupHomology.H1π_comp_map_apply, FGModuleCat.FGModuleCatCoevaluation_apply_one, groupHomology.π_comp_H0Iso_hom_apply, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, groupCohomology.eq_d₀₁_comp_inv_apply, MatrixModCat.toModuleCat_obj_carrier, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_assoc, Rep.freeLiftLEquiv_apply, hom_hom_leftUnitor, PresheafOfModules.surjective_of_epi, adj_homEquiv, instIsScalarTowerLocalizationCarrierLocalizedModule, hom_hom_rightUnitor, LightCondensed.forget_map_val_app, biprodIsoProd_inv_comp_snd, groupHomology.π_comp_H0IsoOfIsTrivial_hom_apply, CategoryTheory.Iso.toCoalgEquiv_refl, piIsoPi_inv_kernel_Îč_apply, MonModuleEquivalenceAlgebra.functor_map_hom_apply, ker_eq_bot_of_mono, CondensedMod.hom_naturality_apply, lof_coprodIsoDirectSum_inv_apply, FDRep.instFaithfulRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Derivation.desc_d, range_mkQ_cokernelIsoRangeQuotient_inv, TannakaDuality.FiniteGroup.equivApp_inv, Rep.finsuppTensorRight_hom_hom, QuadraticModuleCat.forget₂_map_associator_hom, PresheafOfModules.injective_of_mono, free_Δ_one, groupCohomology.norm_ofAlgebraAutOnUnits_eq, groupCohomology.π_comp_H0Iso_hom_assoc, imageIsoRange_hom_subtype_assoc, QuadraticModuleCat.toIsometry_whiskerRight, PresheafOfModules.pushforward_obj_map_apply, groupHomology.d₂₁_comp_d₁₀_apply, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_liftK_hom, groupHomology.mapCycles₂_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, CoalgCat.forget_reflects_isos, groupCohomology.d₀₁_ker_eq_invariants, CoalgCat.MonoidalCategoryAux.leftUnitor_hom_toLinearMap, Rep.linearization_η_hom_apply, smulNatTrans_apply_app, FGModuleCat.ihom_obj, TopModuleCat.hom_id, forget_reflectsLimits, TannakaDuality.FiniteGroup.equivApp_hom, uliftFunctorForgetIso_inv_app, CoalgCat.tensorUnit_isAddCommGroup, groupHomology.H2π_eq_iff, FGModuleCat.instAdditiveModuleCatForget₂LinearMapIdCarrierObjIsFG, groupHomology.H1AddEquivOfIsTrivial_single, CoalgCat.ofComonObjCoalgebraStruct_comul, MonoidalCategory.tensorÎŒ_eq_tensorTensorTensorComm, groupHomology.range_d₁₀_eq_coinvariantsKer, QuadraticModuleCat.toIsometry_tensorHom, PresheafOfModules.unitHomEquiv_apply_coe, FreeMonoidal.ΔIso_inv_freeMk, groupHomology.isoCycles₂_hom_comp_i_apply, Rep.ofModuleMonoidAlgebra_obj_ρ, groupCohomology.π_comp_H0IsoOfIsTrivial_hom_apply, QuadraticModuleCat.toIsometry_hom_leftUnitor, Rep.coinvariantsShortComplex_f, SheafOfModules.pushforwardCongr_inv_app_val_app, QuadraticModuleCat.toIsometry_hom_rightUnitor, groupCohomology.isoCocycles₂_inv_comp_iCocycles_apply, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_assoc, RestrictionCoextensionAdj.unit'_app, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierOfCarrierStalkAbPresheafPrimeComplAsIdealHomToStalk, imageIsoRange_inv_image_Îč, smulShortComplex_X₃_carrier, free_η_freeMk, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_apply, ContinuousCohomology.I_map_hom, groupHomology.inhomogeneousChains.d_single, exteriorPower.iso₁_hom_apply, TopModuleCat.freeMap_map, QuadraticModuleCat.Hom.toIsometry_injective, CoalgCat.Hom.toCoalgHom_injective, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_map, SheafOfModules.pushforwardPushforwardAdj_unit_app_val_app, hom_inv_rightUnitor, ExtendScalars.smul_tmul, hom_sum, QuadraticModuleCat.forget₂_obj, FGModuleCat.instFiniteCarrierColimitModuleCatCompForget₂LinearMapIdObjIsFG, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_apply, CategoryTheory.Iso.toCoalgEquiv_trans, groupHomology.π_comp_H1Iso_hom_apply, hom_nsmul, groupCohomology.map_id_comp_H0Iso_hom_apply, forget_obj, directLimitDiagram_obj_isAddCommGroup, groupCohomology.subtype_comp_d₀₁_assoc, groupHomology.chainsMap_id_f_hom_eq_mapRange, PresheafOfModules.toPresheaf_map_app_apply, CategoryTheory.ShortComplex.ShortExact.moduleCat_exact_iff_function_exact, groupCohomology.map_id_comp_H0Iso_hom, groupHomology.cyclesMap_comp_isoCycles₂_hom_apply, PresheafOfModules.Derivation'.d_app, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_assoc_apply, HasColimit.instPreservesColimitAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrier, FilteredColimits.forget₂AddCommGroup_preservesFilteredColimits, instIsRightAdjointForgetLinearMapIdCarrier, CategoryTheory.Iso.toIsometryEquiv_refl, QuadraticModuleCat.toIsometry_inv_rightUnitor, ExtendScalars.map_tmul, FilteredColimits.colimit_add_mk_eq', QuadraticModuleCat.cliffordAlgebra_map, FilteredColimits.forget_reflectsFilteredColimits, LinearMap.id_moduleCat_comp, free_ÎŒ_freeMk_tmul_freeMk, forget₂_obj_moduleCat_of, QuadraticModuleCat.toIsometry_whiskerLeft, CategoryTheory.Iso.toLinearEquiv_apply, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, Derivation.d_map, SheafOfModules.pushforwardComp_hom_app_val_app, HomologicalComplex.eulerChar_eq_sum_finSet_of_finrankSupport_subset, Rep.toCoinvariantsMkQ_hom, MonoidalCategory.tensorObj, groupHomology.isoCycles₁_hom_comp_i_apply, SheafOfModules.Presentation.map_relations_I, instPreservesColimitsOfSizeAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrierOfHasColimitsOfSizeAddCommGrpMax, groupCohomology.cocyclesIso₀_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, FreeMonoidal.ÎŒIso_hom_freeMk_tmul_freeMk, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, CategoryTheory.ShortComplex.exact_iff_surjective_moduleCatToCycles, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_descH_hom, imageIsoRange_inv_image_Îč_assoc, MonoidalCategory.rightUnitor_inv_apply, groupCohomology.H1π_eq_zero_iff, groupHomology.H1AddEquivOfIsTrivial_symm_apply, Rep.invariantsAdjunction_counit_app_hom, Profinite.NobelingProof.GoodProducts.square_commutes, groupCohomology.cochainsMap_f, groupHomology.d₃₂_single_one_fst, CoalgCat.MonoidalCategoryAux.counit_tensorObj, Rep.coind'_ext_iff, CoalgCat.counit_def, PresheafOfModules.DifferentialsConstruction.relativeDifferentials'_map_d, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom_apply, TopModuleCat.instPreservesLimitsOfShapeTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitsOfShapeOfModuleCatForgetLinearMap, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, PresheafOfModules.Elements.fromFreeYoneda_app_apply, binaryProductLimitCone_cone_π_app_left, HasColimit.coconePointSMul_apply, groupHomology.d₂₁_single_self_inv_ρ_sub_inv_self, kernelIsoKer_hom_ker_subtype, smulShortComplex_f, SheafOfModules.Presentation.mapRelations_mapGenerators, hom_add, groupHomology.H1ToTensorOfIsTrivial_H1π_single, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, FGModuleCat.hom_hom_comp, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, groupCohomology.cocyclesMk₁_eq, AlgCat.forget₂_module_obj, MonoidalCategory.leftUnitor_inv_apply, Îč_coprodIsoDirectSum_hom, instReflectsIsomorphismsAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrier, SheafOfModules.relationsOfIsCokernelFree_I, MonModuleEquivalenceAlgebra.algebraMap, MonoidalCategory.tensorÎŒ_apply, Rep.quotientToInvariantsFunctor_obj_V, MonoidalCategory.tensorObj_isModule, MonoidalCategory.tensorObj_isAddCommGroup, groupHomology.d₂₁_apply_mem_cycles₁, ihom_map_apply, MonModuleEquivalenceAlgebra.inverseObj_mul, ihom_coev_app, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCycles₁_hom_apply, groupHomology.toCycles_comp_isoCycles₂_hom_apply, groupCohomology.H2π_eq_zero_iff, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_left, Rep.standardComplex.quasiIso_forget₂_ΔToSingle₀, TopModuleCat.isTopologicalAddGroup, groupCohomology.H1π_comp_map_apply, free_shortExact, Rep.leftRegularHom_hom_single, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f, hom_hom_associator, CoalgCat.forget₂_obj, Rep.finsuppTensorRight_inv_hom, Rep.coinvariantsMk_app_hom, Rep.ihom_obj_V_isAddCommGroup, PresheafOfModules.Îč_fromFreeYonedaCoproduct_apply, CategoryTheory.ShortComplex.moduleCat_exact_iff_ker_sub_range, CategoryTheory.ShortComplex.moduleCat_exact_iff, groupHomology.mapCycles₂_hom, groupHomology.isoCycles₂_inv_comp_iCycles_apply, range_mkQ_cokernelIsoRangeQuotient_inv_apply, mkOfSMul_smul, MatrixModCat.isScalarTower_toModuleCat, restrictScalars.smul_def, CoalgCat.whiskerLeft_def, TopModuleCat.hom_sub, kernelIsoKer_hom_ker_subtype_apply, CategoryTheory.preadditiveYonedaObj_obj_isAddCommGroup, QuadraticModuleCat.toIsometry_id, groupHomology.cyclesMk₂_eq, Rep.coindVEquiv_apply_hom, PresheafOfModules.Derivation.d_app, groupHomology.H1π_eq_zero_iff, LightCondMod.hom_naturality_apply, TopModuleCat.forget₂_TopCat_obj, groupHomology.d₂₁_single_one_fst, SheafOfModules.unitToPushforwardObjUnit_val_app_apply, HasLimit.productLimitCone_cone_pt_isModule, Rep.trivialFunctor_map_hom, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_apply, TopModuleCat.hom_nsmul, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_iff, Derivation.d_add, Rep.ihom_map_hom, piIsoPi_hom_ker_subtype_apply, reflectsColimitsOfShape, groupHomology.H1AddEquivOfIsTrivial_apply, MonoidalCategory.whiskerRight_apply, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, Rep.coinvariantsTensor_hom_ext_iff, Rep.finsuppTensorLeft_inv_hom, TopModuleCat.instIsTopologicalAddGroupCarrier, free_ÎŽ_freeMk, forget₂AddCommGroup_reflectsLimitOfSize, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_right, PresheafOfModules.Derivation'.app_apply, CoalgCat.forget₂_map, Rep.leftRegularHomEquiv_symm_single, piIsoPi_hom_ker_subtype, hom_id, groupCohomology.cocyclesMk₂_eq, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, LinearEquiv.toFGModuleCatIso_hom, TopModuleCat.instIsRightAdjointModuleCatForget₂ContinuousLinearMapIdCarrierLinearMap, groupHomology.chainsMap_f_hom, AlgCat.forget₂Module_preservesLimits, groupHomology.d₃₂_apply_mem_cycles₂, piIsoPi_inv_kernel_Îč, Rep.norm_hom, ExtendRestrictScalarsAdj.HomEquiv.evalAt_apply, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, TopModuleCat.instIsLeftAdjointModuleCatForget₂ContinuousLinearMapIdCarrierLinearMap, Rep.indResAdjunction_unit_app_hom_hom, Rep.ofHom_ρ, groupCohomology.toCocycles_comp_isoCocycles₁_hom_apply, groupHomology.map_id_comp_H0Iso_hom_apply, groupHomology.cyclesMk₁_eq, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, LightCondensed.ihom_map_val_app, TopModuleCat.cokerπ_surjective, FreeMonoidal.ÎŒIso_inv_freeMk, uliftFunctor_map, Rep.Action_ρ_eq_ρ, MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, groupCohomology.mapCocycles₁_comp_i_apply, hom_zsmul, ofHom_hom, Rep.coindMap_hom, groupHomology.mapCycles₂_id_comp_apply, instFiniteCarrierObjModuleCatIsFG, Rep.MonoidalClosed.linearHomEquiv_hom, Rep.invariantsAdjunction_homEquiv_apply_hom, FGModuleCat.instLinearModuleCatForget₂LinearMapIdCarrierObjIsFG, AlgebraicGeometry.tilde.isUnit_algebraMap_end_basicOpen, localizedModuleMap_hom_apply, Rep.hom_comm_apply, SheafOfModules.pushforwardNatTrans_app_val_app, groupHomology.H2π_comp_map_apply, Hom.hom₂_apply, CategoryTheory.Iso.toIsometryEquiv_invFun, TopModuleCat.hom_smul, HasColimit.colimitCocone_pt_carrier, CondensedMod.epi_iff_locallySurjective_on_compHaus, CategoryTheory.ShortComplex.moduleCat_exact_iff_range_eq_ker, uliftFunctor_obj, forget₂_addCommGrp_additive, Module.Flat.iff_preservesFiniteLimits_tensorLeft, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, CoalgCat.MonoidalCategoryAux.comul_tensorObj, Rep.finsuppTensorLeft_hom_hom, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_K, projective_of_module_projective, MatrixModCat.toModuleCat_map, MonoidalCategory.leftUnitor_def, groupCohomology.π_comp_H2Iso_hom_apply, HasLimit.lift_hom_apply, binaryProductLimitCone_isLimit_lift, TopModuleCat.instPreservesLimitsTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrier, homLinearEquiv_apply, Rep.coinvariantsTensorMk_apply, TopModuleCat.kerÎč_apply, Rep.indMap_hom, Rep.homEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, AlgCat.forget₂_module_map, FDRep.forget₂_ρ, extendScalarsComp_hom_app_one_tmul, Rep.invariantsFunctor_map_hom, Iso.conj_eq_conj, CoalgCat.toComon_map_hom, groupCohomology.π_comp_H1Iso_hom_apply, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, MonoidalCategory.tensorObj_def, FDRep.instPreservesFiniteLimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, groupHomology.d₂₁_single_one_snd, SheafOfModules.pushforwardPushforwardEquivalence_unit_app_val_app, biprodIsoProd_inv_comp_fst, groupHomology.π_map_apply, CoalgCat.rightUnitor_def, BialgCat.forget₂_coalgebra_map, groupHomology.d₃₂_single_one_snd, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, QuadraticModuleCat.cliffordAlgebra_obj_carrier, groupHomology.π_comp_H2Iso_hom_apply, CoalgCat.tensorObj_carrier, SheafOfModules.relationsOfIsCokernelFree_s, forget₂_reflectsLimits, FDRep.of_ρ, forget₂PreservesColimitsOfShape, MatrixModCat.toModuleCat_obj_isAddCommGroup, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, Rep.ihom_coev_app_hom, biproductIsoPi_inv_comp_π_apply, groupHomology.mapCycles₁_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_π_hom, Rep.leftRegularHomEquiv_apply, restrictScalars.smul_def', PresheafOfModules.pushforward_obj_map_apply', free_shortExact_rank_add, FGModuleCat.FGModuleCatEvaluation_apply', forget₂AddCommGroup_reflectsLimit, groupHomology.coe_mapCycles₁, HasLimit.productLimitCone_cone_pt_isAddCommGroup, hom_inv_leftUnitor, TopModuleCat.instReflectsIsomorphismsTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrier, groupCohomology.d₀₁_comp_d₁₂_apply, free_map_apply, groupHomology.mapCycles₂_comp_i_apply, binaryProductLimitCone_cone_pt, groupCohomology.cocyclesIso₀_hom_comp_f_apply, ofHom₂_hom_apply_hom, SheafOfModules.pushforwardPushforwardAdj_counit_app_val_app, groupCohomology.subtype_comp_d₀₁, Rep.freeLift_hom, CoalgCat.tensorObj_instCoalgebra, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_apply, groupHomology.d₁₀_single_inv, groupHomology.mkH1OfIsTrivial_apply, groupCohomology.π_map_apply, hom_sub, CoalgCat.ofComonObjCoalgebraStruct_counit, CategoryTheory.Presieve.FamilyOfElements.isCompatible_map_smul_aux, ofHom₂_compr₂, Algebra.instSMulCommClassCarrier, PresheafOfModules.freeYonedaEquiv_comp, forget₂AddCommGroup_preservesLimit, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_iff, CoalgCat.tensorObj_isModule, FreeMonoidal.ΔIso_hom_one, QuadraticModuleCat.toIsometry_inv_leftUnitor, Rep.freeLift_hom_single_single, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, mono_iff_ker_eq_bot, groupHomology.π_comp_H1Iso_inv_apply, FGModuleCat.instFullModuleCatForget₂LinearMapIdCarrierObjIsFG, groupCohomology.isoCocycles₂_hom_comp_i_apply, extendRestrictScalarsAdj_unit_app_apply, hom_bijective, Rep.diagonalHomEquiv_apply, groupHomology.d₂₁_single, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, SheafOfModules.Presentation.IsFinite.finite_relations, groupHomology.inhomogeneousChains.d_eq, groupHomology.cycles₁IsoOfIsTrivial_inv_apply, groupHomology.eq_d₂₁_comp_inv_apply, Rep.epi_iff_surjective, SheafOfModules.pushforwardNatTrans_app_val_app_apply, CategoryTheory.whiskering_linearYoneda₂, MonoidalCategory.whiskerLeft_apply, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, groupHomology.cyclesMk₀_eq, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_apply, Rep.applyAsHom_hom, CoalgCat.toCoalgHom_id, forget_map, groupHomology.chainsMap_f_0_comp_chainsIso₀_apply, TopModuleCat.hom_comp, smulShortComplex_X₃_isModule, Rep.indResHomEquiv_apply_hom, homAddEquiv_apply, PresheafOfModules.ofPresheaf_map, CommRingCat.KaehlerDifferential.ext_iff, GradedObject.eulerChar_eq_sum_finSet_of_finrankSupport_subset, PresheafOfModules.germ_ringCat_smul, groupCohomology.cocyclesMk₀_eq, endRingEquiv_apply, groupHomology.lsingle_comp_chainsMap_f_assoc, HasColimit.reflectsColimit, PresheafOfModules.naturality_apply, CoalgCat.toCoalgHom_comp, mono_as_hom'_subtype, extendScalarsId_inv_app_apply, semilinearMapAddEquiv_symm_apply_apply, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, PresheafOfModules.fromFreeYonedaCoproduct_app_mk, hom_comp, MonoidalCategory.braiding_inv_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, Rep.diagonalSuccIsoFree_hom_hom_single, CoalgCat.MonoidalCategoryAux.rightUnitor_hom_toLinearMap, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d_assoc, sMulCommClass_mk, QuadraticModuleCat.moduleCat_of_toModuleCat, PresheafOfModules.germ_smul, CoalgCat.leftUnitor_def, hom_neg, Rep.ihom_obj_ρ, instInvertibleCarrierOutModuleCatValSkeleton, Rep.free_ext_iff, PresheafOfModules.toSheafify_app_apply, MonoidalCategory.whiskerRight_def, isScalarTower_of_algebra_moduleCat, Rep.instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, Algebra.instIsScalarTowerCarrier, groupCohomology.map_H0Iso_hom_f_assoc, ofHom_apply, TannakaDuality.FiniteGroup.ofRightFDRep_hom, kernelIsoKer_inv_kernel_Îč, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, simple_iff_isSimpleModule', restrictScalarsCongr_inv_app, Representation.linHom.invariantsEquivRepHom_apply_hom, Rep.mkQ_hom, imageIsoRange_hom_subtype_apply, LinearMap.comp_id_moduleCat, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, TopModuleCat.hom_neg, MatrixModCat.toModuleCat_obj_isModule, epi_iff_range_eq_top, forget₂AddCommGroupIsEquivalence, monoidalClosed_pre_app, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, Rep.coinvariantsFunctor_map_hom, groupHomology.d₂₁_single_ρ_add_single_inv_mul, HasLimit.productLimitCone_isLimit_lift, hom_injective, MonoidalCategory.tensorObj_carrier, Rep.linearization_map_hom_single, CategoryTheory.preadditiveCoyoneda_obj, groupCohomology.map_id_comp_H0Iso_hom_assoc, groupHomology.eq_d₁₀_comp_inv_apply, LinearEquiv.toFGModuleCatIso_inv, ContinuousCohomology.const_app_hom, semilinearMapAddEquiv_apply, CoextendScalars.map'_hom_apply_apply, RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply, PresheafOfModules.ofPresheaf_obj_isAddCommGroup, CategoryTheory.preadditiveCoyonedaObj_obj_isAddCommGroup, SheafOfModules.pushforwardPushforwardEquivalence_counit_app_val_app, groupHomology.H0π_comp_H0Iso_hom_apply, Rep.barComplex.d_single, freeDesc_apply, CategoryTheory.ShortComplex.ShortExact.moduleCat_surjective_g, Rep.mono_iff_injective, MonoidalCategory.tensorUnit_isAddCommGroup, FDRep.dualTensorIsoLinHom_hom_hom, ExtendScalars.hom_ext_iff, groupCohomology.coe_mapCocycles₂, isSimpleModule_of_simple, toKernelSubobject_arrow, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isAddCommGroup, CategoryTheory.Iso.toLinearMap_toLinearEquiv, Condensed.instAB4CondensedMod, groupCohomology.H1π_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, Rep.instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, HomologicalComplex.homologyEulerChar_eq_sum_finSet_of_finrankSupport_subset, CategoryTheory.ShortComplex.ShortExact.moduleCat_injective_f, groupHomology.H0π_comp_map_apply, restrictScalarsId'App_inv_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, PresheafOfModules.Sheafify.SMulCandidate.h, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, groupHomology.π_comp_H2Iso_inv_apply, FDRep.instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, restrictScalarsComp'App_inv_apply, FDRep.endRingEquiv_comp_ρ, CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForget₂LinearMapIdCarrierAddMonoidHomCarrier, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, groupHomology.d₁₀_single, TopModuleCat.hom_forget₂_TopCat_map, ihom_ev_app, groupCohomology.cocycles₁.d₁₂_apply, Rep.indResHomEquiv_symm_apply_hom, FilteredColimits.colimit_add_mk_eq, free_hom_ext_iff, CategoryTheory.Iso.toIsometryEquiv_symm, groupHomology.H2π_eq_zero_iff, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierObjOppositeOpensCarrierCarrierCommRingCatSpecModuleCatPresheafModulesSheafModulesSpecToSheafOpBasicOpenPowersHomToOpen, CategoryTheory.ShortComplex.moduleCatMk_X₂_isAddCommGroup, CategoryTheory.Iso.toIsometryEquiv_trans, MonoidalCategory.associator_inv_apply, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, QuadraticModuleCat.hom_hom_associator, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, groupHomology.H1π_eq_iff, biprodIsoProd_inv_comp_fst_apply, groupHomology.d₃₂_comp_d₂₁_apply, CoextendScalars.map_apply, groupHomology.chainsMap_f, Rep.quotientToCoinvariantsFunctor_obj_V, SheafOfModules.unitHomEquiv_apply_coe, groupHomology.chainsMap_f_2_comp_chainsIso₂_apply, QuadraticModuleCat.hom_inv_associator, forget₂_map, toMatrixModCat_obj_isModule
isModule 📖CompOp
1017 mathmath: HasColimit.colimitCocone_pt_isAddCommGroup, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d, Rep.resCoindHomEquiv_symm_apply_hom, TopModuleCat.hom_cokerπ, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, Representation.repOfTprodIso_inv_apply, Rep.resCoindHomEquiv_apply_hom, groupCohomology.instEpiModuleCatH2π, hom_zero, groupHomology.π_comp_H2Iso_hom_assoc, instReflectsIsomorphismsForgetLinearMapIdCarrier, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, PresheafOfModules.Sheafify.app_eq_of_isLocallyInjective, of_coe, forget_preservesLimits, TopModuleCat.hom_zero, directLimitDiagram_obj_isModule, CommRingCat.KaehlerDifferential.map_d, MonoidalCategory.braiding_hom_apply, biproductIsoPi_inv_comp_π, FilteredColimits.colimit_smul_mk_eq, groupHomology.mapCycles₂_comp_assoc, restrictScalars.map_apply, forget₂_reflectsLimitsOfSize, groupCohomology.toCocycles_comp_isoCocycles₁_hom, Rep.MonoidalClosed.linearHomEquiv_symm_hom, groupCohomology.isoCocycles₁_hom_comp_i_apply, PresheafOfModules.ofPresheaf_obj_isModule, groupCohomology.mem_cocycles₂_def, groupHomology.coinfNatTrans_app, CategoryTheory.Iso.toCoalgEquiv_symm, forget_preservesLimitsOfSize, groupCohomology.d₂₃_hom_apply, LinearMap.id_fgModuleCat_comp, groupHomology.d₁₀_single_one, groupHomology.boundaries₂_le_cycles₂, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, forget₂PreservesColimitsOfSize, TopModuleCat.instPreservesLimitTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitOfModuleCatCompLinearMapForget, FGModuleCat.hom_hom_id, Rep.diagonalSuccIsoFree_inv_hom_single, groupCohomology.d₀₁_comp_d₁₂, Representation.repOfTprodIso_apply, freeHomEquiv_apply, epi_as_hom''_mkQ, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, forget₂AddCommGroup_preservesLimitsOfSize, toMatrixModCat_map, groupCohomology.toCocycles_comp_isoCocycles₂_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, LightCondensed.forget_obj_val_map, groupCohomology.cocyclesIso₀_hom_comp_f, Rep.resCoindAdjunction_counit_app_hom_hom, CoalgCat.MonoidalCategoryAux.tensorHom_toLinearMap, groupHomology.d₃₂_single, TopModuleCat.hom_zero_apply, groupCohomology.eq_d₀₁_comp_inv, extendScalarsId_hom_app_one_tmul, groupCohomology.H1π_comp_map_assoc, groupHomology.mapCycles₁_comp_apply, groupHomology.cyclesIso₀_inv_comp_iCycles_apply, Rep.leftRegularHom_hom, groupCohomology.π_comp_H0Iso_hom, FDRep.endRingEquiv_symm_comp_ρ, groupCohomology.π_comp_H1Iso_hom_assoc, Îč_coprodIsoDirectSum_hom_apply, restrictScalarsComp'App_hom_apply, PresheafOfModules.epi_iff_surjective, LightCondensed.ihomPoints_symm_comp, groupCohomology.eq_d₁₂_comp_inv, CategoryTheory.whiskering_linearCoyoneda, cokernel_π_cokernelIsoRangeQuotient_hom_apply, Rep.indToCoindAux_self, groupCohomology.mapCocycles₂_comp_i, AlternatingMap.postcomp_apply, groupHomology.eq_d₃₂_comp_inv, QuadraticModuleCat.toIsometry_comp, Rep.coe_res_obj_ρ, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, monoidalClosed_uncurry, Rep.diagonalHomEquiv_symm_apply, groupCohomology.H0IsoOfIsTrivial_hom, CondensedMod.isDiscrete_tfae, CoalgCat.MonoidalCategoryAux.associator_hom_toLinearMap, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_i_hom, groupCohomology.coe_mapCocycles₁, groupHomology.mem_cycles₂_iff, Iso.homCongr_eq_arrowCongr, CoextendScalars.smul_apply', groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, groupHomology.cyclesMap_comp_isoCycles₂_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isModule, groupCohomology.d₁₂_hom_apply, instSmallSubtypeForallCarrierObjMemSubmoduleSectionsSubmodule, groupHomology.comp_d₂₁_eq, PresheafOfModules.pushforward_map_app_apply, groupCohomology.coboundariesToCocycles₁_apply, groupHomology.mapCycles₁_comp_assoc, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_assoc, CategoryTheory.ShortComplex.moduleCatMk_X₂_isModule, groupHomology.toCycles_comp_isoCycles₂_hom_assoc, FGModuleCat.instPreservesFiniteColimitsModuleCatForget₂LinearMapIdCarrierObjIsFG, PresheafOfModules.sections_property, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, PresheafOfModules.toSheafify_app_apply', PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, Rep.coinvariantsAdjunction_counit_app, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂, forget_preservesEpimorphisms, PresheafOfModules.Derivation.d_map, QuadraticModuleCat.forget₂_map_associator_inv, LinearMap.comp_id_fgModuleCat, RestrictionCoextensionAdj.HomEquiv.toRestriction_hom_apply, TopModuleCat.instIsRightAdjointTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrier, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, groupCohomology.comp_d₁₂_eq, groupCohomology.mem_cocycles₁_of_addMonoidHom, groupCohomology.cocycles₂.d₂₃_apply, groupCohomology.d₀₁_hom_apply, Rep.linearization_single, extendRestrictScalarsAdj_homEquiv_apply, groupHomology.d₃₂_single_one_thd, hom_surjective, hom_tensorHom, groupHomology.isoCycles₁_inv_comp_iCycles_apply, CoalgCat.tensorObj_isAddCommGroup, forget₂_addCommGrp_essSurj, groupCohomology.dArrowIso₀₁_inv_right, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.d₁₂_comp_d₂₃_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, groupCohomology.eq_d₂₃_comp_inv_assoc, PresheafOfModules.congr_map_apply, PresheafOfModules.freeYonedaEquiv_symm_app, Rep.finsuppToCoinvariantsTensorFree_single, groupCohomology.eq_d₂₃_comp_inv_apply, groupCohomology.eq_d₁₂_comp_inv_apply, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, PresheafOfModules.restrictScalarsObj_map, groupHomology.chains₁ToCoinvariantsKer_surjective, Rep.coinvariantsTensorFreeLEquiv_symm_apply, TopModuleCat.continuousSMul, Profinite.NobelingProof.GoodProducts.linearIndependent_comp_of_eval, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, forget₂AddCommGroup_reflectsLimitOfShape, forget_reflectsLimitsOfSize, groupHomology.cycles₁_eq_top_of_isTrivial, ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, Rep.resCoindAdjunction_unit_app_hom_hom, groupHomology.d₃₂_comp_d₂₁_assoc, groupCohomology.mem_cocycles₁_def, endRingEquiv_symm_apply_hom, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_right, FGModuleCat.instFiniteHomModuleCatObjIsFG, Rep.homEquiv_apply_hom, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, forget_preservesMonomorphisms, groupCohomology.mapCocycles₂_comp_i_apply, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom_apply, MonoidalCategory.associator_hom_apply, groupHomology.single_one_snd_sub_single_one_fst_mem_boundaries₂, CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, groupHomology.d₁₀ArrowIso_hom_left, Rep.norm_comm_apply, groupHomology.cycles₁IsoOfIsTrivial_hom_apply, HasLimit.productLimitCone_cone_π, HasColimit.colimitCocone_Îč_app, CoalgCat.moduleCat_of_toModuleCat, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_apply, groupCohomology.coboundaries₁_eq_bot_of_isTrivial, MonoidalCategory.tensorHom_tmul, groupHomology.d₂₁_single_inv_mul_ρ_add_single, QuadraticModuleCat.forget₂_map, PresheafOfModules.Derivation.postcomp_d_apply, smulShortComplex_X₃_isAddCommGroup, forget₂_addCommGroup_full, groupCohomology.cocyclesIso₀_inv_comp_iCocycles, groupCohomology.cocycles₂_map_one_fst, PresheafOfModules.sectionsMap_coe, groupCohomology.mapCocycles₂_comp_i_assoc, groupHomology.d₁₀_comp_coinvariantsMk_apply, ExtendRestrictScalarsAdj.Counit.map_hom_apply, Rep.ρ_hom, Rep.diagonalSuccIsoFree_inv_hom_single_single, groupCohomology.H1IsoOfIsTrivial_inv_apply, PresheafOfModules.Sheafify.map_smul_eq, PresheafOfModules.map_comp_apply, biprodIsoProd_inv_comp_snd_apply, RestrictionCoextensionAdj.counit'_app, groupHomology.chainsMap_f_3_comp_chainsIso₃, PresheafOfModules.pushforward_map_app_apply', groupHomology.mapCycles₁_id_comp_assoc, groupHomology.eq_d₂₁_comp_inv, PresheafOfModules.Derivation.d_mul, isFG_iff, groupCohomology.cocycles₁IsoOfIsTrivial_hom_hom_apply_apply, MonoidalCategory.whiskerLeft_def, groupCohomology.H2π_comp_map_apply, groupHomology.mapCycles₁_comp, FDRep.instPreservesFiniteColimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.ihom_ev_app_hom, homLinearEquiv_symm_apply, hom_smul, groupCohomology.dArrowIso₀₁_hom_right, uliftFunctorForgetIso_hom_app, Rep.MonoidalClosed.linearHomEquivComm_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_map_app, smul_naturality, CategoryTheory.ShortComplex.moduleCat_zero_apply, groupCohomology.toCocycles_comp_isoCocycles₂_hom, FGModuleCat.hom_comp, ContinuousCohomology.I_obj_ρ_apply, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_assoc, imageIsoRange_hom_subtype, GradedObject.finrankSupport_subset_iff, CategoryTheory.Iso.toIsometryEquiv_toFun, groupHomology.mapCycles₁_comp_i, CoextendScalars.smul_apply, groupCohomology.shortComplexH0_f, binaryProductLimitCone_cone_π_app_right, groupCohomology.cocyclesOfIsCocycle₁_coe, exteriorPower.desc_mk, PresheafOfModules.unit_map_one, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, HasColimit.colimitCocone_pt_isModule, groupCohomology.coboundaries₂_le_cocycles₂, CategoryTheory.preadditiveYoneda_obj, CategoryTheory.Abelian.Pseudoelement.ModuleCat.eq_range_of_pseudoequal, Rep.standardComplex.ΔToSingle₀_comp_eq, MonoidalCategory.tensorHom_def, Rep.coindVEquiv_symm_apply_coe, groupCohomology.H1IsoOfIsTrivial_H1π_apply_apply, imageIsoRange_inv_image_Îč_apply, groupCohomology.comp_d₂₃_eq, CondensedMod.isDiscrete_iff_isDiscrete_forget, PresheafOfModules.map_smul, FGModuleCat.FGModuleCatEvaluation_apply, epi_iff_surjective, groupCohomology.coboundaries₂.val_eq_coe, PresheafOfModules.Monoidal.tensorObj_map_tmul, exteriorPower.map_mk, TopModuleCat.ofHom_hom, cokernel_π_cokernelIsoRangeQuotient_hom, groupHomology.single_one_fst_sub_single_one_snd_mem_boundaries₂, id_apply, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, groupCohomology.infNatTrans_app, FGModuleCat.instPreservesFiniteLimitsModuleCatForget₂LinearMapIdCarrierObjIsFG, groupCohomology.d₁₂_apply_mem_cocycles₂, Rep.invariantsAdjunction_unit_app, hom_inv_apply, groupHomology.mapCycles₂_id_comp, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, monoidalClosed_curry, groupCohomology.d₀₁_apply_mem_cocycles₁, QuadraticModuleCat.instMonoidalCategory.tensorObj_form, CoalgCat.tensorHom_def, Module.Flat.iff_rTensor_preserves_shortComplex_exact, MonoidalCategory.leftUnitor_hom_apply, Rep.indToCoindAux_fst_mul_inv, exteriorPower.iso₀_hom_apply, groupHomology.cyclesMap_comp_cyclesIso₀_hom_apply, Rep.coinvariantsFunctor_obj_carrier, Rep.applyAsHom_comm_apply, groupHomology.d₂₁_single_inv_self_ρ_sub_self_inv, groupHomology.chainsMap_f_single, restrictScalarsId'App_hom_apply, groupCohomology.subtype_comp_d₀₁_apply, ContinuousCohomology.Iobj_ρ_apply, SheafOfModules.pushforwardComp_inv_app_val_app, FilteredColimits.forget_preservesFilteredColimits, groupCohomology.H2π_eq_iff, CoalgCat.toComonObj_X, groupCohomology.comp_d₀₁_eq, groupCohomology.cocycles₂_map_one_snd, homAddEquiv_symm_apply_hom, Rep.coinvariantsTensorFreeLEquiv_apply, groupHomology.toCycles_comp_isoCycles₁_hom_apply, Module.Flat.iff_lTensor_preserves_shortComplex_exact, groupHomology.mapCycles₂_comp_i, localizedModule_isLocalizedModule, range_eq_top_of_epi, groupCohomology.map_H0Iso_hom_f, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_zero_iff, PresheafOfModules.mono_iff_surjective, groupHomology.boundariesOfIsBoundary₁_coe, Derivation.d_mul, Rep.indToCoindAux_comm, groupCohomology.dArrowIso₀₁_inv_left, groupCohomology.π_comp_H1Iso_hom, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, ContinuousCohomology.I_obj_V_isModule, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_left, groupHomology.cyclesIso₀_comp_H0π_apply, CoalgCat.associator_def, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_assoc_apply, groupHomology.eq_d₃₂_comp_inv_apply, CondensedMod.epi_iff_surjective_on_stonean, hom_whiskerRight, groupCohomology.cocycles₂_ρ_map_inv_sub_map_inv, hom_inv_associator, FGModuleCat.hom_id, lof_coprodIsoDirectSum_inv, groupHomology.single_one_fst_sub_single_one_fst_mem_boundaries₂, TopModuleCat.hom_add, BialgCat.forget₂_coalgebra_obj, CoalgCat.MonoidalCategoryAux.tensorObj_comul, CoalgCat.comul_def, inv_hom_apply, forget₂AddCommGroup_preservesLimits, directLimitIsColimit_desc, CategoryTheory.preadditiveYonedaObj_obj_isModule, groupHomology.mapCycles₁_id_comp_apply, MonoidalCategory.rightUnitor_def, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom_assoc, CategoryTheory.Iso.toLinearEquiv_symm, PresheafOfModules.presheaf_map_apply_coe, smulShortComplex_g, Rep.ofMulDistribMulAction_ρ_apply_apply, Rep.instIsTrivialCarrierVModuleCatOfCompLinearMapIdρ, groupCohomology.instEpiModuleCatH1π, MonoidalCategory.associator_def, groupCohomology.H2π_comp_map, FGModuleCat.instFiniteCarrierLimitModuleCatCompForget₂LinearMapIdObjIsFG, mono_iff_injective, groupHomology.π_comp_H2Iso_hom, forget₂_obj, Rep.indResAdjunction_counit_app_hom_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, Rep.coindToInd_apply, PresheafOfModules.forgetToPresheafModuleCatObjMap_apply, groupHomology.mapCycles₁_comp_i_apply, SheafOfModules.pushforwardCongr_hom_app_val_app, hom_whiskerLeft, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, AlgCat.forget₂Module_preservesLimitsOfSize, groupHomology.mapCycles₂_comp, comp_apply, restrictScalarsCongr_hom_app, kernelIsoKer_inv_kernel_Îč_apply, ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, groupHomology.cyclesIso₀_inv_comp_cyclesMap_apply, CategoryTheory.whiskering_linearYoneda, MonoidalCategory.rightUnitor_hom_apply, groupCohomology.isoCocycles₂_hom_comp_i, CoalgCat.MonoidalCategory.inducingFunctorData_ÎŒIso, CoalgCat.whiskerRight_def, TopModuleCat.hom_zsmul, CoalgCat.MonoidalCategory.inducingFunctorData_ΔIso, FilteredColimits.M.mk_map, groupCohomology.π_comp_H0Iso_hom_apply, groupHomology.coe_mapCycles₂, CategoryTheory.ShortComplex.Exact.moduleCat_range_eq_ker, CategoryTheory.whiskering_linearCoyoneda₂, groupCohomology.isoCocycles₁_inv_comp_iCocycles_apply, groupHomology.comp_d₁₀_eq, groupHomology.H1π_comp_map_apply, FGModuleCat.FGModuleCatCoevaluation_apply_one, groupCohomology.dArrowIso₀₁_hom_left, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom, groupHomology.toCycles_comp_isoCycles₁_hom_assoc, groupHomology.π_comp_H0Iso_hom_apply, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, groupCohomology.eq_d₀₁_comp_inv_apply, MatrixModCat.toModuleCat_obj_carrier, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_assoc, groupCohomology.cocycles₁_map_inv, Rep.freeLiftLEquiv_apply, hom_hom_leftUnitor, groupCohomology.mapCocycles₁_one, PresheafOfModules.surjective_of_epi, adj_homEquiv, instIsScalarTowerLocalizationCarrierLocalizedModule, groupHomology.H2π_comp_map_assoc, Rep.indToCoindAux_mul_fst, hom_hom_rightUnitor, LightCondensed.forget_map_val_app, biprodIsoProd_inv_comp_snd, groupHomology.π_comp_H0IsoOfIsTrivial_hom_apply, CategoryTheory.Iso.toCoalgEquiv_refl, piIsoPi_inv_kernel_Îč_apply, MonModuleEquivalenceAlgebra.functor_map_hom_apply, Rep.ihom_obj_ρ_apply, ker_eq_bot_of_mono, CondensedMod.hom_naturality_apply, lof_coprodIsoDirectSum_inv_apply, groupHomology.d₁₀ArrowIso_inv_right, FDRep.instFaithfulRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Derivation.desc_d, range_mkQ_cokernelIsoRangeQuotient_inv, TannakaDuality.FiniteGroup.equivApp_inv, Rep.finsuppTensorRight_hom_hom, QuadraticModuleCat.forget₂_map_associator_hom, PresheafOfModules.injective_of_mono, free_Δ_one, groupCohomology.norm_ofAlgebraAutOnUnits_eq, groupCohomology.π_comp_H0Iso_hom_assoc, imageIsoRange_hom_subtype_assoc, groupCohomology.mem_cocycles₂_iff, Rep.tensor_ρ, QuadraticModuleCat.toIsometry_whiskerRight, PresheafOfModules.pushforward_obj_map_apply, groupCohomology.H2π_comp_map_assoc, groupHomology.d₁₀_comp_coinvariantsMk, groupHomology.d₂₁_comp_d₁₀_apply, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_liftK_hom, groupHomology.mapCycles₂_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, CoalgCat.forget_reflects_isos, Rep.ofDistribMulAction_ρ_apply_apply, groupCohomology.d₀₁_ker_eq_invariants, CoalgCat.MonoidalCategoryAux.leftUnitor_hom_toLinearMap, Rep.linearization_η_hom_apply, smulNatTrans_apply_app, FGModuleCat.ihom_obj, TopModuleCat.hom_id, forget_reflectsLimits, Rep.leftRegularHomEquiv_symm_apply, TannakaDuality.FiniteGroup.equivApp_hom, uliftFunctorForgetIso_inv_app, groupHomology.H2π_eq_iff, FGModuleCat.instAdditiveModuleCatForget₂LinearMapIdCarrierObjIsFG, groupHomology.H1AddEquivOfIsTrivial_single, groupCohomology.mem_cocycles₁_iff, CoalgCat.ofComonObjCoalgebraStruct_comul, MonoidalCategory.tensorÎŒ_eq_tensorTensorTensorComm, groupHomology.range_d₁₀_eq_coinvariantsKer, QuadraticModuleCat.toIsometry_tensorHom, PresheafOfModules.unitHomEquiv_apply_coe, groupCohomology.inhomogeneousCochains.d_comp_d, FreeMonoidal.ΔIso_inv_freeMk, groupHomology.isoCycles₂_hom_comp_i_apply, Rep.ofModuleMonoidAlgebra_obj_ρ, groupCohomology.π_comp_H0IsoOfIsTrivial_hom_apply, QuadraticModuleCat.toIsometry_hom_leftUnitor, Rep.coinvariantsShortComplex_f, SheafOfModules.pushforwardCongr_inv_app_val_app, groupCohomology.toCocycles_comp_isoCocycles₁_hom_assoc, QuadraticModuleCat.toIsometry_hom_rightUnitor, groupCohomology.isoCocycles₂_inv_comp_iCocycles_apply, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_assoc, groupCohomology.isoCocycles₁_inv_comp_iCocycles, RestrictionCoextensionAdj.unit'_app, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierOfCarrierStalkAbPresheafPrimeComplAsIdealHomToStalk, groupHomology.eq_d₂₁_comp_inv_assoc, imageIsoRange_inv_image_Îč, smulShortComplex_X₃_carrier, free_η_freeMk, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_apply, groupHomology.cyclesMap_comp_isoCycles₂_hom_assoc, ContinuousCohomology.I_map_hom, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom, groupHomology.inhomogeneousChains.d_single, groupCohomology.coboundariesOfIsCoboundary₁_coe, exteriorPower.iso₁_hom_apply, TopModuleCat.freeMap_map, Representation.coind'_apply_apply, groupCohomology.d₁₂_comp_d₂₃_assoc, QuadraticModuleCat.Hom.toIsometry_injective, CoalgCat.Hom.toCoalgHom_injective, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_map, SheafOfModules.pushforwardPushforwardAdj_unit_app_val_app, hom_inv_rightUnitor, ExtendScalars.smul_tmul, hom_sum, QuadraticModuleCat.forget₂_obj, FGModuleCat.instFiniteCarrierColimitModuleCatCompForget₂LinearMapIdObjIsFG, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_apply, CategoryTheory.Iso.toCoalgEquiv_trans, groupHomology.mapCycles₂_id_comp_assoc, groupHomology.π_comp_H1Iso_hom_apply, Rep.coindIso_inv_hom_hom, hom_nsmul, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.cocycles₁_map_mul_of_isTrivial, forget_obj, groupCohomology.subtype_comp_d₀₁_assoc, groupHomology.chainsMap_id_f_hom_eq_mapRange, PresheafOfModules.toPresheaf_map_app_apply, groupHomology.toCycles_comp_isoCycles₂_hom, CategoryTheory.ShortComplex.ShortExact.moduleCat_exact_iff_function_exact, groupCohomology.map_id_comp_H0Iso_hom, groupHomology.cyclesMap_comp_isoCycles₂_hom_apply, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_assoc_apply, HasColimit.instPreservesColimitAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrier, groupHomology.mapCycles₁_id_comp, Rep.indToCoindAux_mul_snd, FilteredColimits.forget₂AddCommGroup_preservesFilteredColimits, instIsRightAdjointForgetLinearMapIdCarrier, CategoryTheory.Iso.toIsometryEquiv_refl, QuadraticModuleCat.toIsometry_inv_rightUnitor, groupCohomology.cocycles₁IsoOfIsTrivial_inv_hom_apply_coe, ExtendScalars.map_tmul, QuadraticModuleCat.cliffordAlgebra_map, FilteredColimits.forget_reflectsFilteredColimits, groupCohomology.cocyclesOfIsMulCocycle₂_coe, LinearMap.id_moduleCat_comp, free_ÎŒ_freeMk_tmul_freeMk, forget₂_obj_moduleCat_of, QuadraticModuleCat.toIsometry_whiskerLeft, groupHomology.eq_d₁₀_comp_inv, CategoryTheory.Iso.toLinearEquiv_apply, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, groupHomology.isoShortComplexH1_inv, groupCohomology.coboundariesOfIsMulCoboundary₁_coe, SheafOfModules.pushforwardComp_hom_app_val_app, groupHomology.eq_d₁₀_comp_inv_assoc, groupCohomology.d₁₂_comp_d₂₃, HomologicalComplex.eulerChar_eq_sum_finSet_of_finrankSupport_subset, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, Rep.linearization_obj_ρ, Rep.toCoinvariantsMkQ_hom, groupHomology.chainsMap_f_1_comp_chainsIso₁_assoc, MonoidalCategory.tensorObj, groupHomology.isoCycles₁_hom_comp_i_apply, SheafOfModules.Presentation.map_relations_I, instPreservesColimitsOfSizeAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrierOfHasColimitsOfSizeAddCommGrpMax, groupCohomology.cocyclesIso₀_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, FreeMonoidal.ÎŒIso_hom_freeMk_tmul_freeMk, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, CategoryTheory.ShortComplex.exact_iff_surjective_moduleCatToCycles, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_descH_hom, imageIsoRange_inv_image_Îč_assoc, MonoidalCategory.rightUnitor_inv_apply, groupCohomology.H1π_eq_zero_iff, Rep.invariantsAdjunction_counit_app_hom, Profinite.NobelingProof.GoodProducts.square_commutes, groupCohomology.cochainsMap_f, groupCohomology.coboundaries₁.val_eq_coe, groupHomology.d₃₂_single_one_fst, inhomogeneousCochains.d_hom_apply, CoalgCat.MonoidalCategoryAux.counit_tensorObj, Rep.coind'_ext_iff, CoalgCat.counit_def, PresheafOfModules.DifferentialsConstruction.relativeDifferentials'_map_d, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom_apply, TopModuleCat.instPreservesLimitsOfShapeTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitsOfShapeOfModuleCatForgetLinearMap, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, groupHomology.d₂₁_comp_d₁₀, PresheafOfModules.Elements.fromFreeYoneda_app_apply, binaryProductLimitCone_cone_π_app_left, HasColimit.coconePointSMul_apply, groupHomology.d₂₁_single_self_inv_ρ_sub_inv_self, kernelIsoKer_hom_ker_subtype, smulShortComplex_f, SheafOfModules.Presentation.mapRelations_mapGenerators, groupHomology.chainsMap_f_3_comp_chainsIso₃_assoc, hom_add, groupHomology.single_ρ_self_add_single_inv_mem_boundaries₁, groupHomology.H1ToTensorOfIsTrivial_H1π_single, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, FGModuleCat.hom_hom_comp, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, groupCohomology.cocyclesMk₁_eq, AlgCat.forget₂_module_obj, MonoidalCategory.leftUnitor_inv_apply, Îč_coprodIsoDirectSum_hom, instReflectsIsomorphismsAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrier, SheafOfModules.relationsOfIsCokernelFree_I, MonModuleEquivalenceAlgebra.algebraMap, MonoidalCategory.tensorÎŒ_apply, groupHomology.cyclesOfIsCycle₁_coe, Rep.quotientToInvariantsFunctor_obj_V, MonoidalCategory.tensorObj_isModule, groupHomology.inhomogeneousChains.ext_iff, MonoidalCategory.tensorObj_isAddCommGroup, groupHomology.d₂₁_apply_mem_cycles₁, groupCohomology.coboundariesToCocycles₂_apply, ihom_map_apply, MonModuleEquivalenceAlgebra.inverseObj_mul, ihom_coev_app, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCycles₁_hom_apply, groupHomology.toCycles_comp_isoCycles₂_hom_apply, groupCohomology.cocyclesOfIsMulCocycle₁_coe, groupCohomology.H2π_eq_zero_iff, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_left, groupCohomology.mapCocycles₁_comp_i_assoc, Rep.standardComplex.quasiIso_forget₂_ΔToSingle₀, groupCohomology.cocycles₁.val_eq_coe, groupCohomology.H1π_comp_map_apply, free_shortExact, Rep.leftRegularHom_hom_single, groupCohomology.cocycles₁_map_one, groupHomology.eq_d₃₂_comp_inv_assoc, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f, hom_hom_associator, CoalgCat.forget₂_obj, groupCohomology.π_comp_H2Iso_hom_assoc, groupCohomology.toCocycles_comp_isoCocycles₂_hom_assoc, Rep.finsuppTensorRight_inv_hom, Rep.coinvariantsMk_app_hom, Rep.ihom_obj_V_isAddCommGroup, PresheafOfModules.Îč_fromFreeYonedaCoproduct_apply, CategoryTheory.ShortComplex.moduleCat_exact_iff_ker_sub_range, CategoryTheory.ShortComplex.moduleCat_exact_iff, groupHomology.mapCycles₂_hom, groupHomology.isoCycles₂_inv_comp_iCycles_apply, range_mkQ_cokernelIsoRangeQuotient_inv_apply, groupHomology.isoCycles₂_inv_comp_iCycles_assoc, mkOfSMul_smul, MatrixModCat.isScalarTower_toModuleCat, restrictScalars.smul_def, CoalgCat.whiskerLeft_def, TopModuleCat.hom_sub, kernelIsoKer_hom_ker_subtype_apply, QuadraticModuleCat.toIsometry_id, groupHomology.cyclesMk₂_eq, groupHomology.chainsMap_f_1_comp_chainsIso₁, Rep.coindVEquiv_apply_hom, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom_assoc, groupHomology.H1π_eq_zero_iff, groupHomology.isoCycles₁_inv_comp_iCycles_assoc, groupHomology.π_comp_H1Iso_hom_assoc, LightCondMod.hom_naturality_apply, TopModuleCat.forget₂_TopCat_obj, groupHomology.chainsMap_f_2_comp_chainsIso₂, groupHomology.d₂₁_single_one_fst, SheafOfModules.unitToPushforwardObjUnit_val_app_apply, HasLimit.productLimitCone_cone_pt_isModule, groupHomology.H2π_comp_map, Rep.trivialFunctor_map_hom, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_apply, TopModuleCat.hom_nsmul, groupCohomology.cocycles₂.val_eq_coe, groupCohomology.eq_d₂₃_comp_inv, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_iff, groupHomology.H1π_comp_map_assoc, Rep.ihom_map_hom, groupHomology.instEpiModuleCatH1π, piIsoPi_hom_ker_subtype_apply, reflectsColimitsOfShape, MonoidalCategory.whiskerRight_apply, groupCohomology.isoCocycles₂_inv_comp_iCocycles, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, Rep.coinvariantsTensor_hom_ext_iff, Rep.finsuppTensorLeft_inv_hom, free_ÎŽ_freeMk, forget₂AddCommGroup_reflectsLimitOfSize, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_right, CoalgCat.forget₂_map, groupHomology.single_one_snd_sub_single_one_snd_mem_boundaries₂, Rep.unit_iso_comm, Rep.leftRegularHomEquiv_symm_single, inhomogeneousCochains.d_eq, groupHomology.instEpiModuleCatH2π, piIsoPi_hom_ker_subtype, hom_id, groupCohomology.cocyclesMk₂_eq, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, LinearEquiv.toFGModuleCatIso_hom, TopModuleCat.instIsRightAdjointModuleCatForget₂ContinuousLinearMapIdCarrierLinearMap, groupHomology.H1π_comp_map, groupHomology.chainsMap_f_hom, AlgCat.forget₂Module_preservesLimits, groupHomology.d₃₂_apply_mem_cycles₂, MonoidalCategory.tensorUnit_isModule, piIsoPi_inv_kernel_Îč, Rep.norm_hom, ExtendRestrictScalarsAdj.HomEquiv.evalAt_apply, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, TopModuleCat.instIsLeftAdjointModuleCatForget₂ContinuousLinearMapIdCarrierLinearMap, Rep.indResAdjunction_unit_app_hom_hom, Rep.ofHom_ρ, groupCohomology.toCocycles_comp_isoCocycles₁_hom_apply, groupHomology.map_id_comp_H0Iso_hom_apply, groupHomology.boundariesOfIsBoundary₂_coe, groupHomology.cyclesMk₁_eq, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, LightCondensed.ihom_map_val_app, groupHomology.mapCycles₂_comp_i_assoc, groupCohomology.isoCocycles₁_hom_comp_i, TopModuleCat.cokerπ_surjective, FreeMonoidal.ÎŒIso_inv_freeMk, uliftFunctor_map, Rep.Action_ρ_eq_ρ, groupCohomology.mapCocycles₁_comp_i_apply, hom_zsmul, ofHom_hom, Rep.coindMap_hom, groupHomology.mapCycles₂_id_comp_apply, Rep.trivial_def, groupCohomology.cocycles₂_ext_iff, CategoryTheory.ShortComplex.moduleCatMk_X₁_isModule, instFiniteCarrierObjModuleCatIsFG, Rep.MonoidalClosed.linearHomEquiv_hom, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃, Rep.invariantsAdjunction_homEquiv_apply_hom, FGModuleCat.instLinearModuleCatForget₂LinearMapIdCarrierObjIsFG, AlgebraicGeometry.tilde.isUnit_algebraMap_end_basicOpen, localizedModuleMap_hom_apply, Rep.hom_comm_apply, SheafOfModules.pushforwardNatTrans_app_val_app, groupHomology.H2π_comp_map_apply, Hom.hom₂_apply, CategoryTheory.Iso.toIsometryEquiv_invFun, TopModuleCat.hom_smul, HasColimit.colimitCocone_pt_carrier, CondensedMod.epi_iff_locallySurjective_on_compHaus, CategoryTheory.ShortComplex.moduleCat_exact_iff_range_eq_ker, uliftFunctor_obj, forget₂_addCommGrp_additive, Module.Flat.iff_preservesFiniteLimits_tensorLeft, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, CoalgCat.MonoidalCategoryAux.comul_tensorObj, groupCohomology.coboundaries₁_ext_iff, Rep.finsuppTensorLeft_hom_hom, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, groupHomology.inhomogeneousChains.d_comp_d, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_K, projective_of_module_projective, MatrixModCat.toModuleCat_map, MonoidalCategory.leftUnitor_def, groupCohomology.π_comp_H2Iso_hom_apply, HasLimit.lift_hom_apply, binaryProductLimitCone_isLimit_lift, TopModuleCat.instPreservesLimitsTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrier, homLinearEquiv_apply, Rep.coinvariantsTensorMk_apply, TopModuleCat.kerÎč_apply, Rep.indMap_hom, groupHomology.isoCycles₁_hom_comp_i_assoc, Rep.homEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, CategoryTheory.linearYoneda_obj_obj_isModule, AlgCat.forget₂_module_map, FDRep.forget₂_ρ, extendScalarsComp_hom_app_one_tmul, Rep.invariantsFunctor_map_hom, Iso.conj_eq_conj, groupHomology.d₁₀_eq_zero_of_isTrivial, CoalgCat.toComon_map_hom, groupCohomology.π_comp_H1Iso_hom_apply, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, groupCohomology.d₀₁_comp_d₁₂_assoc, MonoidalCategory.tensorObj_def, FDRep.instPreservesFiniteLimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, groupHomology.d₂₁_single_one_snd, SheafOfModules.pushforwardPushforwardEquivalence_unit_app_val_app, CategoryTheory.ShortComplex.moduleCatMk_X₃_isModule, biprodIsoProd_inv_comp_fst, groupHomology.π_map_apply, CoalgCat.rightUnitor_def, BialgCat.forget₂_coalgebra_map, groupHomology.d₃₂_comp_d₂₁, groupHomology.d₃₂_single_one_snd, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, QuadraticModuleCat.cliffordAlgebra_obj_carrier, groupHomology.π_comp_H2Iso_hom_apply, CoalgCat.tensorObj_carrier, SheafOfModules.relationsOfIsCokernelFree_s, forget₂_reflectsLimits, FDRep.of_ρ, forget₂PreservesColimitsOfShape, MatrixModCat.toModuleCat_obj_isAddCommGroup, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, Rep.ihom_coev_app_hom, biproductIsoPi_inv_comp_π_apply, groupHomology.mapCycles₁_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_π_hom, Rep.leftRegularHomEquiv_apply, restrictScalars.smul_def', PresheafOfModules.pushforward_obj_map_apply', groupHomology.isoCycles₁_inv_comp_iCycles, free_shortExact_rank_add, groupHomology.cyclesMap_comp_isoCycles₁_hom_assoc, FGModuleCat.FGModuleCatEvaluation_apply', forget₂AddCommGroup_reflectsLimit, groupHomology.isoShortComplexH2_inv, groupHomology.coe_mapCycles₁, groupHomology.toCycles_comp_isoCycles₁_hom, hom_inv_leftUnitor, TopModuleCat.instReflectsIsomorphismsTopCatForget₂ContinuousLinearMapIdCarrierContinuousMapCarrier, groupCohomology.d₀₁_comp_d₁₂_apply, free_map_apply, groupHomology.chainsMap_f_2_comp_chainsIso₂_assoc, Representation.linHom.mem_invariants_iff_comm, groupHomology.mapCycles₂_comp_i_apply, binaryProductLimitCone_cone_pt, groupCohomology.cocyclesIso₀_hom_comp_f_apply, ofHom₂_hom_apply_hom, SheafOfModules.pushforwardPushforwardAdj_counit_app_val_app, groupHomology.boundariesToCycles₂_apply, groupCohomology.subtype_comp_d₀₁, groupHomology.cyclesOfIsCycle₂_coe, Rep.freeLift_hom, groupHomology.isoCycles₂_hom_comp_i, CoalgCat.tensorObj_instCoalgebra, groupHomology.π_comp_H1Iso_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, groupHomology.isoCycles₂_inv_comp_iCycles, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_apply, groupHomology.d₁₀_single_inv, groupHomology.mkH1OfIsTrivial_apply, groupCohomology.π_map_apply, Rep.indToCoindAux_snd_mul_inv, hom_sub, CoalgCat.ofComonObjCoalgebraStruct_counit, groupCohomology.isoCocycles₁_inv_comp_iCocycles_assoc, Rep.res_obj_ρ, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom, CategoryTheory.Presieve.FamilyOfElements.isCompatible_map_smul_aux, ofHom₂_compr₂, Algebra.instSMulCommClassCarrier, PresheafOfModules.freeYonedaEquiv_comp, forget₂AddCommGroup_preservesLimit, groupCohomology.coboundaries₁_le_cocycles₁, Rep.ihom_obj_V_isModule, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_iff, CoalgCat.tensorObj_isModule, FreeMonoidal.ΔIso_hom_one, groupHomology.d₁₀ArrowIso_hom_right, QuadraticModuleCat.toIsometry_inv_leftUnitor, Rep.freeLift_hom_single_single, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, groupHomology.single_one_mem_boundaries₁, mono_iff_ker_eq_bot, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_assoc, groupHomology.π_comp_H1Iso_inv_apply, FGModuleCat.instFullModuleCatForget₂LinearMapIdCarrierObjIsFG, groupCohomology.isoCocycles₂_hom_comp_i_apply, extendRestrictScalarsAdj_unit_app_apply, hom_bijective, Rep.diagonalHomEquiv_apply, groupHomology.d₂₁_single, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, SheafOfModules.Presentation.IsFinite.finite_relations, Rep.freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, groupHomology.cycles₁IsoOfIsTrivial_inv_apply, groupHomology.eq_d₂₁_comp_inv_apply, Rep.epi_iff_surjective, SheafOfModules.pushforwardNatTrans_app_val_app_apply, CategoryTheory.whiskering_linearYoneda₂, groupCohomology.coboundaries₂_ext_iff, groupHomology.d₁₀_comp_coinvariantsMk_assoc, MonoidalCategory.whiskerLeft_apply, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, Rep.indToCoindAux_of_not_rel, groupCohomology.cocyclesOfIsCocycle₂_coe, groupHomology.cyclesMk₀_eq, groupHomology.isoCycles₁_hom_comp_i, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_apply, Rep.applyAsHom_hom, CoalgCat.toCoalgHom_id, CoalgCat.tensorUnit_isModule, forget_map, CategoryTheory.preadditiveCoyonedaObj_obj_isModule, groupHomology.chainsMap_f_0_comp_chainsIso₀_apply, groupCohomology.H1π_comp_map, TopModuleCat.hom_comp, groupHomology.single_inv_ρ_self_add_single_mem_boundaries₁, smulShortComplex_X₃_isModule, Rep.indResHomEquiv_apply_hom, homAddEquiv_apply, PresheafOfModules.ofPresheaf_map, MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, directLimitCocone_pt_isModule, CommRingCat.KaehlerDifferential.ext_iff, GradedObject.eulerChar_eq_sum_finSet_of_finrankSupport_subset, PresheafOfModules.germ_ringCat_smul, groupCohomology.cocyclesMk₀_eq, endRingEquiv_apply, groupHomology.lsingle_comp_chainsMap_f_assoc, HasColimit.reflectsColimit, PresheafOfModules.naturality_apply, groupHomology.single_mem_cycles₂_iff, groupCohomology.isoShortComplexH1_inv, groupHomology.boundaries₁_le_cycles₁, CoalgCat.toCoalgHom_comp, mono_as_hom'_subtype, extendScalarsId_inv_app_apply, semilinearMapAddEquiv_symm_apply_apply, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, PresheafOfModules.fromFreeYonedaCoproduct_app_mk, hom_comp, MonoidalCategory.braiding_inv_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, Rep.diagonalSuccIsoFree_hom_hom_single, CoalgCat.MonoidalCategoryAux.rightUnitor_hom_toLinearMap, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d_assoc, sMulCommClass_mk, QuadraticModuleCat.moduleCat_of_toModuleCat, PresheafOfModules.germ_smul, CoalgCat.leftUnitor_def, hom_neg, Rep.ihom_obj_ρ, instInvertibleCarrierOutModuleCatValSkeleton, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁, Rep.free_ext_iff, PresheafOfModules.toSheafify_app_apply, MonoidalCategory.whiskerRight_def, isScalarTower_of_algebra_moduleCat, Rep.instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, groupCohomology.cocycles₁_ext_iff, Algebra.instIsScalarTowerCarrier, groupCohomology.map_H0Iso_hom_f_assoc, ofHom_apply, TannakaDuality.FiniteGroup.ofRightFDRep_hom, kernelIsoKer_inv_kernel_Îč, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, PresheafOfModules.pushforward₀_obj_obj_isModule, simple_iff_isSimpleModule', restrictScalarsCongr_inv_app, groupCohomology.eq_d₁₂_comp_inv_assoc, Representation.linHom.invariantsEquivRepHom_apply_hom, groupCohomology.H1InfRes_f, imageIsoRange_hom_subtype_apply, LinearMap.comp_id_moduleCat, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, TopModuleCat.hom_neg, MatrixModCat.toModuleCat_obj_isModule, epi_iff_range_eq_top, forget₂AddCommGroupIsEquivalence, groupHomology.d₁₀ArrowIso_inv_left, monoidalClosed_pre_app, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, groupHomology.single_mem_cycles₁_iff, Rep.coinvariantsFunctor_map_hom, groupHomology.d₂₁_single_ρ_add_single_inv_mul, HasLimit.productLimitCone_isLimit_lift, hom_injective, MonoidalCategory.tensorObj_carrier, Rep.linearization_map_hom_single, groupCohomology.isoShortComplexH2_inv, CategoryTheory.preadditiveCoyoneda_obj, groupCohomology.map_id_comp_H0Iso_hom_assoc, groupCohomology.isoCocycles₂_hom_comp_i_assoc, groupHomology.eq_d₁₀_comp_inv_apply, Rep.ihom_obj_V_carrier, LinearEquiv.toFGModuleCatIso_inv, ContinuousCohomology.const_app_hom, semilinearMapAddEquiv_apply, CoextendScalars.map'_hom_apply_apply, Rep.coindIso_hom_hom_hom, RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply, SheafOfModules.pushforwardPushforwardEquivalence_counit_app_val_app, groupHomology.H0π_comp_H0Iso_hom_apply, Rep.barComplex.d_single, freeDesc_apply, CategoryTheory.ShortComplex.ShortExact.moduleCat_surjective_g, Rep.mono_iff_injective, CategoryTheory.linearCoyoneda_obj_obj_isModule, FDRep.dualTensorIsoLinHom_hom_hom, ExtendScalars.hom_ext_iff, groupHomology.d₂₁_comp_d₁₀_assoc, groupCohomology.coe_mapCocycles₂, groupCohomology.eq_d₀₁_comp_inv_assoc, isSimpleModule_of_simple, toKernelSubobject_arrow, CategoryTheory.Iso.toLinearMap_toLinearEquiv, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_assoc, Condensed.instAB4CondensedMod, groupCohomology.H1π_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, groupCohomology.isoCocycles₁_hom_comp_i_assoc, Rep.instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, HomologicalComplex.homologyEulerChar_eq_sum_finSet_of_finrankSupport_subset, CategoryTheory.ShortComplex.ShortExact.moduleCat_injective_f, groupHomology.mapCycles₁_quotientGroupMk'_epi, groupHomology.mapCycles₁_comp_i_assoc, groupHomology.H0π_comp_map_apply, restrictScalarsId'App_inv_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, PresheafOfModules.Sheafify.SMulCandidate.h, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, groupHomology.π_comp_H2Iso_inv_apply, FDRep.instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, groupCohomology.coboundariesOfIsCoboundary₂_coe, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, restrictScalarsComp'App_inv_apply, FDRep.endRingEquiv_comp_ρ, CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForget₂LinearMapIdCarrierAddMonoidHomCarrier, groupHomology.mem_cycles₁_iff, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, groupCohomology.mapCocycles₁_comp_i, groupHomology.boundariesToCycles₁_apply, groupHomology.single_mem_cycles₂_iff_inv, groupHomology.d₁₀_single, TopModuleCat.hom_forget₂_TopCat_map, ihom_ev_app, groupCohomology.cocycles₁.d₁₂_apply, Rep.indResHomEquiv_symm_apply_hom, groupHomology.isoCycles₂_hom_comp_i_assoc, FilteredColimits.colimit_add_mk_eq, groupHomology.comp_d₃₂_eq, groupCohomology.π_comp_H2Iso_hom, free_hom_ext_iff, CategoryTheory.Iso.toIsometryEquiv_symm, groupHomology.H2π_eq_zero_iff, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierObjOppositeOpensCarrierCarrierCommRingCatSpecModuleCatPresheafModulesSheafModulesSpecToSheafOpBasicOpenPowersHomToOpen, CategoryTheory.Iso.toIsometryEquiv_trans, MonoidalCategory.associator_inv_apply, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, groupCohomology.isoCocycles₂_inv_comp_iCocycles_assoc, QuadraticModuleCat.hom_hom_associator, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, groupHomology.H1π_eq_iff, biprodIsoProd_inv_comp_fst_apply, groupHomology.d₃₂_comp_d₂₁_apply, CoextendScalars.map_apply, groupHomology.chainsMap_f, Rep.quotientToCoinvariantsFunctor_obj_V, SheafOfModules.unitHomEquiv_apply_coe, groupHomology.chainsMap_f_2_comp_chainsIso₂_apply, groupHomology.cyclesMap_comp_isoCycles₁_hom, QuadraticModuleCat.hom_inv_associator, forget₂_map, groupCohomology.d₀₁_eq_zero, toMatrixModCat_obj_isModule
mkOfSMul 📖CompOp
2 mathmath: HasColimit.colimitCocone_Îč_app, mkOfSMul_smul
mkOfSMul' 📖CompOp
2 mathmath: mkOfSMul'_smul, HasColimit.colimitCocone_pt_carrier
moduleCategory 📖CompOp
1589 mathmath: HasColimit.colimitCocone_pt_isAddCommGroup, instIsRightAdjointCoextendScalars, instPreservesMonomorphismsRestrictScalars, PresheafOfModules.Monoidal.tensorObj_obj, groupHomology.mapShortComplexH2_τ₁, Rep.resCoindHomEquiv_symm_apply_hom, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, Representation.repOfTprodIso_inv_apply, Rep.resCoindHomEquiv_apply_hom, groupCohomology.instEpiModuleCatH2π, groupCohomology.mapShortComplexH1_τ₂, hom_zero, groupHomology.π_comp_H2Iso_hom_assoc, instReflectsIsomorphismsForgetLinearMapIdCarrier, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, LightCondensed.free_internallyProjective_iff_tensor_condition, CategoryTheory.linearCoyoneda_obj_additive, instFullUliftFunctor, forget_preservesLimits, directLimitDiagram_obj_isModule, CommRingCat.KaehlerDifferential.map_d, CategoryTheory.preadditiveCoyonedaObj_map, MonoidalCategory.braiding_hom_apply, Rep.coe_linearization_obj_ρ, biproductIsoPi_inv_comp_π, simple_of_finrank_eq_one, FilteredColimits.colimit_smul_mk_eq, groupHomology.mapCycles₂_comp_assoc, restrictScalars.map_apply, Condensed.instAB4StarCondensedMod, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom, forget₂_reflectsLimitsOfSize, CategoryTheory.additive_yonedaObj, groupCohomology.toCocycles_comp_isoCocycles₁_hom, CategoryTheory.linearCoyoneda_map_app, CategoryTheory.linearCoyoneda_obj_obj_carrier, Rep.MonoidalClosed.linearHomEquiv_symm_hom, projective_of_free, groupCohomology.isoCocycles₁_hom_comp_i_apply, instEssentiallySmallFGModuleCat, groupHomology.map₁_quotientGroupMk'_epi, groupCohomology.mem_cocycles₂_def, TannakaDuality.FiniteGroup.toRightFDRepComp_in_rightRegular, MoritaEquivalence.linear, groupHomology.coinfNatTrans_app, groupHomology.mapShortComplexH2_id, forget_preservesLimitsOfSize, groupCohomology.d₂₃_hom_apply, restrictScalarsCongr_symm, LightCondensed.ihomPoints_apply, LinearMap.id_fgModuleCat_comp, restrictScalarsId'App_inv_naturality_assoc, groupHomology.d₁₀_single_one, groupHomology.shortComplexH1_f, FDRep.char_tensor, groupHomology.boundaries₂_le_cycles₂, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, forget₂PreservesColimitsOfSize, groupCohomology.inhomogeneousCochains.d_def, groupCohomology.π_comp_H0IsoOfIsTrivial_hom_assoc, PresheafOfModules.add_app, FGModuleCat.hom_hom_id, Rep.diagonalSuccIsoFree_inv_hom_single, CondensedMod.IsSolid.isIso_solidification_map, groupCohomology.cocyclesMap_id_comp_assoc, groupHomology.map₁_one, groupCohomology.d₀₁_comp_d₁₂, Representation.repOfTprodIso_apply, freeHomEquiv_apply, epi_as_hom''_mkQ, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, Rep.coindResAdjunction_counit_app, forget₂AddCommGroup_preservesLimitsOfSize, toMatrixModCat_map, groupCohomology.toCocycles_comp_isoCocycles₂_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, LightCondensed.forget_obj_val_map, groupCohomology.cocyclesIso₀_hom_comp_f, Rep.resCoindAdjunction_counit_app_hom_hom, groupHomology.d₃₂_single, CategoryTheory.Abelian.FreydMitchell.instFaithfulModuleCatEmbeddingRingFunctor, groupCohomology.eq_d₀₁_comp_inv, extendScalarsId_hom_app_one_tmul, groupCohomology.H1π_comp_map_assoc, groupHomology.mapCycles₁_comp_apply, groupHomology.cyclesIso₀_inv_comp_iCycles_apply, Rep.leftRegularHom_hom, PresheafOfModules.restrictScalars_map_app, groupHomology.mapShortComplexH1_zero, groupCohomology.π_comp_H0Iso_hom, FDRep.endRingEquiv_symm_comp_ρ, ofHom_comp, groupHomology.H0IsoOfIsTrivial_inv_eq_π, groupCohomology.π_comp_H1Iso_hom_assoc, Îč_coprodIsoDirectSum_hom_apply, restrictScalarsComp'App_hom_apply, PresheafOfModules.epi_iff_surjective, groupHomology.cyclesMap_id_comp, LightCondensed.ihomPoints_symm_comp, Rep.indFunctor_obj, isZero_iff_subsingleton, groupHomology.mapShortComplexH2_zero, groupCohomology.eq_d₁₂_comp_inv, CategoryTheory.whiskering_linearCoyoneda, cokernel_π_cokernelIsoRangeQuotient_hom_apply, CategoryTheory.ShortComplex.moduleCatMk_X₁_carrier, Rep.indToCoindAux_self, Condensed.instAB5CondensedMod, groupCohomology.instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor, groupCohomology.mapCocycles₂_comp_i, PresheafOfModules.evaluation_preservesColimitsOfShape, AlternatingMap.postcomp_apply, groupHomology.H1CoresCoinf_exact, groupHomology.eq_d₃₂_comp_inv, FGModuleCat.instHasColimitsOfShapeOfFinCategory, PresheafOfModules.comp_app, CategoryTheory.ShortComplex.moduleCatMk_X₁_isAddCommGroup, Rep.indCoindNatIso_hom_app, groupHomology.chainsMap_id, instSmallUnitsSkeletonModuleCat, Rep.coe_res_obj_ρ, Rep.invariantsFunctor_obj_carrier, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, Rep.barComplex.d_def, monoidalClosed_uncurry, Rep.diagonalHomEquiv_symm_apply, groupCohomology.H0IsoOfIsTrivial_hom, matrixEquivalence_inverse, TannakaDuality.FiniteGroup.forget_obj, CondensedMod.isDiscrete_tfae, CategoryTheory.linearYoneda_obj_map, Rep.coindFunctor_map, hasLimits', CategoryTheory.ShortComplex.moduleCatLeftHomologyData_i_hom, groupCohomology.coe_mapCocycles₁, groupHomology.mem_cycles₂_iff, Iso.homCongr_eq_arrowCongr, CoextendScalars.smul_apply', groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_g, groupHomology.cyclesMap_comp_isoCycles₂_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isModule, directLimitCocone_pt_carrier, toMatrixModCat_obj_carrier, groupCohomology.d₁₂_hom_apply, preservesFiniteLimits_extendScalars_of_flat, instSmallSubtypeForallCarrierObjMemSubmoduleSectionsSubmodule, instAB4StarModuleCat, groupHomology.comp_d₂₁_eq, PresheafOfModules.pushforward_map_app_apply, Rep.instIsLeftAdjointSubtypeMemSubgroupCoindFunctorSubtype, CategoryTheory.preadditiveYonedaObj_obj_carrier, groupCohomology.coboundariesToCocycles₁_apply, Rep.instIsRightAdjointCoindFunctor, groupHomology.mapCycles₁_comp_assoc, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_assoc, CategoryTheory.ShortComplex.moduleCatMk_X₂_isModule, groupHomology.toCycles_comp_isoCycles₂_hom_assoc, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, CondensedMod.LocallyConstant.instFullModuleCatFunctor, FGModuleCat.instPreservesFiniteColimitsModuleCatForget₂LinearMapIdCarrierObjIsFG, Rep.instIsTrivialObjModuleCatTrivialFunctor, PresheafOfModules.sections_property, groupHomology.H0π_comp_map, linearEquivIsoModuleIso_hom, groupHomology.H1CoresCoinf_X₃, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, groupCohomology.mapShortComplexH1_τ₃, AlgebraicGeometry.instIsLeftAdjointModuleCatCarrierModulesSpecOfFunctor, PresheafOfModules.toSheafify_app_apply', AlgebraicGeometry.tilde.map_id, PresheafOfModules.instPreservesLimitsOfShapeModuleCatCarrierObjOppositeRingCatEvaluation, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, Rep.coinvariantsAdjunction_counit_app, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂, LightCondMod.instPreservesEpimorphismsLightCondSetForget, forget_preservesEpimorphisms, PresheafOfModules.Derivation.d_map, groupHomology.map_id, QuadraticModuleCat.forget₂_map_associator_inv, LinearMap.comp_id_fgModuleCat, HasColimit.instHasColimit, RestrictionCoextensionAdj.HomEquiv.toRestriction_hom_apply, groupCohomology.cochainsMap_comp, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, AlgebraicGeometry.tilde.map_sub, groupCohomology.comp_d₁₂_eq, toMatrixModCat_obj_isAddCommGroup, groupCohomology.mem_cocycles₁_of_addMonoidHom, groupCohomology.cocycles₂.d₂₃_apply, groupCohomology.d₀₁_hom_apply, Rep.linearization_single, extendRestrictScalarsAdj_homEquiv_apply, groupHomology.π_comp_H1Iso_inv, groupHomology.d₃₂_single_one_thd, CategoryTheory.ShortComplex.moduleCatMk_g, LightCondMod.isDiscrete_tfae, restrictScalarsComp'_inv_app, hom_tensorHom, groupHomology.isoCycles₁_inv_comp_iCycles_apply, groupHomology.coresNatTrans_app, PresheafOfModules.free_map_app, groupHomology.instPreservesZeroMorphismsRepModuleCatFunctor, forget₂_addCommGrp_essSurj, groupCohomology.dArrowIso₀₁_inv_right, groupCohomology.map_H0Iso_hom_f_apply, shortExact_projectiveShortComplex, groupCohomology.d₁₂_comp_d₂₃_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, groupCohomology.eq_d₂₃_comp_inv_assoc, PresheafOfModules.congr_map_apply, groupCohomology.congr, CategoryTheory.Abelian.freyd_mitchell, PresheafOfModules.freeYonedaEquiv_symm_app, Rep.finsuppToCoinvariantsTensorFree_single, groupCohomology.eq_d₂₃_comp_inv_apply, groupCohomology.eq_d₁₂_comp_inv_apply, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, groupHomology.mapShortComplexH1_τ₂, PresheafOfModules.restrictScalarsObj_map, PresheafOfModules.forgetToPresheafModuleCatObj_map, groupHomology.chains₁ToCoinvariantsKer_surjective, enoughProjectives, restrictScalarsId'App_hom_naturality, Rep.coinvariantsTensorFreeLEquiv_symm_apply, Rep.standardComplex.d_eq, LinearEquiv.toModuleIso_inv, AlgebraicGeometry.Scheme.Modules.toOpen_fromTildeΓ_app, SheafOfModules.evaluationPreservesLimitsOfShape, Profinite.NobelingProof.GoodProducts.linearIndependent_comp_of_eval, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, forget₂AddCommGroup_reflectsLimitOfShape, exteriorPower.iso₀_hom_naturality, forget_reflectsLimitsOfSize, groupHomology.cycles₁_eq_top_of_isTrivial, instIsEquivalenceFGModuleCatUlift, ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, groupHomology.π_comp_H0Iso_hom_assoc, Rep.resCoindAdjunction_unit_app_hom_hom, restrictScalars_isEquivalence_of_ringEquiv, groupHomology.d₃₂_comp_d₂₁_assoc, groupCohomology.mem_cocycles₁_def, CoalgCat.comonEquivalence_inverse, Rep.trivial_projective_of_subsingleton, endRingEquiv_symm_apply_hom, FGModuleCat.instFiniteHomModuleCatObjIsFG, Rep.instEpiModuleCatHom, restrictScalarsComp'_hom_app, groupHomology.H1CoresCoinfOfTrivial_X₁, Rep.homEquiv_apply_hom, groupHomology.chainsMap_id_f_map_mono, FilteredColimits.colimit_zero_eq, groupCohomology.mapShortComplexH2_comp_assoc, Rep.FiniteCyclicGroup.chainComplexFunctor_obj, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, forget_preservesMonomorphisms, groupCohomology.mapCocycles₂_comp_i_apply, instHasFiniteColimits, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom_apply, PresheafOfModules.id_app, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.full, MonoidalCategory.associator_hom_apply, groupHomology.single_one_snd_sub_single_one_fst_mem_boundaries₂, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, groupHomology.d₁₀ArrowIso_hom_left, Rep.norm_comm_apply, AlgebraicGeometry.instAdditiveModuleCatCarrierModulesSpecOfFunctor, groupHomology.cycles₁IsoOfIsTrivial_hom_apply, HasLimit.productLimitCone_cone_π, HasColimit.colimitCocone_Îč_app, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_apply, PresheafOfModules.restrictScalarsObj_obj, groupCohomology.coboundaries₁_eq_bot_of_isTrivial, instHasSeparatorModuleCatOfSmall, Rep.coinvariantsAdjunction_homEquiv_symm_apply_hom, instAdditiveLocalizationLocalizedModule_functor, MonoidalCategory.tensorHom_tmul, groupHomology.d₂₁_single_inv_mul_ρ_add_single, QuadraticModuleCat.forget₂_map, groupCohomology.instMonoModuleCatFH1InfRes, smulShortComplex_X₃_isAddCommGroup, forget₂_addCommGroup_full, groupCohomology.cocyclesIso₀_inv_comp_iCocycles, hasLimitsOfSize, groupCohomology.cocycles₂_map_one_fst, Rep.indCoindIso_inv_hom_hom, PresheafOfModules.sectionsMap_coe, groupCohomology.mapCocycles₂_comp_i_assoc, Rep.free_projective, groupHomology.d₁₀_comp_coinvariantsMk_apply, ExtendRestrictScalarsAdj.Counit.map_hom_apply, Rep.ρ_hom, Rep.diagonalSuccIsoFree_inv_hom_single_single, groupCohomology.H1IsoOfIsTrivial_inv_apply, Rep.instPreservesProjectiveObjectsActionModuleCatSubtypeMemSubgroupResSubtype, groupHomology.π_comp_H2Iso_inv_assoc, instPreservesFiniteColimitsUliftFunctor, PresheafOfModules.map_comp_apply, biprodIsoProd_inv_comp_snd_apply, RestrictionCoextensionAdj.counit'_app, groupHomology.chainsMap_f_3_comp_chainsIso₃, PresheafOfModules.pushforward_map_app_apply', groupHomology.mapCycles₁_id_comp_assoc, groupHomology.eq_d₂₁_comp_inv, groupHomology.shortComplexH2_f, CoalgCat.comonEquivalence_counitIso, groupCohomology.cocycles₁IsoOfIsTrivial_hom_hom_apply_apply, CategoryTheory.linearYoneda_obj_obj_carrier, Rep.instLinearModuleCatObjFunctorCoinvariantsTensor, MonoidalCategory.whiskerLeft_def, groupCohomology.H2π_comp_map_apply, groupHomology.mapCycles₁_comp, groupHomology.map_comp, FDRep.instPreservesFiniteColimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.ihom_ev_app_hom, homLinearEquiv_symm_apply, Profinite.NobelingProof.succ_exact, hom_smul, groupCohomology.dArrowIso₀₁_hom_right, FGModuleCat.instFiniteCarrierSigmaObjModuleCatOfFinite, uliftFunctorForgetIso_hom_app, groupCohomology.π_map_assoc, Rep.MonoidalClosed.linearHomEquivComm_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_map_app, smul_naturality, CategoryTheory.ShortComplex.moduleCat_zero_apply, groupCohomology.toCocycles_comp_isoCocycles₂_hom, CompHausLike.LocallyConstantModule.functor_map_val, Rep.coe_linearization_obj, Rep.instIsRightAdjointModuleCatInvariantsFunctor, groupCohomology.map_comp, FGModuleCat.hom_comp, SheafOfModules.evaluationPreservesLimitsOfSize, groupHomology.map_id_comp, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_assoc, CategoryTheory.faithful_linearYoneda, imageIsoRange_hom_subtype, groupHomology.mapCycles₁_comp_i, CoextendScalars.smul_apply, Rep.coinvariantsTensorIndIso_inv, groupCohomology.shortComplexH0_f, binaryProductLimitCone_cone_π_app_right, groupCohomology.shortComplexH0_g, groupCohomology.cocyclesOfIsCocycle₁_coe, exteriorPower.desc_mk, PresheafOfModules.unit_map_one, groupHomology.functor_obj, PresheafOfModules.zsmul_app, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, matrixEquivalence_functor, HasColimit.colimitCocone_pt_isModule, groupCohomology.shortComplexH1_f, hasLimits, groupCohomology.coboundaries₂_le_cocycles₂, CategoryTheory.preadditiveYoneda_obj, CategoryTheory.linearCoyoneda_obj_obj_isAddCommGroup, Rep.standardComplex.ΔToSingle₀_comp_eq, MonoidalCategory.tensorHom_def, groupHomology.inhomogeneousChains.d_def, PresheafOfModules.isoMk_hom_app, Rep.coindVEquiv_symm_apply_coe, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapId, restrictScalarsId'App_inv_naturality, groupCohomology.H1IsoOfIsTrivial_H1π_apply_apply, imageIsoRange_inv_image_Îč_apply, Rep.homEquiv_def, Rep.indCoindIso_hom_hom_hom, CategoryTheory.preadditiveYonedaMap_app, groupCohomology.comp_d₂₃_eq, CondensedMod.isDiscrete_iff_isDiscrete_forget, PresheafOfModules.map_smul, FGModuleCat.FGModuleCatEvaluation_apply, epi_iff_surjective, restrictScalarsId'_inv_app, groupCohomology.coboundaries₂.val_eq_coe, AlgebraicGeometry.instFullModuleCatCarrierModulesSpecOfFunctor, PresheafOfModules.Monoidal.tensorObj_map_tmul, exteriorPower.map_mk, cokernel_π_cokernelIsoRangeQuotient_hom, extendScalars_assoc_assoc, groupHomology.H1CoresCoinf_X₁, Rep.ofModuleMonoidAlgebra_obj_coe, groupHomology.single_one_fst_sub_single_one_snd_mem_boundaries₂, id_apply, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_assoc, groupCohomology.infNatTrans_app, FGModuleCat.instPreservesFiniteLimitsModuleCatForget₂LinearMapIdCarrierObjIsFG, groupCohomology.d₁₂_apply_mem_cocycles₂, Rep.invariantsAdjunction_unit_app, hom_inv_apply, groupHomology.mapCycles₂_id_comp, Rep.diagonal_succ_projective, CategoryTheory.ShortComplex.moduleCatMk_X₃_isAddCommGroup, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, monoidalClosed_curry, groupCohomology.d₀₁_apply_mem_cocycles₁, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc, exteriorPower.iso₁_hom_naturality, hasColimitsOfSize, PresheafOfModules.instPreservesLimitsOfSizeModuleCatCarrierObjOppositeRingCatEvaluation, Module.Flat.iff_rTensor_preserves_shortComplex_exact, groupHomology.cyclesMap_comp_assoc, MonoidalCategory.leftUnitor_hom_apply, Rep.indToCoindAux_fst_mul_inv, Rep.instIsLeftAdjointActionModuleCatRes, CategoryTheory.isSeparator_iff_faithful_preadditiveCoyonedaObj, exteriorPower.iso₀_hom_apply, groupHomology.cyclesMap_comp_cyclesIso₀_hom_apply, Rep.coinvariantsFunctor_obj_carrier, Rep.applyAsHom_comm_apply, groupHomology.d₂₁_single_inv_self_ρ_sub_self_inv, groupHomology.chainsMap_f_single, restrictScalarsId'App_hom_apply, groupCohomology.π_comp_H0IsoOfIsTrivial_hom, groupCohomology.subtype_comp_d₀₁_apply, SheafOfModules.pushforwardComp_inv_app_val_app, LightCondensed.internallyProjective_iff_tensor_condition, FilteredColimits.forget_preservesFilteredColimits, groupCohomology.H2π_eq_iff, CoalgCat.toComonObj_X, groupCohomology.cochainsMap_f_map_epi, groupCohomology.comp_d₀₁_eq, FGModuleCat.instIsMonoidalClosedModuleCatIsFG, Rep.instProjective, groupCohomology.cocycles₂_map_one_snd, restrictScalarsId'App_hom_naturality_assoc, homAddEquiv_symm_apply_hom, LinearMap.shortExact_shortComplexKer, Rep.coinvariantsTensorFreeLEquiv_apply, groupHomology.coinvariantsMk_comp_H0Iso_inv, image.lift_fac, groupHomology.toCycles_comp_isoCycles₁_hom_apply, TannakaDuality.FiniteGroup.sumSMulInv_apply, Module.Flat.iff_lTensor_preserves_shortComplex_exact, CategoryTheory.ShortComplex.moduleCatMk_X₃_carrier, groupHomology.mapCycles₂_comp_i, Rep.coinvariantsTensorIndIso_hom, groupCohomology.map_H0Iso_hom_f, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_zero_iff, PresheafOfModules.mono_iff_surjective, Rep.barResolution_complex, ExtendScalars.map'_id, groupHomology.boundariesOfIsBoundary₁_coe, PresheafOfModules.freeObj_map, instPreservesFiniteColimitsLocalizationLocalizedModule_functor, FDRep.instFiniteDimensionalCarrierVFGModuleCat, FGModuleCat.instFiniteHom, groupCohomology.cochainsMap_zero, Rep.indToCoindAux_comm, smulShortComplex_X₁, groupCohomology.dArrowIso₀₁_inv_left, groupCohomology.π_comp_H1Iso_hom, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, groupHomology.map_comp_assoc, Rep.coinvariantsTensorIndNatIso_inv_app, AlgebraicGeometry.tilde.isoTop_hom, Tilde.toOpen_res, groupHomology.cyclesIso₀_comp_H0π_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_assoc_apply, groupHomology.eq_d₃₂_comp_inv_apply, CondensedMod.epi_iff_surjective_on_stonean, FDRep.average_char_eq_finrank_invariants, hom_whiskerRight, Rep.instAdditiveModuleCatObjFunctorCoinvariantsTensor, groupCohomology.cocycles₂_ρ_map_inv_sub_map_inv, hom_inv_associator, PresheafOfModules.instEpiModuleCatCarrierObjOppositeRingCatApp, FGModuleCat.hom_id, Rep.toAdditive_symm_apply, groupCohomology.H1InfRes_X₂, lof_coprodIsoDirectSum_inv, LightCondMod.LocallyConstant.instFullModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, groupCohomology.map₁_one, Rep.coindResAdjunction_unit_app, groupHomology.single_one_fst_sub_single_one_fst_mem_boundaries₂, CategoryTheory.linearYoneda_map_app, instAB4ModuleCat, CommRingCat.moduleCatRestrictScalarsPseudofunctor_map, CoalgCat.comul_def, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i, inv_hom_apply, forget₂AddCommGroup_preservesLimits, CategoryTheory.Abelian.full_comp_preadditiveCoyonedaObj, directLimitIsColimit_desc, CategoryTheory.preadditiveYonedaObj_obj_isModule, groupHomology.mapCycles₁_id_comp_apply, MonoidalCategory.rightUnitor_def, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom_assoc, groupHomology.H1CoresCoinf_g, CategoryTheory.Iso.toLinearEquiv_symm, groupCohomology.cochainsMap_id_comp, PresheafOfModules.presheaf_map_apply_coe, smulShortComplex_g, directLimitCocone_pt_isAddCommGroup, Rep.ofMulDistribMulAction_ρ_apply_apply, groupCohomology.map_id, CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.full_embedding, groupCohomology.mapShortComplexH2_comp, ExtendScalars.map'_comp, groupCohomology.shortComplexH2_f, CategoryTheory.linearYoneda_obj_obj_isAddCommGroup, simple_iff_isSimpleModule, restrictScalarsComp'App_hom_naturality_assoc, Rep.instIsTrivialCarrierVModuleCatOfCompLinearMapIdρ, groupCohomology.instEpiModuleCatH1π, MonoidalCategory.associator_def, groupHomology.H1CoresCoinfOfTrivial_X₂, groupHomology.H1CoresCoinf_X₂, IsProjective.iff_projective, groupCohomology.H2π_comp_map, groupCohomology.cochainsMap_comp_assoc, TopModuleCat.instIsRightAdjointModuleCatIndiscrete, FGModuleCat.instFiniteCarrierLimitModuleCatCompForget₂LinearMapIdObjIsFG, mono_iff_injective, groupHomology.π_comp_H2Iso_hom, forget₂_obj, CategoryTheory.Injective.injective_iff_preservesEpimorphisms_preadditive_yoneda_obj', TopModuleCat.instIsLeftAdjointModuleCatWithModuleTopology, Rep.indResAdjunction_counit_app_hom_hom, FDRep.hom_hom_action_ρ, CompHausLike.LocallyConstantModule.functor_obj_val, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.preservesInjectiveObjects, FGModuleCat.FGModuleCatDual_obj, AlgebraicGeometry.tilde.functor_map, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, Rep.coindToInd_apply, PresheafOfModules.forgetToPresheafModuleCatObjMap_apply, groupHomology.mapCycles₁_comp_i_apply, SheafOfModules.pushforwardCongr_hom_app_val_app, hom_whiskerLeft, groupHomology.chainsMap_f_map_epi, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, AlgCat.forget₂Module_preservesLimitsOfSize, groupHomology.mapCycles₂_comp, comp_apply, restrictScalarsCongr_hom_app, MonoidalCategory.tensorUnit_carrier, kernelIsoKer_inv_kernel_Îč_apply, groupHomology.isoShortComplexH1_hom, ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, groupHomology.cyclesIso₀_inv_comp_cyclesMap_apply, CategoryTheory.whiskering_linearYoneda, Rep.coe_of, MonoidalCategory.rightUnitor_hom_apply, groupCohomology.mono_map_0_of_mono, Condensed.instHasLimitsOfSizeModuleCat, groupCohomology.isoCocycles₂_hom_comp_i, CoalgCat.MonoidalCategory.inducingFunctorData_ÎŒIso, CoalgCat.MonoidalCategory.inducingFunctorData_ΔIso, FilteredColimits.M.mk_map, groupCohomology.π_comp_H0Iso_hom_apply, instIsRightAdjointRestrictScalars, Rep.resIndAdjunction_homEquiv_symm_apply, groupHomology.coe_mapCycles₂, Rep.coinvariantsFunctor_hom_ext_iff, LightCondensed.instPreservesEpimorphismsFunctorDiscreteNatLightCondModLim, CategoryTheory.whiskering_linearCoyoneda₂, FGModuleCat.obj_carrier, groupCohomology.isoCocycles₁_inv_comp_iCocycles_apply, groupHomology.comp_d₁₀_eq, groupHomology.H1π_comp_map_apply, localizedModule_functor_map, Rep.instLinearModuleCatCoinvariantsFunctor, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition', FGModuleCat.FGModuleCatCoevaluation_apply_one, Rep.coindMap'_hom, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_X₂, Rep.normNatTrans_app, groupHomology.H0π_comp_map_assoc, instHasExtModuleCatOfSmall, groupCohomology.dArrowIso₀₁_hom_left, instHasLimitsCondensedMod, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom, groupHomology.toCycles_comp_isoCycles₁_hom_assoc, groupHomology.π_comp_H0Iso_hom_apply, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, groupCohomology.eq_d₀₁_comp_inv_apply, groupCohomology.H1InfRes_X₃, MonoidalCategory.tensorLift_tmul, simple_of_isSimpleModule, Rep.applyAsHom_comm_assoc, MatrixModCat.toModuleCat_obj_carrier, Rep.instEpiModuleCatAppActionCoinvariantsMk, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_assoc, groupCohomology.cocycles₁_map_inv, Rep.freeLiftLEquiv_apply, hom_hom_leftUnitor, groupHomology.chainsFunctor_obj, groupCohomology.mapCocycles₁_one, Rep.instEnoughProjectives, PresheafOfModules.surjective_of_epi, groupCohomology.instMonoModuleCatFShortComplexH0, FGModuleCat.instFiniteCarrierPiObjModuleCatOfFinite, adj_homEquiv, groupCohomology.functor_obj, groupCohomology.cocyclesMap_comp, CategoryTheory.preservesFiniteColimits_preadditiveYonedaObj_of_injective, groupHomology.H2π_comp_map_assoc, AlgebraicGeometry.tilde.map_comp_assoc, Rep.indToCoindAux_mul_fst, hom_hom_rightUnitor, LightCondensed.forget_map_val_app, biprodIsoProd_inv_comp_snd, groupHomology.π_comp_H0IsoOfIsTrivial_hom_apply, piIsoPi_inv_kernel_Îč_apply, MonModuleEquivalenceAlgebra.functor_map_hom_apply, Rep.ihom_obj_ρ_apply, Rep.instPreservesZeroMorphismsModuleCatInvariantsFunctor, AlgebraicGeometry.Scheme.Modules.toOpen_fromTildeΓ_app_assoc, CondensedMod.hom_naturality_apply, instIsLeftAdjointRestrictScalars, lof_coprodIsoDirectSum_inv_apply, Condensed.instIsRightKanExtensionFintypeCatCondensedModProfiniteProfiniteSolidProfiniteSolidCounit, Rep.FiniteCyclicGroup.chainComplexFunctor_map_f, groupHomology.d₁₀ArrowIso_inv_right, FDRep.instFaithfulRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Derivation.desc_d, range_mkQ_cokernelIsoRangeQuotient_inv, TannakaDuality.FiniteGroup.equivApp_inv, Rep.finsuppTensorRight_hom_hom, QuadraticModuleCat.forget₂_map_associator_hom, exteriorPower.iso₀_hom_naturality_assoc, groupCohomology.resNatTrans_app, PresheafOfModules.injective_of_mono, free_Δ_one, PresheafOfModules.isoMk_inv_app, groupCohomology.norm_ofAlgebraAutOnUnits_eq, groupCohomology.π_comp_H0Iso_hom_assoc, groupCohomology.π_map, CategoryTheory.full_linearCoyoneda, TannakaDuality.FiniteGroup.forget_map, MonModuleEquivalenceAlgebra.functor_obj_carrier, imageIsoRange_hom_subtype_assoc, groupCohomology.mem_cocycles₂_iff, groupCohomology.mapShortComplexH2_zero, CategoryTheory.Projective.projective_iff_preservesEpimorphisms_preadditiveCoyonedaObj, Rep.tensor_ρ, Rep.resIndAdjunction_homEquiv_apply, Rep.toAdditive_apply, PresheafOfModules.pushforward_obj_map_apply, groupHomology.chainsMap_id_f_map_epi, groupCohomology.H2π_comp_map_assoc, groupHomology.d₁₀_comp_coinvariantsMk, groupHomology.d₂₁_comp_d₁₀_apply, AlgebraicGeometry.tilde.isIso_toOpen_top, groupHomology.mapCycles₂_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, Rep.ofDistribMulAction_ρ_apply_apply, groupCohomology.d₀₁_ker_eq_invariants, Rep.linearization_η_hom_apply, CategoryTheory.faithful_linearCoyoneda, smulNatTrans_apply_app, FGModuleCat.ihom_obj, groupCohomology.cochainsMap_id_f_map_mono, CoalgCat.comonEquivalence_functor, Rep.quotientToInvariantsFunctor_map_hom, groupHomology.chainsMap_id_comp, forget_reflectsLimits, Rep.leftRegularHomEquiv_symm_apply, TannakaDuality.FiniteGroup.equivApp_hom, uliftFunctorForgetIso_inv_app, FDRep.char_linHom, Rep.quotientToCoinvariantsFunctor_map_hom, groupHomology.instEpiModuleCatGH1CoresCoinf, groupCohomology.mapShortComplexH1_id, CommRingCat.moduleCatExtendScalarsPseudofunctor_map, Rep.coinvariantsShortComplex_g, groupHomology.H2π_eq_iff, FGModuleCat.instAdditiveModuleCatForget₂LinearMapIdCarrierObjIsFG, reflectsIsomorphisms_extendScalars_of_faithfullyFlat, ExtendRestrictScalarsAdj.homEquiv_symm_apply, groupHomology.H1AddEquivOfIsTrivial_single, LightCondMod.instReflectsEpimorphismsLightCondSetForget, CategoryTheory.preservesFiniteColimits_preadditiveCoyonedaObj_of_projective, groupCohomology.mem_cocycles₁_iff, groupHomology.mapShortComplexH1_id_comp, CoalgCat.ofComonObjCoalgebraStruct_comul, MonoidalCategory.tensorÎŒ_eq_tensorTensorTensorComm, groupHomology.mapShortComplexH1_comp, groupHomology.range_d₁₀_eq_coinvariantsKer, PresheafOfModules.unitHomEquiv_apply_coe, Rep.coindResAdjunction_homEquiv_apply, groupCohomology.inhomogeneousCochains.d_comp_d, FreeMonoidal.ΔIso_inv_freeMk, groupHomology.isoCycles₂_hom_comp_i_apply, Rep.Tor_map, Rep.ofModuleMonoidAlgebra_obj_ρ, PresheafOfModules.freeObj_obj, groupCohomology.π_comp_H0IsoOfIsTrivial_hom_apply, Rep.coinvariantsShortComplex_f, SheafOfModules.pushforwardCongr_inv_app_val_app, groupCohomology.toCocycles_comp_isoCocycles₁_hom_assoc, groupCohomology.isoCocycles₂_inv_comp_iCocycles_apply, Rep.resIndAdjunction_counit_app, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_assoc, groupCohomology.isoCocycles₁_inv_comp_iCocycles, groupHomology.π_comp_H0IsoOfIsTrivial_hom, RestrictionCoextensionAdj.unit'_app, matrixEquivalence_unitIso, groupHomology.eq_d₂₁_comp_inv_assoc, imageIsoRange_inv_image_Îč, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom, Rep.ofMulActionSubsingletonIsoTrivial_inv_hom, smulShortComplex_X₃_carrier, RingCat.moduleCatRestrictScalarsPseudofunctor_mapId, free_η_freeMk, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_apply, groupHomology.cyclesMap_comp_isoCycles₂_hom_assoc, CategoryTheory.preservesHomology_preadditiveCoyonedaObj_of_projective, Rep.instIsLeftAdjointModuleCatCoinvariantsFunctor, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom, Algebra.instLinearRestrictScalars, groupHomology.inhomogeneousChains.d_single, groupCohomology.coboundariesOfIsCoboundary₁_coe, groupCohomology.mapShortComplexH2_τ₁, FGModuleRepr.instIsEquivalenceFGModuleCatEmbed, groupHomology.cyclesIso₀_inv_comp_iCycles, instReflectsIsomorphismsRestrictScalars, exteriorPower.iso₁_hom_apply, FGModuleCat.instHasFiniteColimits, Representation.coind'_apply_apply, groupCohomology.d₁₂_comp_d₂₃_assoc, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_map, SheafOfModules.pushforwardPushforwardAdj_unit_app_val_app, Rep.diagonalOneIsoLeftRegular_inv_hom, hom_inv_rightUnitor, ExtendScalars.smul_tmul, LightCondensed.free_internallyProjective_iff_tensor_condition', groupHomology.map_id_comp_H0Iso_hom_assoc, instHasLimitsOfSizeCondensedMod, hom_sum, MonModuleEquivalenceAlgebra.inverse_obj_mon, restrictScalarsComp'App_hom_naturality, QuadraticModuleCat.forget₂_obj, FGModuleCat.instFiniteCarrierColimitModuleCatCompForget₂LinearMapIdObjIsFG, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_apply, CommRingCat.moduleCatExtendScalarsPseudofunctor_obj, groupCohomology.mapShortComplexH2_id_comp_assoc, groupHomology.mapCycles₂_id_comp_assoc, groupHomology.π_comp_H1Iso_hom_apply, Rep.coindIso_inv_hom_hom, hom_nsmul, groupHomology.mapShortComplexH2_comp, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.cocycles₁_map_mul_of_isTrivial, forget_obj, directLimitDiagram_obj_isAddCommGroup, groupCohomology.subtype_comp_d₀₁_assoc, groupHomology.chainsMap_id_f_hom_eq_mapRange, CategoryTheory.preservesLimits_preadditiveYonedaObj, PresheafOfModules.toPresheaf_map_app_apply, groupHomology.toCycles_comp_isoCycles₂_hom, CategoryTheory.ShortComplex.ShortExact.moduleCat_exact_iff_function_exact, groupCohomology.map_id_comp_H0Iso_hom, CoalgCat.comonEquivalence_unitIso, groupHomology.cyclesMap_comp_isoCycles₂_hom_apply, PresheafOfModules.neg_app, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_assoc_apply, HasColimit.instPreservesColimitAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrier, groupHomology.mapShortComplexH2_τ₂, groupHomology.mapCycles₁_id_comp, Rep.trivialFunctor_obj_V, Rep.indToCoindAux_mul_snd, FilteredColimits.forget₂AddCommGroup_preservesFilteredColimits, instIsRightAdjointForgetLinearMapIdCarrier, homEquiv_extendScalarsComp, groupCohomology.cocycles₁IsoOfIsTrivial_inv_hom_apply_coe, QuadraticModuleCat.toModuleCat_tensor, ExtendScalars.map_tmul, FilteredColimits.colimit_add_mk_eq', PresheafOfModules.map_comp, FilteredColimits.forget_reflectsFilteredColimits, RingCat.moduleCatRestrictScalarsPseudofunctor_map, groupCohomology.cocyclesOfIsMulCocycle₂_coe, groupHomology.chainsMap_f_map_mono, LinearMap.id_moduleCat_comp, restrictScalarsComp'App_inv_naturality, free_ÎŒ_freeMk_tmul_freeMk, forget₂_obj_moduleCat_of, groupHomology.shortComplexH0_f, groupHomology.eq_d₁₀_comp_inv, CategoryTheory.Iso.toLinearEquiv_apply, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, FDRep.instHasKernels, instHasZeroObject, PresheafOfModules.evaluation_preservesColimitsOfSize, groupHomology.isoShortComplexH1_inv, groupCohomology.coboundariesOfIsMulCoboundary₁_coe, SheafOfModules.pushforwardComp_hom_app_val_app, groupHomology.eq_d₁₀_comp_inv_assoc, groupCohomology.d₁₂_comp_d₂₃, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, Rep.linearization_obj_ρ, Rep.toCoinvariantsMkQ_hom, groupHomology.chainsMap_f_1_comp_chainsIso₁_assoc, MonoidalCategory.tensorObj, restrictScalarsComp'App_inv_naturality_assoc, groupHomology.isoCycles₁_hom_comp_i_apply, LightCondMod.LocallyConstant.instIsIsoLightCondSetMapForgetAppLightCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, groupHomology.mapShortComplexH1_τ₁, PresheafOfModules.evaluation_preservesFiniteLimits, SheafOfModules.Presentation.map_relations_I, FGModuleCat.Iso.conj_eq_conj, instPreservesColimitsOfSizeAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrierOfHasColimitsOfSizeAddCommGrpMax, hasCokernels_moduleCat, groupCohomology.cocyclesIso₀_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, FreeMonoidal.ÎŒIso_hom_freeMk_tmul_freeMk, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, CategoryTheory.ShortComplex.exact_iff_surjective_moduleCatToCycles, imageIsoRange_inv_image_Îč_assoc, MonoidalCategory.rightUnitor_inv_apply, groupCohomology.H1π_eq_zero_iff, groupHomology.H1AddEquivOfIsTrivial_symm_apply, Rep.invariantsAdjunction_counit_app_hom, PresheafOfModules.sub_app, groupHomology.cyclesMap_comp_cyclesIso₀_hom, Profinite.NobelingProof.GoodProducts.square_commutes, groupCohomology.cochainsMap_f, groupCohomology.coboundaries₁.val_eq_coe, groupHomology.d₃₂_single_one_fst, inhomogeneousCochains.d_hom_apply, Rep.coind'_ext_iff, CoalgCat.counit_def, PresheafOfModules.DifferentialsConstruction.relativeDifferentials'_map_d, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom_apply, groupHomology.chainsMap_comp, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, groupHomology.d₂₁_comp_d₁₀, PresheafOfModules.Elements.fromFreeYoneda_app_apply, binaryProductLimitCone_cone_π_app_left, HasColimit.coconePointSMul_apply, PresheafOfModules.pushforward_obj_obj, Rep.instLinearModuleCatInvariantsFunctor, groupHomology.d₂₁_single_self_inv_ρ_sub_inv_self, kernelIsoKer_hom_ker_subtype, projective_of_categoryTheory_projective, smulShortComplex_f, SheafOfModules.Presentation.mapRelations_mapGenerators, hasLimitsOfShape, groupHomology.chainsMap_f_3_comp_chainsIso₃_assoc, hom_add, groupHomology.single_ρ_self_add_single_inv_mem_boundaries₁, groupHomology.H1ToTensorOfIsTrivial_H1π_single, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, FGModuleCat.hom_hom_comp, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, Rep.ofMulActionSubsingletonIsoTrivial_hom_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_carrier, instEnoughInjectivesModuleCatOfSmall, groupCohomology.cocyclesMk₁_eq, AlgCat.forget₂_module_obj, isZero_groupCohomology_succ_of_subsingleton, MonoidalCategory.leftUnitor_inv_apply, groupCohomology.map_id_comp_assoc, Îč_coprodIsoDirectSum_hom, instReflectsIsomorphismsAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrier, SheafOfModules.relationsOfIsCokernelFree_I, MonModuleEquivalenceAlgebra.algebraMap, MonoidalCategory.tensorÎŒ_apply, Rep.linearizationTrivialIso_inv_hom, Rep.isZero_Tor_succ_of_projective, groupHomology.cyclesOfIsCycle₁_coe, groupHomology.chainsMap_f_0_comp_chainsIso₀_assoc, groupCohomology.H1InfRes_X₁, Rep.quotientToInvariantsFunctor_obj_V, FDRep.char_one, groupHomology.shortComplexH0_exact, MonoidalCategory.tensorObj_isModule, groupHomology.inhomogeneousChains.ext_iff, FGModuleCat.hom_ext_iff, CategoryTheory.Abelian.FreydMitchell.instPreservesFiniteLimitsModuleCatEmbeddingRingFunctor, MonoidalCategory.tensorObj_isAddCommGroup, groupHomology.d₂₁_apply_mem_cycles₁, groupCohomology.coboundariesToCocycles₂_apply, ihom_map_apply, LightCondMod.LocallyConstant.instFaithfulModuleCatLightCondensedDiscrete, instAdditiveRestrictScalars, MonModuleEquivalenceAlgebra.inverseObj_mul, ihom_coev_app, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCycles₁_hom_apply, groupHomology.toCycles_comp_isoCycles₂_hom_apply, groupCohomology.cocyclesOfIsMulCocycle₁_coe, groupCohomology.H2π_eq_zero_iff, Rep.coinvariantsTensorIndNatIso_hom_app, groupHomology.π_map_assoc, PresheafOfModules.instAdditiveModuleCatCarrierObjOppositeRingCatEvaluation, groupHomology.congr, groupCohomology.mapCocycles₁_comp_i_assoc, Rep.standardComplex.quasiIso_forget₂_ΔToSingle₀, Rep.applyAsHom_comm, groupCohomology.cocycles₁.val_eq_coe, instAdditiveUliftFunctor, TannakaDuality.FiniteGroup.sumSMulInv_single_id, PresheafOfModules.Hom.naturality_assoc, groupCohomology.H1π_comp_map_apply, Rep.leftRegularHom_hom_single, groupCohomology.cocycles₁_map_one, groupHomology.eq_d₃₂_comp_inv_assoc, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f, hom_hom_associator, CoalgCat.forget₂_obj, groupCohomology.π_comp_H2Iso_hom_assoc, groupCohomology.H1InfRes_g, instHasLimitsOfSizeLightCondMod_1, CategoryTheory.preservesHomology_preadditiveYonedaObj_of_injective, CategoryTheory.linearCoyoneda_obj_map, Rep.standardComplex.d_comp_Δ, groupCohomology.toCocycles_comp_isoCocycles₂_hom_assoc, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_X₃, FDRep.simple_iff_end_is_rank_one, Rep.finsuppTensorRight_inv_hom, matrixEquivalence_counitIso, Rep.coinvariantsMk_app_hom, Rep.ihom_obj_V_isAddCommGroup, CategoryTheory.linearYoneda_obj_additive, Rep.indCoindNatIso_inv_app, groupHomology.shortComplexH2_g, AddCommGrpCat.injective_as_module_iff, PresheafOfModules.restriction_app, groupCohomology.mapShortComplexH1_id_comp, PresheafOfModules.Îč_fromFreeYonedaCoproduct_apply, CategoryTheory.ShortComplex.moduleCat_exact_iff_ker_sub_range, CategoryTheory.ShortComplex.moduleCat_exact_iff, groupCohomology.cocyclesMap_comp_assoc, groupHomology.mapCycles₂_hom, groupHomology.isoCycles₂_inv_comp_iCycles_apply, range_mkQ_cokernelIsoRangeQuotient_inv_apply, groupHomology.isoCycles₂_inv_comp_iCycles_assoc, mkOfSMul_smul, groupCohomology.instPreservesZeroMorphismsRepModuleCatFunctor, groupHomology.isoShortComplexH2_hom, Rep.coindResAdjunction_homEquiv_symm_apply, LightCondMod.LocallyConstant.instFaithfulModuleCatFunctor, instMonoÎč, restrictScalars.smul_def, kernelIsoKer_hom_ker_subtype_apply, exteriorPower.iso₁_hom_naturality_assoc, CategoryTheory.preadditiveYonedaObj_obj_isAddCommGroup, groupHomology.cyclesMk₂_eq, groupHomology.chainsMap_f_1_comp_chainsIso₁, restrictScalarsId'_hom_app, Rep.coindVEquiv_apply_hom, groupCohomology.mapShortComplexH1_comp, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom_assoc, groupHomology.H1π_eq_zero_iff, groupHomology.isoCycles₁_inv_comp_iCycles_assoc, groupHomology.π_comp_H1Iso_hom_assoc, LightCondMod.hom_naturality_apply, PresheafOfModules.forgetToPresheafModuleCat_obj, groupHomology.chainsMap_f_2_comp_chainsIso₂, groupHomology.d₂₁_single_one_fst, SheafOfModules.unitToPushforwardObjUnit_val_app_apply, HasLimit.productLimitCone_cone_pt_isModule, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeΓUnitOpensCarrierCarrierCommRingCatRingCatSheaf, PresheafOfModules.forgetToPresheafModuleCatObj_obj, groupHomology.pOpcycles_comp_opcyclesIso_hom, groupHomology.H2π_comp_map, Rep.trivialFunctor_map_hom, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_apply, Module.injective_iff_injective_object, groupCohomology.cocycles₂.val_eq_coe, groupHomology.cyclesIso₀_inv_comp_cyclesMap_assoc, groupHomology.π_comp_H2Iso_inv, groupCohomology.eq_d₂₃_comp_inv, instMonoidalLinear, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_iff, groupCohomology.cochainsMap_f_map_mono, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_f, LightCondensed.ihomPoints_symm_apply, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv, groupCohomology.isoShortComplexH1_hom, groupHomology.mapShortComplexH1_id, PresheafOfModules.Monoidal.tensorHom_app, instFaithfulUliftFunctor, groupHomology.H1π_comp_map_assoc, groupCohomology.map_id_comp, Rep.ihom_map_hom, groupHomology.instEpiModuleCatH1π, piIsoPi_hom_ker_subtype_apply, reflectsColimitsOfShape, FGModuleCat.instHasLimitsOfShapeOfFinCategory, RingCat.moduleCatRestrictScalarsPseudofunctor_obj, groupHomology.H1AddEquivOfIsTrivial_apply, MonoidalCategory.whiskerRight_apply, groupCohomology.isoCocycles₂_inv_comp_iCocycles, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, Rep.coinvariantsTensor_hom_ext_iff, Rep.finsuppTensorLeft_inv_hom, instPreservesLimitsOfSizeUliftFunctor, free_ÎŽ_freeMk, FGModuleCat.instFullUlift, forget₂AddCommGroup_reflectsLimitOfSize, PresheafOfModules.instMonoModuleCatCarrierObjOppositeRingCatApp, FilteredColimits.Îč_colimitDesc, CoalgCat.forget₂_map, groupHomology.single_one_snd_sub_single_one_snd_mem_boundaries₂, Rep.unit_iso_comm, Rep.leftRegularHomEquiv_symm_single, restrictScalarsEquivalenceOfRingEquiv_additive, inhomogeneousCochains.d_eq, HasLimit.productLimitCone_cone_pt_carrier, groupHomology.instEpiModuleCatH2π, groupHomology.H1CoresCoinfOfTrivial_exact, MoritaEquivalence.instAdditiveModuleCatFunctorEqv, Rep.FiniteCyclicGroup.resolution_complex, piIsoPi_hom_ker_subtype, directLimitDiagram_obj_carrier, groupHomology.chainsFunctor_map, hom_id, groupCohomology.cocyclesMk₂_eq, LightCondMod.LocallyConstant.instFaithfulModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, Rep.leftRegularTensorTrivialIsoFree_inv_hom, extendScalars_id_comp_assoc, groupHomology.instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, LinearEquiv.toFGModuleCatIso_hom, TopModuleCat.instIsRightAdjointModuleCatForget₂ContinuousLinearMapIdCarrierLinearMap, AlgebraicGeometry.instFaithfulModuleCatCarrierModulesSpecOfFunctor, groupCohomology.cochainsMap_id_f_map_epi, instAB5ModuleCat, groupHomology.H1π_comp_map, groupHomology.chainsMap_f_hom, AlgCat.forget₂Module_preservesLimits, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles, groupHomology.d₃₂_apply_mem_cycles₂, MonoidalCategory.tensorUnit_isModule, extendScalars_assoc', piIsoPi_inv_kernel_Îč, LightCondMod.LocallyConstant.instFullModuleCatFunctor, Rep.norm_hom, ExtendRestrictScalarsAdj.HomEquiv.evalAt_apply, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, TopModuleCat.instIsLeftAdjointModuleCatForget₂ContinuousLinearMapIdCarrierLinearMap, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, Rep.indResAdjunction_unit_app_hom_hom, CategoryTheory.isCoseparator_iff_faithful_preadditiveYonedaObj, Rep.ofHom_ρ, groupCohomology.toCocycles_comp_isoCocycles₁_hom_apply, groupHomology.map_id_comp_H0Iso_hom_apply, extendScalars_id_comp, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_f'_hom, groupHomology.boundariesOfIsBoundary₂_coe, AlgebraicGeometry.tilde.map_add, RingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, groupHomology.cyclesMk₁_eq, groupHomology.H1CoresCoinfOfTrivial_f, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, groupHomology.cyclesIso₀_comp_H0π_assoc, Rep.coindFunctor'_obj, LightCondensed.ihom_map_val_app, groupHomology.mapCycles₂_comp_i_assoc, groupCohomology.isoCocycles₁_hom_comp_i, wellPowered_moduleCat, FGModuleCat.tensorObj_obj, FGModuleCat.tensorUnit_obj, FreeMonoidal.ÎŒIso_inv_freeMk, uliftFunctor_map, Rep.Action_ρ_eq_ρ, Rep.linearization_ÎŽ_hom, groupHomology.functor_map, groupHomology.instEpiModuleCatH0π, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀, groupCohomology.H1InfRes_exact, instPreservesFiniteLimitsUliftFunctor, MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, groupCohomology.mapShortComplexH2_τ₂, groupCohomology.mapCocycles₁_comp_i_apply, hom_zsmul, Rep.coindMap_hom, instHasFiniteLimitsLightCondMod, groupHomology.mapCycles₂_id_comp_apply, ChainComplex.linearYonedaObj_d, Rep.standardComplex.instQuasiIsoNatΔToSingle₀, Rep.trivial_def, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_assoc, groupCohomology.cocycles₂_ext_iff, finite_ext, Rep.standardComplex.x_projective, ExtendRestrictScalarsAdj.counit_app, directLimitCocone_Îč_app, AlgebraicGeometry.tilde.toOpen_res, AlgebraicGeometry.tilde.toOpen_res_assoc, CategoryTheory.ShortComplex.moduleCatMk_X₁_isModule, FGModuleCat.instHasFiniteLimits, CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.faithful_embedding, groupCohomology.instAdditiveRepCochainComplexModuleCatNatCochainsFunctor, instFiniteCarrierObjModuleCatIsFG, Rep.MonoidalClosed.linearHomEquiv_hom, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃, Rep.invariantsAdjunction_homEquiv_apply_hom, FGModuleCat.instLinearModuleCatForget₂LinearMapIdCarrierObjIsFG, isZero_Ext_succ_of_projective, AlgebraicGeometry.tilde.isUnit_algebraMap_end_basicOpen, CategoryTheory.full_linearYoneda, CategoryTheory.Abelian.preadditiveCoyonedaObj_map_surjective, Rep.hom_comm_apply, SheafOfModules.pushforwardNatTrans_app_val_app, groupHomology.H2π_comp_map_apply, Hom.hom₂_apply, Rep.instPreservesEpimorphismsSubtypeMemSubgroupCoindFunctorSubtype, HasColimit.colimitCocone_pt_carrier, CondensedMod.epi_iff_locallySurjective_on_compHaus, CategoryTheory.ShortComplex.moduleCat_exact_iff_range_eq_ker, Rep.FiniteCyclicGroup.resolution_quasiIso, uliftFunctor_obj, forget₂_addCommGrp_additive, Module.Flat.iff_preservesFiniteLimits_tensorLeft, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, groupCohomology.H1Map_id, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_X₁, groupCohomology.coboundaries₁_ext_iff, Rep.finsuppTensorLeft_hom_hom, Rep.indFunctor_map, groupHomology.H1CoresCoinfOfTrivial_g, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, groupHomology.inhomogeneousChains.d_comp_d, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_K, instFaithfulRestrictScalars, MatrixModCat.toModuleCat_map, groupHomology.π_comp_H0Iso_hom, PresheafOfModules.map_id, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapComp, MonoidalCategory.leftUnitor_def, groupCohomology.mapShortComplexH1_id_comp_assoc, groupCohomology.π_comp_H2Iso_hom_apply, HasLimit.lift_hom_apply, groupCohomology.mapShortComplexH1_zero, binaryProductLimitCone_isLimit_lift, IsSMulRegular.smulShortComplex_shortExact, CategoryTheory.ShortComplex.moduleCatMk_f, homLinearEquiv_apply, groupCohomology.mapShortComplexH1_comp_assoc, Rep.coinvariantsTensorMk_apply, groupHomology.cyclesIso₀_inv_comp_cyclesMap, localizedModule_functor_obj, instHasLimitsOfSizeLightCondMod, instProjectiveObjFree, Rep.indMap_hom, groupHomology.H0π_comp_H0Iso_hom, CategoryTheory.Abelian.FreydMitchell.instPreservesFiniteColimitsModuleCatEmbeddingRingFunctor, groupHomology.isoCycles₁_hom_comp_i_assoc, Rep.coinvariantsShortComplex_X₁, Rep.homEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, CategoryTheory.linearYoneda_obj_obj_isModule, AlgCat.forget₂_module_map, FilteredColimits.M.mk_surjective, FDRep.forget₂_ρ, extendScalarsComp_hom_app_one_tmul, Rep.invariantsFunctor_map_hom, Iso.conj_eq_conj, instHasColimitsCondensedMod, groupHomology.map_id_comp_H0Iso_hom, groupCohomology.isoShortComplexH2_hom, linearEquivIsoModuleIso_inv, groupHomology.d₁₀_eq_zero_of_isTrivial, CoalgCat.toComon_map_hom, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_assoc, groupCohomology.π_comp_H1Iso_hom_apply, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, groupCohomology.d₀₁_comp_d₁₂_assoc, groupCohomology.cocyclesMap_id, Rep.instIsRightAdjointActionModuleCatRes, MonoidalCategory.tensorObj_def, AlgebraicGeometry.tilde.map_zero, preservesFiniteLimits_tensorLeft_of_ringHomFlat, FDRep.instPreservesFiniteLimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, groupHomology.d₂₁_single_one_snd, SheafOfModules.pushforwardPushforwardEquivalence_unit_app_val_app, Rep.norm_comm_assoc, groupCohomology.mapShortComplexH2_id_comp, groupHomology.π_comp_H0IsoOfIsTrivial_hom_assoc, CategoryTheory.ShortComplex.moduleCatMk_X₃_isModule, FDRep.instFiniteCarrierVFGModuleCat, biprodIsoProd_inv_comp_fst, groupHomology.π_map_apply, CategoryTheory.Abelian.FreydMitchell.instFullModuleCatEmbeddingRingFunctor, Rep.resIndAdjunction_unit_app, instIsLeftAdjointExtendScalars, groupHomology.d₃₂_comp_d₂₁, groupHomology.d₃₂_single_one_snd, groupHomology.instEpiModuleCatGShortComplexH0, CategoryTheory.IsGrothendieckAbelian.instIsLeftAdjointModuleCatMulOppositeEndTensorObj, extendScalars_comp_id_assoc, instPreservesFiniteLimitsLocalizationLocalizedModule_functor, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, groupHomology.π_comp_H2Iso_hom_apply, SheafOfModules.relationsOfIsCokernelFree_s, forget₂_reflectsLimits, FDRep.Iso.conj_ρ, FDRep.of_ρ, forget₂PreservesColimitsOfShape, CondensedMod.instHasLimitsOfSizeModuleCat, MatrixModCat.toModuleCat_obj_isAddCommGroup, Rep.diagonalOneIsoLeftRegular_hom_hom, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, Rep.ihom_coev_app_hom, biproductIsoPi_inv_comp_π_apply, groupHomology.mapCycles₁_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_π_hom, Rep.leftRegularHomEquiv_apply, Rep.leftRegular_projective, CondensedMod.LocallyConstant.instFaithfulModuleCatFunctor, restrictScalars.smul_def', PresheafOfModules.pushforward_obj_map_apply', groupHomology.isoCycles₁_inv_comp_iCycles, groupHomology.chainsMap_zero, groupHomology.H1CoresCoinfOfTrivial_g_epi, Module.injective_object_of_injective_module, FDRep.char_dual, groupHomology.cyclesMap_comp_isoCycles₁_hom_assoc, PresheafOfModules.Hom.naturality, groupHomology.mapShortComplexH2_id_comp, FGModuleCat.FGModuleCatEvaluation_apply', forget₂AddCommGroup_reflectsLimit, groupHomology.isoShortComplexH2_inv, groupHomology.coe_mapCycles₁, groupHomology.toCycles_comp_isoCycles₁_hom, HasLimit.productLimitCone_cone_pt_isAddCommGroup, hom_inv_leftUnitor, SheafOfModules.forgetToSheafModuleCat_map_val, groupCohomology.d₀₁_comp_d₁₂_apply, Module.Flat.instPreservesFiniteLimitsModuleCatTensorLeftOfCarrier, free_map_apply, groupHomology.chainsMap_f_2_comp_chainsIso₂_assoc, Representation.linHom.mem_invariants_iff_comm, groupHomology.mapCycles₂_comp_i_apply, binaryProductLimitCone_cone_pt, LightCondMod.LocallyConstant.instHasSheafifyLightProfiniteCoherentTopologyModuleCat, AlgebraicGeometry.tilde.functor_obj, groupCohomology.cocyclesIso₀_hom_comp_f_apply, ofHom₂_hom_apply_hom, SheafOfModules.pushforwardPushforwardAdj_counit_app_val_app, groupHomology.boundariesToCycles₂_apply, groupCohomology.subtype_comp_d₀₁, MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, groupHomology.cyclesOfIsCycle₂_coe, Rep.freeLift_hom, groupHomology.isoCycles₂_hom_comp_i, instPreservesInjectiveObjectsUliftFunctorOfSmall, AlgebraicGeometry.tilde.toOpen_map_app_assoc, groupHomology.π_comp_H1Iso_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, groupHomology.isoCycles₂_inv_comp_iCycles, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_apply, groupHomology.d₁₀_single_inv, groupHomology.mkH1OfIsTrivial_apply, groupCohomology.π_map_apply, Rep.indToCoindAux_snd_mul_inv, LightCondensed.instCountableAB4StarLightCondMod, hom_sub, localCohomology.hasColimitDiagram, CoalgCat.ofComonObjCoalgebraStruct_counit, groupCohomology.cocyclesMap_id_comp, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.preservesFiniteLimits, groupCohomology.isoCocycles₁_inv_comp_iCocycles_assoc, Rep.res_obj_ρ, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom, CategoryTheory.Presieve.FamilyOfElements.isCompatible_map_smul_aux, instHasLimitsOfSize, ofHom₂_compr₂, LightCondMod.LocallyConstant.instFullModuleCatLightCondensedDiscrete, extendScalars_comp_id, PresheafOfModules.freeYonedaEquiv_comp, forget₂AddCommGroup_preservesLimit, groupCohomology.coboundaries₁_le_cocycles₁, hasKernels_moduleCat, groupHomology.shortComplexH0_g, Rep.ihom_obj_V_isModule, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_iff, FreeMonoidal.ΔIso_hom_one, CategoryTheory.preadditiveCoyonedaObj_obj_carrier, groupCohomology.mapShortComplexH2_id, groupHomology.d₁₀ArrowIso_hom_right, groupCohomology.shortComplexH0_exact, Rep.freeLift_hom_single_single, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, groupHomology.single_one_mem_boundaries₁, mono_iff_ker_eq_bot, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_assoc, groupHomology.π_comp_H1Iso_inv_apply, groupHomology.cyclesIso₀_comp_H0π, FGModuleCat.instFullModuleCatForget₂LinearMapIdCarrierObjIsFG, groupCohomology.isoCocycles₂_hom_comp_i_apply, extendRestrictScalarsAdj_unit_app_apply, instMonoidalPreadditive, groupHomology.H1CoresCoinfOfTrivial_X₃, Rep.diagonalHomEquiv_apply, AlgebraicGeometry.tilde.map_comp, groupHomology.d₂₁_single, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, SheafOfModules.Presentation.IsFinite.finite_relations, Rep.coinvariantsAdjunction_unit_app_hom, Rep.freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, groupHomology.cycles₁IsoOfIsTrivial_inv_apply, groupHomology.eq_d₂₁_comp_inv_apply, Rep.epi_iff_surjective, SheafOfModules.pushforwardNatTrans_app_val_app_apply, CategoryTheory.whiskering_linearYoneda₂, CategoryTheory.ShortComplex.moduleCatMk_X₂_carrier, groupCohomology.cochainsFunctor_map, groupCohomology.coboundaries₂_ext_iff, groupHomology.d₁₀_comp_coinvariantsMk_assoc, MonoidalCategory.whiskerLeft_apply, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, PresheafOfModules.Finite.evaluation_preservesFiniteColimits, Rep.indToCoindAux_of_not_rel, groupCohomology.cocyclesOfIsCocycle₂_coe, groupHomology.cyclesMk₀_eq, groupHomology.isoCycles₁_hom_comp_i, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_apply, Rep.applyAsHom_hom, groupCohomology.shortComplexH2_g, forget_map, instIsGrothendieckAbelianModuleCat, Rep.coinvariantsShortComplex_X₂, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapId, CategoryTheory.preadditiveCoyonedaObj_obj_isModule, groupHomology.chainsMap_f_0_comp_chainsIso₀_apply, groupHomology.H0π_comp_H0Iso_hom_assoc, groupCohomology.H1π_comp_map, groupHomology.single_inv_ρ_self_add_single_mem_boundaries₁, groupHomology.cyclesMap_comp, LightCondensed.internallyProjective_iff_tensor_condition', smulShortComplex_X₃_isModule, TannakaDuality.FiniteGroup.map_mul_toRightFDRepComp, Rep.indResHomEquiv_apply_hom, MonModuleEquivalenceAlgebra.inverse_map_hom, homAddEquiv_apply, PresheafOfModules.ofPresheaf_map, MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, hasLimit, CategoryTheory.preservesLimits_preadditiveCoyonedaObj, instPreservesProjectiveObjectsUliftFunctorOfSmall, groupHomology.epi_map_0_of_epi, groupHomology.mapShortComplexH1_τ₃, directLimitCocone_pt_isModule, instLinearUliftFunctor, CommRingCat.KaehlerDifferential.ext_iff, AlgebraicGeometry.instIsIsoFunctorModuleCatCarrierUnitModulesSpecOfAdjunction, groupHomology.cyclesMap_comp_cyclesIso₀_hom_assoc, groupCohomology.cocyclesMk₀_eq, AlgebraicGeometry.tilde.map_neg, endRingEquiv_apply, groupHomology.lsingle_comp_chainsMap_f_assoc, directLimitDiagram_map, Rep.linearizationTrivialIso_hom_hom, ofHom_id, LightCondensed.instIsGrothendieckAbelianLightCondMod, HasColimit.reflectsColimit, PresheafOfModules.naturality_apply, groupHomology.single_mem_cycles₂_iff, Rep.instIsRightAdjointSubtypeMemSubgroupIndFunctorSubtype, groupCohomology.isoShortComplexH1_inv, image.fac, CategoryTheory.additive_coyonedaObj, groupHomology.boundaries₁_le_cycles₁, LightCondMod.isDiscrete_iff_isDiscrete_forget, mono_as_hom'_subtype, groupHomology.cyclesIso₀_inv_comp_iCycles_assoc, FilteredColimits.Îč_colimitDesc_assoc, extendScalarsId_inv_app_apply, semilinearMapAddEquiv_symm_apply_apply, hasColimitsOfShape, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc, Rep.coinvariantsAdjunction_homEquiv_apply_hom, PresheafOfModules.fromFreeYonedaCoproduct_app_mk, hom_comp, MonoidalCategory.braiding_inv_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, groupHomology.H1CoresCoinf_f, Rep.diagonalSuccIsoFree_hom_hom_single, AlgebraicGeometry.structurePresheafInModuleCat_obj_carrier, hom_neg, Rep.ihom_obj_ρ, instInvertibleCarrierOutModuleCatValSkeleton, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁, Rep.free_ext_iff, MonoidalCategory.whiskerRight_def, AlgebraicGeometry.isIso_fromTildeΓ_iff, FGModuleCat.instFaithfulUlift, Rep.instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, groupCohomology.cochainsMap_id_comp_assoc, preservesLimit_restrictScalars, groupCohomology.cocycles₁_ext_iff, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_assoc, groupCohomology.map_H0Iso_hom_f_assoc, ofHom_apply, CategoryTheory.ShortComplex.Exact.moduleCat_of_range_eq_ker, TannakaDuality.FiniteGroup.ofRightFDRep_hom, CommRingCat.moduleCatRestrictScalarsPseudofunctor_obj, kernelIsoKer_inv_kernel_Îč, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, AlgebraicGeometry.tilde.map_id_assoc, simple_iff_isSimpleModule', Rep.instIsLeftAdjointIndFunctor, groupHomology.shortComplexH1_g, Rep.instPreservesZeroMorphismsModuleCatCoinvariantsFunctor, restrictScalarsCongr_inv_app, groupCohomology.eq_d₁₂_comp_inv_assoc, Representation.linHom.invariantsEquivRepHom_apply_hom, groupHomology.cyclesMap_id, CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.preservesFiniteColimits_embedding, groupCohomology.H1InfRes_f, Rep.instAdditiveModuleCatInvariantsFunctor, imageIsoRange_hom_subtype_apply, LinearMap.comp_id_moduleCat, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, FGModuleCat.Iso.conj_hom_eq_conj, smulShortComplex_X₂, MatrixModCat.toModuleCat_obj_isModule, epi_iff_range_eq_top, instFreeCarrierX₂ModuleCatProjectiveShortComplex, forget₂AddCommGroupIsEquivalence, Rep.barComplex.d_comp_diagonalSuccIsoFree_inv_eq, groupHomology.d₁₀ArrowIso_inv_left, monoidalClosed_pre_app, SheafOfModules.forgetToSheafModuleCat_obj_val, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, Rep.coindFunctor'_map, groupHomology.single_mem_cycles₁_iff, Rep.coinvariantsFunctor_map_hom, Rep.coindFunctor_obj, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π, groupHomology.d₂₁_single_ρ_add_single_inv_mul, PresheafOfModules.evaluation_obj, groupCohomology.mapShortComplexH2_τ₃, LinearEquiv.toModuleIso_hom, HasLimit.productLimitCone_isLimit_lift, MonoidalCategory.tensorObj_carrier, Rep.linearization_map_hom_single, isZero_groupHomology_succ_of_subsingleton, groupCohomology.isoShortComplexH2_inv, Algebra.restrictScalarsEquivalenceOfRingEquiv_linear, CategoryTheory.preadditiveCoyoneda_obj, groupCohomology.map_id_comp_H0Iso_hom_assoc, groupCohomology.isoCocycles₂_hom_comp_i_assoc, Rep.ihom_obj_ρ_def, groupHomology.eq_d₁₀_comp_inv_apply, Rep.ihom_obj_V_carrier, LinearEquiv.toFGModuleCatIso_inv, semilinearMapAddEquiv_apply, CoextendScalars.map'_hom_apply_apply, Rep.coinvariantsShortComplex_X₃, Rep.coindIso_hom_hom_hom, TannakaDuality.FiniteGroup.equivHom_surjective, RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply, freeHomEquiv_symm_apply, ulift_injective_of_injective, Rep.leftRegularTensorTrivialIsoFree_hom_hom, CategoryTheory.preadditiveCoyonedaObj_obj_isAddCommGroup, TannakaDuality.FiniteGroup.equivHom_injective, SheafOfModules.pushforwardPushforwardEquivalence_counit_app_val_app, groupHomology.H0π_comp_H0Iso_hom_apply, Rep.barComplex.d_single, freeDesc_apply, groupHomology.mapShortComplexH2_τ₃, FDRep.hom_action_ρ, Rep.mono_iff_injective, MonoidalCategory.tensorUnit_isAddCommGroup, PresheafOfModules.evaluation_map, CategoryTheory.linearCoyoneda_obj_obj_isModule, FDRep.dualTensorIsoLinHom_hom_hom, homEquiv_extendScalarsId, ExtendScalars.hom_ext_iff, Rep.instMonoModuleCatHom, groupHomology.d₂₁_comp_d₁₀_assoc, groupCohomology.coe_mapCocycles₂, groupCohomology.eq_d₀₁_comp_inv_assoc, groupHomology.coinvariantsMk_comp_H0Iso_inv_assoc, toKernelSubobject_arrow, groupCohomology.functor_map, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isAddCommGroup, CategoryTheory.Iso.toLinearMap_toLinearEquiv, instHasBinaryBiproducts, Rep.linearization_Δ_hom, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_assoc, Condensed.instAB4CondensedMod, groupCohomology.H1π_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, smulShortComplex_g_epi, Rep.Tor_obj, groupCohomology.isoCocycles₁_hom_comp_i_assoc, Rep.coinvariantsShortComplex_shortExact, groupHomology.π_comp_H1Iso_inv_assoc, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeΓFreeOpensCarrierCarrierCommRingCat, Rep.FiniteCyclicGroup.resolution_π, Rep.instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, groupHomology.mapCycles₁_quotientGroupMk'_epi, PresheafOfModules.zero_app, groupHomology.π_map, groupHomology.mapCycles₁_comp_i_assoc, groupHomology.H0π_comp_map_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc, PresheafOfModules.map_comp_assoc, restrictScalarsId'App_inv_apply, groupCohomology.mapShortComplexH1_τ₁, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, smulShortComplex_exact, groupHomology.π_comp_H2Iso_inv_apply, FDRep.instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, groupCohomology.coboundariesOfIsCoboundary₂_coe, Rep.FiniteCyclicGroup.resolution.π_f, CoalgCat.toComon_obj, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, Rep.instAdditiveModuleCatCoinvariantsFunctor, PresheafOfModules.forgetToPresheafModuleCat_map, MonModuleEquivalenceAlgebra.inverseObj_one, groupCohomology.cochainsFunctor_obj, restrictScalarsComp'App_inv_apply, FDRep.endRingEquiv_comp_ρ, Rep.linearization_map_hom, CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForget₂LinearMapIdCarrierAddMonoidHomCarrier, groupHomology.mem_cycles₁_iff, isZero_of_subsingleton, isZero_of_iff_subsingleton, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, groupCohomology.mapCocycles₁_comp_i, groupHomology.boundariesToCycles₁_apply, groupHomology.single_mem_cycles₂_iff_inv, groupHomology.d₁₀_single, SheafOfModules.Finite.evaluationPreservesFiniteLimits, CategoryTheory.IsGrothendieckAbelian.instIsRightAdjointModuleCatMulOppositeEndPreadditiveCoyonedaObj, instHasCoequalizers, exteriorPower.functor_obj, TannakaDuality.FiniteGroup.equivHom_apply, ihom_ev_app, groupCohomology.cocycles₁.d₁₂_apply, FDRep.simple_iff_char_is_norm_one, Rep.indResHomEquiv_symm_apply_hom, groupHomology.isoCycles₂_hom_comp_i_assoc, FilteredColimits.colimit_add_mk_eq, groupHomology.comp_d₃₂_eq, groupCohomology.π_comp_H2Iso_hom, free_hom_ext_iff, groupHomology.chainsMap_f_0_comp_chainsIso₀, groupHomology.H2π_eq_zero_iff, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierObjOppositeOpensCarrierCarrierCommRingCatSpecModuleCatPresheafModulesSheafModulesSpecToSheafOpBasicOpenPowersHomToOpen, CategoryTheory.ShortComplex.moduleCatMk_X₂_isAddCommGroup, LightCondensed.instIsMonoidalFunctorOppositeLightProfiniteModuleCatWCoherentTopology, enoughInjectives, FGModuleCat.instIsMonoidalModuleCatIsFG, extendScalars_assoc, MonoidalCategory.associator_inv_apply, preservesColimit_restrictScalars, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, groupCohomology.isoCocycles₂_inv_comp_iCocycles_assoc, isSeparator, instHasFiniteBiproducts, Rep.norm_comm, exteriorPower.functor_map, instEnoughInjectivesModuleCatInt, Rep.linearization_ÎŒ_hom, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, groupHomology.H1π_eq_iff, ExtendRestrictScalarsAdj.unit_app, biprodIsoProd_inv_comp_fst_apply, groupHomology.d₃₂_comp_d₂₁_apply, FGModuleCat.instIsIsoCoimageImageComparison, CoextendScalars.map_apply, groupCohomology.shortComplexH1_g, groupHomology.chainsMap_f, Rep.quotientToCoinvariantsFunctor_obj_V, SheafOfModules.unitHomEquiv_apply_coe, CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.preservesFiniteLimits_embedding, Profinite.NobelingProof.succ_mono, CategoryTheory.preadditiveYonedaObj_map, groupHomology.chainsMap_f_2_comp_chainsIso₂_apply, groupCohomology.map_comp_assoc, groupHomology.cyclesMap_comp_isoCycles₁_hom, groupCohomology.cochainsMap_id, forget₂_map, AlgebraicGeometry.tilde.toOpen_map_app, groupCohomology.d₀₁_eq_zero, Rep.instInjective, ChainComplex.linearYonedaObj_X, toMatrixModCat_obj_isModule
of 📖CompOp
428 mathmath: CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, groupCohomology.instEpiModuleCatH2π, groupHomology.π_comp_H2Iso_hom_assoc, of_coe, biproductIsoPi_inv_comp_π, groupHomology.mapCycles₂_comp_assoc, groupCohomology.toCocycles_comp_isoCocycles₁_hom, CategoryTheory.linearCoyoneda_map_app, groupCohomology.isoCocycles₁_hom_comp_i_apply, groupCohomology.d₂₃_hom_apply, groupHomology.d₁₀_single_one, groupCohomology.d₀₁_comp_d₁₂, epi_as_hom''_mkQ, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, groupCohomology.toCocycles_comp_isoCocycles₂_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, groupCohomology.cocyclesIso₀_hom_comp_f, Rep.resCoindAdjunction_counit_app_hom_hom, groupHomology.d₃₂_single, groupCohomology.eq_d₀₁_comp_inv, extendScalarsId_hom_app_one_tmul, groupCohomology.H1π_comp_map_assoc, groupHomology.mapCycles₁_comp_apply, groupHomology.cyclesIso₀_inv_comp_iCycles_apply, groupCohomology.π_comp_H0Iso_hom, ofHom_comp, groupCohomology.π_comp_H1Iso_hom_assoc, Îč_coprodIsoDirectSum_hom_apply, groupCohomology.eq_d₁₂_comp_inv, cokernel_π_cokernelIsoRangeQuotient_hom_apply, groupCohomology.mapCocycles₂_comp_i, groupHomology.eq_d₃₂_comp_inv, groupCohomology.H0IsoOfIsTrivial_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_i_hom, groupCohomology.coe_mapCocycles₁, CoextendScalars.smul_apply', groupHomology.cyclesMap_comp_isoCycles₂_hom, groupCohomology.d₁₂_hom_apply, groupHomology.comp_d₂₁_eq, groupHomology.mapCycles₁_comp_assoc, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_assoc, groupHomology.toCycles_comp_isoCycles₂_hom_assoc, linearEquivIsoModuleIso_hom, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂, RestrictionCoextensionAdj.HomEquiv.toRestriction_hom_apply, groupCohomology.comp_d₁₂_eq, groupCohomology.cocycles₂.d₂₃_apply, groupCohomology.d₀₁_hom_apply, extendRestrictScalarsAdj_homEquiv_apply, groupHomology.d₃₂_single_one_thd, groupHomology.isoCycles₁_inv_comp_iCycles_apply, groupCohomology.dArrowIso₀₁_inv_right, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.d₁₂_comp_d₂₃_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, groupCohomology.eq_d₂₃_comp_inv_assoc, groupCohomology.eq_d₂₃_comp_inv_apply, groupCohomology.eq_d₁₂_comp_inv_apply, groupHomology.chains₁ToCoinvariantsKer_surjective, Rep.coinvariantsTensorFreeLEquiv_symm_apply, LinearEquiv.toModuleIso_inv, Profinite.NobelingProof.GoodProducts.linearIndependent_comp_of_eval, exteriorPower.iso₀_hom_naturality, ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, Rep.resCoindAdjunction_unit_app_hom_hom, groupHomology.d₃₂_comp_d₂₁_assoc, endRingEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupCohomology.mapCocycles₂_comp_i_apply, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom_apply, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, groupHomology.d₁₀ArrowIso_hom_left, groupHomology.cycles₁IsoOfIsTrivial_hom_apply, HasLimit.productLimitCone_cone_π, CoalgCat.moduleCat_of_toModuleCat, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_apply, groupHomology.d₂₁_single_inv_mul_ρ_add_single, groupCohomology.cocyclesIso₀_inv_comp_iCocycles, groupCohomology.mapCocycles₂_comp_i_assoc, groupHomology.d₁₀_comp_coinvariantsMk_apply, ExtendRestrictScalarsAdj.Counit.map_hom_apply, groupCohomology.H1IsoOfIsTrivial_inv_apply, biprodIsoProd_inv_comp_snd_apply, RestrictionCoextensionAdj.counit'_app, groupHomology.chainsMap_f_3_comp_chainsIso₃, groupHomology.mapCycles₁_id_comp_assoc, groupHomology.eq_d₂₁_comp_inv, groupCohomology.cocycles₁IsoOfIsTrivial_hom_hom_apply_apply, groupCohomology.H2π_comp_map_apply, groupHomology.mapCycles₁_comp, Profinite.NobelingProof.succ_exact, groupCohomology.dArrowIso₀₁_hom_right, CompHausLike.LocallyConstantModule.functorToPresheaves_map_app, groupCohomology.toCocycles_comp_isoCocycles₂_hom, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_assoc, imageIsoRange_hom_subtype, groupHomology.mapCycles₁_comp_i, CoextendScalars.smul_apply, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, groupCohomology.H1IsoOfIsTrivial_H1π_apply_apply, imageIsoRange_inv_image_Îč_apply, groupCohomology.comp_d₂₃_eq, cokernel_π_cokernelIsoRangeQuotient_hom, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, groupCohomology.d₁₂_apply_mem_cocycles₂, groupHomology.mapCycles₂_id_comp, groupCohomology.d₀₁_apply_mem_cocycles₁, exteriorPower.iso₀_hom_apply, groupHomology.d₂₁_single_inv_self_ρ_sub_self_inv, groupCohomology.subtype_comp_d₀₁_apply, groupCohomology.H2π_eq_iff, CoalgCat.toComonObj_X, groupCohomology.comp_d₀₁_eq, homAddEquiv_symm_apply_hom, groupHomology.toCycles_comp_isoCycles₁_hom_apply, groupHomology.mapCycles₂_comp_i, groupCohomology.map_H0Iso_hom_f, groupCohomology.dArrowIso₀₁_inv_left, groupCohomology.π_comp_H1Iso_hom, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_assoc_apply, groupHomology.eq_d₃₂_comp_inv_apply, lof_coprodIsoDirectSum_inv, CategoryTheory.linearYoneda_map_app, CoalgCat.comul_def, groupHomology.mapCycles₁_id_comp_apply, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom_assoc, simple_iff_isSimpleModule, groupCohomology.instEpiModuleCatH1π, IsProjective.iff_projective, groupCohomology.H2π_comp_map, groupHomology.π_comp_H2Iso_hom, Rep.indResAdjunction_counit_app_hom_hom, FGModuleCat.FGModuleCatDual_obj, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, groupHomology.mapCycles₁_comp_i_apply, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, groupHomology.mapCycles₂_comp, kernelIsoKer_inv_kernel_Îč_apply, ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, groupCohomology.isoCocycles₂_hom_comp_i, groupCohomology.π_comp_H0Iso_hom_apply, groupHomology.coe_mapCycles₂, groupCohomology.isoCocycles₁_inv_comp_iCocycles_apply, groupHomology.comp_d₁₀_eq, groupHomology.H1π_comp_map_apply, groupCohomology.dArrowIso₀₁_hom_left, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom, groupHomology.toCycles_comp_isoCycles₁_hom_assoc, groupCohomology.eq_d₀₁_comp_inv_apply, simple_of_isSimpleModule, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_assoc, groupCohomology.mapCocycles₁_one, groupHomology.H2π_comp_map_assoc, biprodIsoProd_inv_comp_snd, piIsoPi_inv_kernel_Îč_apply, lof_coprodIsoDirectSum_inv_apply, groupHomology.d₁₀ArrowIso_inv_right, range_mkQ_cokernelIsoRangeQuotient_inv, exteriorPower.iso₀_hom_naturality_assoc, groupCohomology.π_comp_H0Iso_hom_assoc, imageIsoRange_hom_subtype_assoc, groupCohomology.H2π_comp_map_assoc, groupHomology.d₁₀_comp_coinvariantsMk, groupHomology.d₂₁_comp_d₁₀_apply, groupHomology.mapCycles₂_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, groupCohomology.d₀₁_ker_eq_invariants, groupHomology.H2π_eq_iff, groupHomology.H1AddEquivOfIsTrivial_single, groupHomology.range_d₁₀_eq_coinvariantsKer, groupCohomology.inhomogeneousCochains.d_comp_d, groupHomology.isoCycles₂_hom_comp_i_apply, groupCohomology.π_comp_H0IsoOfIsTrivial_hom_apply, groupCohomology.toCocycles_comp_isoCocycles₁_hom_assoc, groupCohomology.isoCocycles₂_inv_comp_iCocycles_apply, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_assoc, groupCohomology.isoCocycles₁_inv_comp_iCocycles, RestrictionCoextensionAdj.unit'_app, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierOfCarrierStalkAbPresheafPrimeComplAsIdealHomToStalk, groupHomology.eq_d₂₁_comp_inv_assoc, imageIsoRange_inv_image_Îč, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_apply, groupHomology.cyclesMap_comp_isoCycles₂_hom_assoc, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom, groupHomology.inhomogeneousChains.d_single, groupCohomology.d₁₂_comp_d₂₃_assoc, ExtendScalars.smul_tmul, QuadraticModuleCat.forget₂_obj, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_apply, groupHomology.mapCycles₂_id_comp_assoc, groupHomology.π_comp_H1Iso_hom_apply, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.subtype_comp_d₀₁_assoc, groupHomology.toCycles_comp_isoCycles₂_hom, groupCohomology.map_id_comp_H0Iso_hom, groupHomology.cyclesMap_comp_isoCycles₂_hom_apply, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_assoc_apply, groupHomology.mapCycles₁_id_comp, coe_of, groupCohomology.cocycles₁IsoOfIsTrivial_inv_hom_apply_coe, ExtendScalars.map_tmul, forget₂_obj_moduleCat_of, groupHomology.eq_d₁₀_comp_inv, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, groupHomology.isoShortComplexH1_inv, groupHomology.eq_d₁₀_comp_inv_assoc, groupCohomology.d₁₂_comp_d₂₃, groupHomology.chainsMap_f_1_comp_chainsIso₁_assoc, groupHomology.isoCycles₁_hom_comp_i_apply, groupCohomology.cocyclesIso₀_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, imageIsoRange_inv_image_Îč_assoc, groupCohomology.H1π_eq_zero_iff, Profinite.NobelingProof.GoodProducts.square_commutes, groupCohomology.cochainsMap_f, groupHomology.d₃₂_single_one_fst, inhomogeneousCochains.d_hom_apply, CoalgCat.counit_def, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom_apply, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, groupHomology.d₂₁_comp_d₁₀, groupHomology.d₂₁_single_self_inv_ρ_sub_inv_self, kernelIsoKer_hom_ker_subtype, groupHomology.chainsMap_f_3_comp_chainsIso₃_assoc, groupHomology.H1ToTensorOfIsTrivial_H1π_single, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, groupCohomology.cocyclesMk₁_eq, AlgCat.forget₂_module_obj, Îč_coprodIsoDirectSum_hom, Rep.quotientToInvariantsFunctor_obj_V, groupHomology.inhomogeneousChains.ext_iff, groupHomology.d₂₁_apply_mem_cycles₁, MonModuleEquivalenceAlgebra.inverseObj_mul, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCycles₁_hom_apply, groupHomology.toCycles_comp_isoCycles₂_hom_apply, groupCohomology.H2π_eq_zero_iff, groupCohomology.mapCocycles₁_comp_i_assoc, groupCohomology.H1π_comp_map_apply, groupHomology.eq_d₃₂_comp_inv_assoc, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f, CoalgCat.forget₂_obj, groupCohomology.π_comp_H2Iso_hom_assoc, groupCohomology.toCocycles_comp_isoCocycles₂_hom_assoc, Rep.coinvariantsMk_app_hom, AddCommGrpCat.injective_as_module_iff, groupHomology.mapCycles₂_hom, groupHomology.isoCycles₂_inv_comp_iCycles_apply, range_mkQ_cokernelIsoRangeQuotient_inv_apply, groupHomology.isoCycles₂_inv_comp_iCycles_assoc, kernelIsoKer_hom_ker_subtype_apply, groupHomology.cyclesMk₂_eq, groupHomology.chainsMap_f_1_comp_chainsIso₁, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom_assoc, groupHomology.H1π_eq_zero_iff, groupHomology.isoCycles₁_inv_comp_iCycles_assoc, groupHomology.π_comp_H1Iso_hom_assoc, groupHomology.chainsMap_f_2_comp_chainsIso₂, groupHomology.d₂₁_single_one_fst, groupHomology.H2π_comp_map, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_apply, Module.injective_iff_injective_object, groupCohomology.eq_d₂₃_comp_inv, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_iff, groupHomology.H1π_comp_map_assoc, groupHomology.instEpiModuleCatH1π, piIsoPi_hom_ker_subtype_apply, groupCohomology.isoCocycles₂_inv_comp_iCocycles, inhomogeneousCochains.d_eq, groupHomology.instEpiModuleCatH2π, piIsoPi_hom_ker_subtype, groupCohomology.cocyclesMk₂_eq, groupHomology.H1π_comp_map, groupHomology.chainsMap_f_hom, groupHomology.d₃₂_apply_mem_cycles₂, piIsoPi_inv_kernel_Îč, Rep.indResAdjunction_unit_app_hom_hom, groupCohomology.toCocycles_comp_isoCocycles₁_hom_apply, groupHomology.cyclesMk₁_eq, groupHomology.mapCycles₂_comp_i_assoc, groupCohomology.isoCocycles₁_hom_comp_i, groupCohomology.mapCocycles₁_comp_i_apply, groupHomology.mapCycles₂_id_comp_apply, directLimitCocone_Îč_app, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃, groupHomology.H2π_comp_map_apply, Hom.hom₂_apply, uliftFunctor_obj, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, groupHomology.inhomogeneousChains.d_comp_d, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_K, groupCohomology.π_comp_H2Iso_hom_apply, HasLimit.lift_hom_apply, binaryProductLimitCone_isLimit_lift, groupHomology.isoCycles₁_hom_comp_i_assoc, extendScalarsComp_hom_app_one_tmul, Rep.invariantsFunctor_map_hom, linearEquivIsoModuleIso_inv, groupHomology.d₁₀_eq_zero_of_isTrivial, groupCohomology.π_comp_H1Iso_hom_apply, groupCohomology.d₀₁_comp_d₁₂_assoc, preservesFiniteLimits_tensorLeft_of_ringHomFlat, groupHomology.d₂₁_single_one_snd, biprodIsoProd_inv_comp_fst, groupHomology.d₃₂_comp_d₂₁, groupHomology.d₃₂_single_one_snd, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, groupHomology.π_comp_H2Iso_hom_apply, FDRep.of_ρ, biproductIsoPi_inv_comp_π_apply, groupHomology.mapCycles₁_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_π_hom, groupHomology.isoCycles₁_inv_comp_iCycles, Module.injective_object_of_injective_module, groupHomology.cyclesMap_comp_isoCycles₁_hom_assoc, FGModuleCat.FGModuleCatEvaluation_apply', groupHomology.isoShortComplexH2_inv, groupHomology.coe_mapCycles₁, groupHomology.toCycles_comp_isoCycles₁_hom, groupCohomology.d₀₁_comp_d₁₂_apply, groupHomology.chainsMap_f_2_comp_chainsIso₂_assoc, groupHomology.mapCycles₂_comp_i_apply, binaryProductLimitCone_cone_pt, groupCohomology.cocyclesIso₀_hom_comp_f_apply, ofHom₂_hom_apply_hom, groupCohomology.subtype_comp_d₀₁, groupHomology.isoCycles₂_hom_comp_i, groupHomology.π_comp_H1Iso_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, groupHomology.isoCycles₂_inv_comp_iCycles, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_apply, groupHomology.d₁₀_single_inv, groupHomology.mkH1OfIsTrivial_apply, groupCohomology.isoCocycles₁_inv_comp_iCocycles_assoc, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom, ofHom₂_compr₂, groupHomology.d₁₀ArrowIso_hom_right, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_assoc, groupHomology.π_comp_H1Iso_inv_apply, groupCohomology.isoCocycles₂_hom_comp_i_apply, groupHomology.d₂₁_single, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, hom_ofHom, groupHomology.inhomogeneousChains.d_eq, groupHomology.cycles₁IsoOfIsTrivial_inv_apply, groupHomology.eq_d₂₁_comp_inv_apply, groupHomology.d₁₀_comp_coinvariantsMk_assoc, groupHomology.isoCycles₁_hom_comp_i, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_apply, groupHomology.chainsMap_f_0_comp_chainsIso₀_apply, groupCohomology.H1π_comp_map, MonModuleEquivalenceAlgebra.inverse_map_hom, PresheafOfModules.ofPresheaf_map, groupCohomology.cocyclesMk₀_eq, groupHomology.lsingle_comp_chainsMap_f_assoc, ofHom_id, groupCohomology.isoShortComplexH1_inv, mono_as_hom'_subtype, extendScalarsId_inv_app_apply, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d_assoc, sMulCommClass_mk, QuadraticModuleCat.moduleCat_of_toModuleCat, Rep.ihom_obj_ρ, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁, groupCohomology.map_H0Iso_hom_f_assoc, ofHom_apply, kernelIsoKer_inv_kernel_Îč, groupCohomology.eq_d₁₂_comp_inv_assoc, imageIsoRange_hom_subtype_apply, groupHomology.d₁₀ArrowIso_inv_left, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, Rep.coinvariantsFunctor_map_hom, groupHomology.d₂₁_single_ρ_add_single_inv_mul, LinearEquiv.toModuleIso_hom, HasLimit.productLimitCone_isLimit_lift, groupCohomology.isoShortComplexH2_inv, groupCohomology.map_id_comp_H0Iso_hom_assoc, groupCohomology.isoCocycles₂_hom_comp_i_assoc, groupHomology.eq_d₁₀_comp_inv_apply, CoextendScalars.map'_hom_apply_apply, RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply, ulift_injective_of_injective, ExtendScalars.hom_ext_iff, groupHomology.d₂₁_comp_d₁₀_assoc, groupCohomology.coe_mapCocycles₂, groupCohomology.eq_d₀₁_comp_inv_assoc, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_assoc, groupCohomology.H1π_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, groupCohomology.isoCocycles₁_hom_comp_i_assoc, groupHomology.mapCycles₁_quotientGroupMk'_epi, groupHomology.mapCycles₁_comp_i_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, groupHomology.π_comp_H2Iso_inv_apply, MonModuleEquivalenceAlgebra.inverseObj_one, isZero_of_iff_subsingleton, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, groupCohomology.mapCocycles₁_comp_i, groupHomology.d₁₀_single, groupCohomology.cocycles₁.d₁₂_apply, groupHomology.isoCycles₂_hom_comp_i_assoc, groupHomology.comp_d₃₂_eq, groupCohomology.π_comp_H2Iso_hom, groupHomology.H2π_eq_zero_iff, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, groupCohomology.isoCocycles₂_inv_comp_iCocycles_assoc, isSeparator, groupHomology.H1π_eq_iff, biprodIsoProd_inv_comp_fst_apply, groupHomology.d₃₂_comp_d₂₁_apply, CoextendScalars.map_apply, groupHomology.chainsMap_f, Rep.quotientToCoinvariantsFunctor_obj_V, Profinite.NobelingProof.succ_mono, groupHomology.chainsMap_f_2_comp_chainsIso₂_apply, groupHomology.cyclesMap_comp_isoCycles₁_hom, groupCohomology.d₀₁_eq_zero
ofHom 📖CompOp
130 mathmath: Rep.resCoindHomEquiv_symm_apply_hom, Rep.resCoindHomEquiv_apply_hom, CategoryTheory.preadditiveCoyonedaObj_map, biproductIsoPi_inv_comp_π, CategoryTheory.linearCoyoneda_map_app, Rep.MonoidalClosed.linearHomEquiv_symm_hom, epi_as_hom''_mkQ, toMatrixModCat_map, Rep.leftRegularHom_hom, ofHom_comp, CategoryTheory.linearYoneda_obj_map, CategoryTheory.ShortComplex.moduleCatMk_g, PresheafOfModules.restrictScalarsObj_map, Rep.standardComplex.d_eq, LinearEquiv.toModuleIso_inv, Profinite.NobelingProof.GoodProducts.linearIndependent_comp_of_eval, Rep.homEquiv_apply_hom, HasLimit.productLimitCone_cone_π, QuadraticModuleCat.forget₂_map, RestrictionCoextensionAdj.counit'_app, MonoidalCategory.whiskerLeft_def, Rep.ihom_ev_app_hom, Profinite.NobelingProof.succ_exact, Rep.MonoidalClosed.linearHomEquivComm_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_map_app, imageIsoRange_hom_subtype, groupCohomology.shortComplexH0_f, binaryProductLimitCone_cone_π_app_right, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, MonoidalCategory.tensorHom_def, Rep.subtype_hom, cokernel_π_cokernelIsoRangeQuotient_hom, Rep.invariantsAdjunction_unit_app, lof_coprodIsoDirectSum_inv, CategoryTheory.linearYoneda_map_app, CoalgCat.comul_def, directLimitIsColimit_desc, smulShortComplex_g, Rep.coindMap'_hom, biprodIsoProd_inv_comp_snd, range_mkQ_cokernelIsoRangeQuotient_inv, TannakaDuality.FiniteGroup.equivApp_inv, Rep.finsuppTensorRight_hom_hom, imageIsoRange_hom_subtype_assoc, TannakaDuality.FiniteGroup.equivApp_hom, MonoidalCategory.tensorÎŒ_eq_tensorTensorTensorComm, RestrictionCoextensionAdj.unit'_app, imageIsoRange_inv_image_Îč, Rep.ofMulActionSubsingletonIsoTrivial_inv_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_map, Rep.diagonalOneIsoLeftRegular_inv_hom, PresheafOfModules.homMk_app, groupCohomology.subtype_comp_d₀₁_assoc, groupHomology.lsingle_comp_chainsMap_f, imageIsoRange_inv_image_Îč_assoc, Rep.invariantsAdjunction_counit_app_hom, Profinite.NobelingProof.GoodProducts.square_commutes, groupCohomology.cochainsMap_f, CoalgCat.counit_def, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, binaryProductLimitCone_cone_π_app_left, kernelIsoKer_hom_ker_subtype, smulShortComplex_f, Rep.ofMulActionSubsingletonIsoTrivial_hom_hom, Îč_coprodIsoDirectSum_hom, groupHomology.inhomogeneousChains.ext_iff, MonModuleEquivalenceAlgebra.inverseObj_mul, CategoryTheory.linearCoyoneda_obj_map, Rep.finsuppTensorRight_inv_hom, Rep.coindVEquiv_apply_hom, Rep.ihom_map_hom, Rep.finsuppTensorLeft_inv_hom, CoalgCat.forget₂_map, piIsoPi_hom_ker_subtype, Rep.leftRegularTensorTrivialIsoFree_inv_hom, piIsoPi_inv_kernel_Îč, Rep.norm_hom, Rep.ofHom_ρ, uliftFunctor_map, Rep.linearization_ÎŽ_hom, ofHom_hom, Rep.coindMap_hom, ChainComplex.linearYonedaObj_d, directLimitCocone_Îč_app, Rep.MonoidalClosed.linearHomEquiv_hom, Hom.hom₂_apply, Rep.finsuppTensorLeft_hom_hom, MatrixModCat.toModuleCat_map, binaryProductLimitCone_isLimit_lift, CategoryTheory.ShortComplex.moduleCatMk_f, Rep.indMap_hom, Rep.homEquiv_symm_apply_hom, AlgCat.forget₂_module_map, CoalgCat.toComon_map_hom, biprodIsoProd_inv_comp_fst, Rep.diagonalOneIsoLeftRegular_hom_hom, Rep.ihom_coev_app_hom, groupCohomology.subtype_comp_d₀₁, Rep.freeLift_hom, ofHom₂_compr₂, hom_ofHom, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, Rep.applyAsHom_hom, Rep.indResHomEquiv_apply_hom, MonModuleEquivalenceAlgebra.inverse_map_hom, PresheafOfModules.ofPresheaf_map, groupHomology.lsingle_comp_chainsMap_f_assoc, directLimitDiagram_map, ofHom_id, mono_as_hom'_subtype, MonoidalCategory.whiskerRight_def, ofHom_apply, TannakaDuality.FiniteGroup.ofRightFDRep_hom, kernelIsoKer_inv_kernel_Îč, Representation.linHom.invariantsEquivRepHom_apply_hom, Rep.mkQ_hom, monoidalClosed_pre_app, LinearEquiv.toModuleIso_hom, HasLimit.productLimitCone_isLimit_lift, semilinearMapAddEquiv_apply, Rep.leftRegularTensorTrivialIsoFree_hom_hom, Rep.linearization_Δ_hom, MonModuleEquivalenceAlgebra.inverseObj_one, Rep.linearization_map_hom, ihom_ev_app, Rep.indResHomEquiv_symm_apply_hom, Rep.linearization_ÎŒ_hom, groupHomology.chainsMap_f, Profinite.NobelingProof.succ_mono, CategoryTheory.preadditiveYonedaObj_map
ofHom₂ 📖CompOp
5 mathmath: ofHom₂_hom₂, ihom_coev_app, ofHom₂_hom_apply_hom, ofHom₂_compr₂, Hom.hom₂_ofHom₂
smul 📖CompOp
4 mathmath: smul_naturality, smulNatTrans_apply_app, HasColimit.coconePointSMul_apply, mkOfSMul_smul
smulNatTrans 📖CompOp
1 mathmath: smulNatTrans_apply_app
«term↟_» 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
coe_of 📖mathematical—carrier
of
Ring.toAddCommGroup
——
comp_apply 📖mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
ModuleCat
moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
——
endRingEquiv_apply 📖mathematical—DFunLike.coe
RingEquiv
CategoryTheory.End
ModuleCat
CategoryTheory.Category.toCategoryStruct
moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
CategoryTheory.End.mul
Module.End.instMul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
CategoryTheory.Preadditive.instRingEnd
instPreadditive
LinearMap.instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
endRingEquiv
Hom.hom
——
endRingEquiv_symm_apply_hom 📖mathematical—Hom.hom
of
carrier
isAddCommGroup
isModule
DFunLike.coe
RingEquiv
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
CategoryTheory.End
ModuleCat
CategoryTheory.Category.toCategoryStruct
moduleCategory
Module.End.instMul
CategoryTheory.End.mul
LinearMap.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
CategoryTheory.Preadditive.instRingEnd
instPreadditive
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
endRingEquiv
——
forget_map 📖mathematical—CategoryTheory.Functor.map
ModuleCat
moduleCategory
CategoryTheory.types
CategoryTheory.forget
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
——
forget_obj 📖mathematical—CategoryTheory.Functor.obj
ModuleCat
moduleCategory
CategoryTheory.types
CategoryTheory.forget
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
——
forget₂_addCommGrp_additive 📖mathematical—CategoryTheory.Functor.Additive
ModuleCat
AddCommGrpCat
moduleCategory
AddCommGrpCat.instCategory
instPreadditive
AddCommGrpCat.instPreadditive
CategoryTheory.forget₂
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
hasForgetToAddCommGroup
——
forget₂_map 📖mathematical—CategoryTheory.Functor.map
ModuleCat
moduleCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.forget₂
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
hasForgetToAddCommGroup
AddCommGrpCat.ofHom
AddMonoidHomClass.toAddMonoidHom
DistribMulActionSemiHomClass.toAddMonoidHomClass
DFunLike.coe
RingHom
RingHom.instFunLike
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Hom.hom
——
forget₂_map_homMk 📖mathematicalCategoryTheory.CategoryStruct.comp
AddCommGrpCat
CategoryTheory.Category.toCategoryStruct
AddCommGrpCat.instCategory
CategoryTheory.Functor.obj
ModuleCat
moduleCategory
CategoryTheory.forget₂
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
hasForgetToAddCommGroup
DFunLike.coe
RingHom
CategoryTheory.End
CategoryTheory.Preadditive.instSemiringEnd
AddCommGrpCat.instPreadditive
RingHom.instFunLike
smul
CategoryTheory.Functor.map
homMk
——
forget₂_obj 📖mathematical—CategoryTheory.Functor.obj
ModuleCat
moduleCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.forget₂
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
hasForgetToAddCommGroup
AddCommGrpCat.of
——
forget₂_obj_moduleCat_of 📖mathematical—CategoryTheory.Functor.obj
ModuleCat
moduleCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.forget₂
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
hasForgetToAddCommGroup
of
AddCommGrpCat.of
——
homAddEquiv_apply 📖mathematical—DFunLike.coe
AddEquiv
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
instAddHom
LinearMap.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
homAddEquiv
Hom.hom
——
homAddEquiv_symm_apply_hom 📖mathematical—Hom.hom
of
carrier
isAddCommGroup
isModule
DFunLike.coe
AddEquiv
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
LinearMap.instAdd
instAddHom
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
homAddEquiv
——
homLinearEquiv_apply 📖mathematical—DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
LinearMap
Ring.toSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
instAddCommGroupHom
LinearMap.addCommMonoid
Hom.instModule
LinearMap.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
homLinearEquiv
Equiv.toFun
AddEquiv.toEquiv
instAddHom
LinearMap.instAdd
homAddEquiv
—RingHomInvPair.ids
homLinearEquiv_symm_apply 📖mathematical—DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
Ring.toSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
LinearMap.addCommMonoid
instAddCommGroupHom
LinearMap.module
Hom.instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
homLinearEquiv
Equiv.invFun
AddEquiv.toEquiv
instAddHom
LinearMap.instAdd
homAddEquiv
—RingHomInvPair.ids
homMk_hom_apply 📖mathematicalCategoryTheory.CategoryStruct.comp
AddCommGrpCat
CategoryTheory.Category.toCategoryStruct
AddCommGrpCat.instCategory
CategoryTheory.Functor.obj
ModuleCat
moduleCategory
CategoryTheory.forget₂
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
hasForgetToAddCommGroup
DFunLike.coe
RingHom
CategoryTheory.End
CategoryTheory.Preadditive.instSemiringEnd
AddCommGrpCat.instPreadditive
RingHom.instFunLike
smul
Hom.hom
homMk
CategoryTheory.ConcreteCategory.hom
——
hom_add 📖mathematical—Hom.hom
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
instAddHom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instAdd
——
hom_bijective 📖mathematical—Function.Bijective
Hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
Hom.hom
——
hom_comp 📖mathematical—Hom.hom
CategoryTheory.CategoryStruct.comp
ModuleCat
CategoryTheory.Category.toCategoryStruct
moduleCategory
LinearMap.comp
carrier
Ring.toSemiring
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
——
hom_ext 📖—Hom.hom——Hom.ext
hom_ext_iff 📖mathematical—Hom.hom—hom_ext
hom_id 📖mathematical—Hom.hom
CategoryTheory.CategoryStruct.id
ModuleCat
CategoryTheory.Category.toCategoryStruct
moduleCategory
LinearMap.id
carrier
Ring.toSemiring
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
——
hom_injective 📖mathematical—Hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
Hom.hom
—Function.Bijective.injective
hom_bijective
hom_inv_apply 📖mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
ModuleCat
moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
—CategoryTheory.Iso.inv_hom_id_apply
hom_neg 📖mathematical—Hom.hom
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
instNegHom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instNeg
——
hom_nsmul 📖mathematical—Hom.hom
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
instSMulNatHom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LinearMap.addCommGroup
——
hom_ofHom 📖mathematical—Hom.hom
of
ofHom
——
hom_smul 📖mathematical—Hom.hom
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
instSMulHom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instSMul
DistribMulAction.toDistribSMul
AddCommMonoid.toAddMonoid
——
hom_sub 📖mathematical—Hom.hom
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
instSubHom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instSub
——
hom_sum 📖mathematical—Hom.hom
Finset.sum
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
AddCommGroup.toAddCommMonoid
instAddCommGroupHom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
isAddCommGroup
isModule
LinearMap.addCommMonoid
—map_sum
AddMonoidHom.instAddMonoidHomClass
hom_zero
hom_add
hom_surjective 📖mathematical—Hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
Hom.hom
—Function.Bijective.surjective
hom_bijective
hom_zero 📖mathematical—Hom.hom
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
instZeroHom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instZero
——
hom_zsmul 📖mathematical—Hom.hom
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
instSMulIntHom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
LinearMap.addCommGroup
——
id_apply 📖mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
ModuleCat
moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
instHasZeroObject 📖mathematical—CategoryTheory.Limits.HasZeroObject
ModuleCat
moduleCategory
—isZero_of_subsingleton
instReflectsIsomorphismsAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrier 📖mathematical—CategoryTheory.Functor.ReflectsIsomorphisms
ModuleCat
moduleCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.forget₂
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
hasForgetToAddCommGroup
—CategoryTheory.Functor.map_isIso
CategoryTheory.isIso_of_reflects_iso
instReflectsIsomorphismsForgetLinearMapIdCarrier
instReflectsIsomorphismsForgetLinearMapIdCarrier 📖mathematical—CategoryTheory.Functor.ReflectsIsomorphisms
ModuleCat
moduleCategory
CategoryTheory.types
CategoryTheory.forget
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
—RingHomInvPair.ids
Equiv.left_inv
Equiv.right_inv
CategoryTheory.Iso.isIso_hom
inv_hom_apply 📖mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
ModuleCat
moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
—CategoryTheory.Iso.hom_inv_id_apply
isZero_iff_subsingleton 📖mathematical—CategoryTheory.Limits.IsZero
ModuleCat
moduleCategory
carrier
—subsingleton_of_isZero
isZero_of_subsingleton
isZero_of_iff_subsingleton 📖mathematical—CategoryTheory.Limits.IsZero
ModuleCat
moduleCategory
of
—isZero_iff_subsingleton
isZero_of_subsingleton 📖mathematical—CategoryTheory.Limits.IsZero
ModuleCat
moduleCategory
—hom_ext
LinearMap.ext
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
mkOfSMul'_smul 📖mathematical—AddCommGrpCat.carrier
mkOfSMul'
instSMulCarrierMkOfSMul'
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
AddCommGrpCat
AddCommGrpCat.instCategory
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
——
mkOfSMul_smul 📖mathematical—DFunLike.coe
RingHom
CategoryTheory.End
AddCommGrpCat
CategoryTheory.Category.toCategoryStruct
AddCommGrpCat.instCategory
CategoryTheory.Functor.obj
ModuleCat
moduleCategory
CategoryTheory.forget₂
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
hasForgetToAddCommGroup
mkOfSMul
CategoryTheory.Preadditive.instSemiringEnd
AddCommGrpCat.instPreadditive
RingHom.instFunLike
smul
——
ofHom_apply 📖mathematical—DFunLike.coe
of
carrier
CategoryTheory.ConcreteCategory.hom
ModuleCat
moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
ofHom
——
ofHom_comp 📖mathematical—ofHom
LinearMap.comp
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
CategoryTheory.CategoryStruct.comp
ModuleCat
CategoryTheory.Category.toCategoryStruct
moduleCategory
of
—RingHomCompTriple.ids
ofHom_hom 📖mathematical—ofHom
carrier
isAddCommGroup
isModule
Hom.hom
——
ofHom_id 📖mathematical—ofHom
LinearMap.id
Ring.toSemiring
AddCommGroup.toAddCommMonoid
CategoryTheory.CategoryStruct.id
ModuleCat
CategoryTheory.Category.toCategoryStruct
moduleCategory
of
——
ofHom₂_hom_apply_hom 📖mathematical—Hom.hom
CommRing.toRing
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
moduleCategory
AddCommGroup.toAddCommMonoid
isAddCommGroup
instAddCommGroupHom
isModule
Hom.instModule
LinearMap.instFunLike
of
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
ofHom₂
LinearMap.addCommMonoid
LinearMap.module
—smulCommClass_self
ofHom₂_hom₂ 📖mathematical—ofHom₂
Hom.hom₂
—smulCommClass_self
of_coe 📖mathematical—of
carrier
isAddCommGroup
isModule
——
smulNatTrans_apply_app 📖mathematical—CategoryTheory.NatTrans.app
ModuleCat
moduleCategory
AddCommGrpCat
AddCommGrpCat.instCategory
CategoryTheory.forget₂
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
hasForgetToAddCommGroup
DFunLike.coe
RingHom
CategoryTheory.End
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Preadditive.instSemiringEnd
CategoryTheory.functorCategoryPreadditive
AddCommGrpCat.instPreadditive
RingHom.instFunLike
smulNatTrans
CategoryTheory.Functor.obj
smul
——
smul_naturality 📖mathematical—CategoryTheory.CategoryStruct.comp
AddCommGrpCat
CategoryTheory.Category.toCategoryStruct
AddCommGrpCat.instCategory
CategoryTheory.Functor.obj
ModuleCat
moduleCategory
CategoryTheory.forget₂
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
LinearMap.instFunLike
instConcreteCategoryLinearMapIdCarrier
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
hasForgetToAddCommGroup
CategoryTheory.Functor.map
DFunLike.coe
RingHom
CategoryTheory.End
CategoryTheory.Preadditive.instSemiringEnd
AddCommGrpCat.instPreadditive
RingHom.instFunLike
smul
—AddCommGrpCat.hom_ext
AddMonoidHom.ext
LinearMap.map_smul
subsingleton_of_isZero 📖mathematicalCategoryTheory.Limits.IsZero
ModuleCat
moduleCategory
carrier—LinearMap.id_apply
hom_id
CategoryTheory.Limits.IsZero.iff_id_eq_zero

ModuleCat.Algebra

Definitions

NameCategoryTheorems
instLinear 📖CompOp
3 mathmath: MoritaEquivalence.linear, instLinearRestrictScalars, restrictScalarsEquivalenceOfRingEquiv_linear
instModuleCarrier 📖CompOp
4 mathmath: instSMulCommClassCarrier, instIsScalarTowerCarrier, ModuleCat.monoidalClosed_pre_app, ModuleCat.ihom_ev_app

Theorems

NameKindAssumesProvesValidatesDepends On
instIsScalarTowerCarrier 📖mathematical—IsScalarTower
ModuleCat.carrier
Algebra.toSMul
Ring.toSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
ModuleCat.isAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
CommSemiring.toSemiring
instModuleCarrier
—Algebra.smul_def
SemigroupAction.mul_smul
instSMulCommClassCarrier 📖mathematical—SMulCommClass
ModuleCat.carrier
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
ModuleCat.isAddCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
CommSemiring.toSemiring
instModuleCarrier
—smul_assoc
IsScalarTower.left
smul_eq_mul
Algebra.commutes
SemigroupAction.mul_smul

ModuleCat.Hom

Definitions

NameCategoryTheorems
hom 📖CompOp
230 mathmath: CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d, Rep.resCoindHomEquiv_symm_apply_hom, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, Rep.resCoindHomEquiv_apply_hom, ModuleCat.hom_zero, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, Rep.MonoidalClosed.linearHomEquiv_symm_hom, groupCohomology.isoCocycles₁_hom_comp_i_apply, TannakaDuality.FiniteGroup.toRightFDRepComp_in_rightRegular, groupCohomology.d₂₃_hom_apply, LinearMap.id_fgModuleCat_comp, FGModuleCat.hom_hom_id, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, ModuleCat.toMatrixModCat_map, groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, Rep.resCoindAdjunction_counit_app_hom_hom, ModuleCat.cokernel_π_cokernelIsoRangeQuotient_hom_apply, ModuleCat.linearIndependent_shortExact, ModuleCat.monoidalClosed_uncurry, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_i_hom, ModuleCat.Iso.homCongr_eq_arrowCongr, groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, groupCohomology.d₁₂_hom_apply, PresheafOfModules.pushforward_map_app_apply, PresheafOfModules.toSheafify_app_apply', LinearMap.comp_id_fgModuleCat, ModuleCat.RestrictionCoextensionAdj.HomEquiv.toRestriction_hom_apply, groupCohomology.d₀₁_hom_apply, ModuleCat.hom_surjective, ModuleCat.hom_tensorHom, groupHomology.isoCycles₁_inv_comp_iCycles_apply, ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, Rep.resCoindAdjunction_unit_app_hom_hom, ModuleCat.endRingEquiv_symm_apply_hom, Rep.homEquiv_apply_hom, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupCohomology.mapCocycles₂_comp_i_apply, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, PresheafOfModules.Derivation.postcomp_d_apply, Rep.indCoindIso_inv_hom_hom, ModuleCat.ExtendRestrictScalarsAdj.Counit.map_hom_apply, Rep.ρ_hom, PresheafOfModules.pushforward_map_app_apply', groupCohomology.cocycles₁IsoOfIsTrivial_hom_hom_apply_apply, ModuleCat.MonoidalCategory.whiskerLeft_def, ModuleCat.hom_smul, Rep.MonoidalClosed.linearHomEquivComm_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_map_app, FGModuleCat.hom_comp, ModuleCat.imageIsoRange_hom_subtype, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, CategoryTheory.Abelian.Pseudoelement.ModuleCat.eq_range_of_pseudoequal, ModuleCat.MonoidalCategory.tensorHom_def, ModuleCat.imageIsoRange_inv_image_Îč_apply, Rep.indCoindIso_hom_hom_hom, PresheafOfModules.Monoidal.tensorObj_map_tmul, ModuleCat.cokernel_π_cokernelIsoRangeQuotient_hom, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, ModuleCat.monoidalClosed_curry, ModuleCat.homAddEquiv_symm_apply_hom, ModuleCat.range_eq_top_of_epi, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_zero_iff, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_assoc_apply, ModuleCat.hom_whiskerRight, ModuleCat.hom_inv_associator, FGModuleCat.hom_id, ModuleCat.directLimitIsColimit_desc, Rep.indResAdjunction_counit_app_hom_hom, FDRep.hom_hom_action_ρ, PresheafOfModules.forgetToPresheafModuleCatObjMap_apply, groupHomology.mapCycles₁_comp_i_apply, ModuleCat.hom_whiskerLeft, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, ModuleCat.kernelIsoKer_inv_kernel_Îč_apply, ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, CategoryTheory.ShortComplex.Exact.moduleCat_range_eq_ker, groupCohomology.isoCocycles₁_inv_comp_iCocycles_apply, ModuleCat.hom_hom_leftUnitor, ModuleCat.hom_hom_rightUnitor, ModuleCat.ker_eq_bot_of_mono, ModuleCat.range_mkQ_cokernelIsoRangeQuotient_inv, ModuleCat.imageIsoRange_hom_subtype_assoc, PresheafOfModules.pushforward_obj_map_apply, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_liftK_hom, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, groupCohomology.d₀₁_ker_eq_invariants, ModuleCat.hom_ext_iff, CoalgCat.ofComonObjCoalgebraStruct_comul, groupHomology.range_d₁₀_eq_coinvariantsKer, groupHomology.isoCycles₂_hom_comp_i_apply, groupCohomology.π_comp_H0IsoOfIsTrivial_hom_apply, groupCohomology.isoCocycles₂_inv_comp_iCocycles_apply, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierOfCarrierStalkAbPresheafPrimeComplAsIdealHomToStalk, ModuleCat.imageIsoRange_inv_image_Îč, ModuleCat.hom_inv_rightUnitor, ModuleCat.hom_sum, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_apply, groupHomology.π_comp_H1Iso_hom_apply, Rep.coindIso_inv_hom_hom, ModuleCat.hom_nsmul, groupCohomology.map_id_comp_H0Iso_hom_apply, groupHomology.chainsMap_id_f_hom_eq_mapRange, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_assoc_apply, groupCohomology.cocycles₁IsoOfIsTrivial_inv_hom_apply_coe, LinearMap.id_moduleCat_comp, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, Rep.toCoinvariantsMkQ_hom, groupHomology.isoCycles₁_hom_comp_i_apply, FGModuleCat.Iso.conj_eq_conj, CategoryTheory.ShortComplex.exact_iff_surjective_moduleCatToCycles, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_descH_hom, ModuleCat.imageIsoRange_inv_image_Îč_assoc, groupCohomology.cochainsMap_f, inhomogeneousCochains.d_hom_apply, PresheafOfModules.DifferentialsConstruction.relativeDifferentials'_map_d, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, ModuleCat.kernelIsoKer_hom_ker_subtype, ModuleCat.hom_add, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, FGModuleCat.hom_hom_comp, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, FGModuleCat.hom_ext_iff, ModuleCat.hom_hom_associator, Rep.coinvariantsMk_app_hom, CategoryTheory.ShortComplex.moduleCat_exact_iff_ker_sub_range, groupHomology.mapCycles₂_hom, groupHomology.isoCycles₂_inv_comp_iCycles_apply, ModuleCat.range_mkQ_cokernelIsoRangeQuotient_inv_apply, ModuleCat.kernelIsoKer_hom_ker_subtype_apply, CategoryTheory.Limits.Concrete.colimit_rep_eq_zero, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_apply, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_iff, Rep.ihom_map_hom, Rep.coinvariantsTensor_hom_ext_iff, ModuleCat.homMk_hom_apply, ModuleCat.hom_id, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, groupHomology.chainsMap_f_hom, Rep.indResAdjunction_unit_app_hom_hom, groupHomology.map_id_comp_H0Iso_hom_apply, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_f'_hom, ModuleCat.uliftFunctor_map, groupCohomology.mapCocycles₁_comp_i_apply, ModuleCat.hom_zsmul, ModuleCat.ofHom_hom, Rep.coindMap_hom, Rep.MonoidalClosed.linearHomEquiv_hom, Rep.invariantsAdjunction_homEquiv_apply_hom, ModuleCat.localizedModuleMap_hom_apply, CategoryTheory.ShortComplex.moduleCat_exact_iff_range_eq_ker, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_K, MatrixModCat.toModuleCat_map, groupCohomology.π_comp_H2Iso_hom_apply, ModuleCat.HasLimit.lift_hom_apply, ModuleCat.binaryProductLimitCone_isLimit_lift, Rep.indMap_hom, Rep.homEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, Rep.invariantsFunctor_map_hom, ModuleCat.Iso.conj_eq_conj, groupCohomology.π_comp_H1Iso_hom_apply, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, groupHomology.π_comp_H2Iso_hom_apply, groupHomology.mapCycles₁_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_π_hom, PresheafOfModules.pushforward_obj_map_apply', FGModuleCat.FGModuleCatEvaluation_apply', ModuleCat.hom_inv_leftUnitor, groupHomology.mapCycles₂_comp_i_apply, ModuleCat.ofHom₂_hom_apply_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_apply, ModuleCat.hom_sub, CoalgCat.ofComonObjCoalgebraStruct_counit, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_iff, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, ModuleCat.mono_iff_ker_eq_bot, groupHomology.π_comp_H1Iso_inv_apply, groupCohomology.isoCocycles₂_hom_comp_i_apply, ModuleCat.hom_bijective, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, ModuleCat.hom_ofHom, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, TannakaDuality.FiniteGroup.map_mul_toRightFDRepComp, Rep.indResHomEquiv_apply_hom, ModuleCat.homAddEquiv_apply, ModuleCat.span_rightExact, ModuleCat.endRingEquiv_apply, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, ModuleCat.hom_comp, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d_assoc, ModuleCat.hom_neg, PresheafOfModules.toSheafify_app_apply, ModuleCat.MonoidalCategory.whiskerRight_def, ModuleCat.kernelIsoKer_inv_kernel_Îč, ModuleCat.imageIsoRange_hom_subtype_apply, LinearMap.comp_id_moduleCat, FGModuleCat.Iso.conj_hom_eq_conj, ModuleCat.epi_iff_range_eq_top, ModuleCat.monoidalClosed_pre_app, Rep.coinvariantsFunctor_map_hom, ModuleCat.hom_injective, ModuleCat.CoextendScalars.map'_hom_apply_apply, Rep.coindIso_hom_hom_hom, ModuleCat.RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply, FDRep.hom_action_ρ, ModuleCat.toKernelSubobject_arrow, CategoryTheory.Iso.toLinearMap_toLinearEquiv, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, groupHomology.π_comp_H2Iso_inv_apply, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, Rep.indResHomEquiv_symm_apply_hom, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierObjOppositeOpensCarrierCarrierCommRingCatSpecModuleCatPresheafModulesSheafModulesSpecToSheafOpBasicOpenPowersHomToOpen, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, groupHomology.chainsMap_f, groupHomology.chainsMap_f_2_comp_chainsIso₂_apply, ModuleCat.forget₂_map
hom' 📖CompOp
2 mathmath: ext_iff, hom₂_apply
hom₂ 📖CompOp
3 mathmath: ModuleCat.ofHom₂_hom₂, hom₂_apply, hom₂_ofHom₂
instModule 📖CompOp
9 mathmath: FGModuleCat.instFiniteHomModuleCatObjIsFG, ModuleCat.homLinearEquiv_symm_apply, FGModuleCat.ihom_obj, hom₂_apply, ModuleCat.homLinearEquiv_apply, ModuleCat.ofHom₂_hom_apply_hom, ModuleCat.ofHom₂_compr₂, ModuleCat.monoidalClosed_pre_app, ModuleCat.ihom_ev_app

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖—hom'———
ext_iff 📖mathematical—hom'—ext
hom₂_apply 📖mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
LinearMap.instFunLike
hom₂
Quiver.Hom
ModuleCat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
ModuleCat.instAddCommGroupHom
LinearMap.addCommGroup
instModule
hom'
ModuleCat.of
ModuleCat.ofHom
LinearEquiv.toLinearMap
ModuleCat.homLinearEquiv
—smulCommClass_self
hom₂_ofHom₂ 📖mathematical—hom₂
ModuleCat.ofHom₂
—smulCommClass_self

ModuleCat.Hom.Simps

Definitions

NameCategoryTheorems
hom 📖CompOp—

ModuleCat.Iso

Theorems

NameKindAssumesProvesValidatesDepends On
conj_eq_conj 📖mathematical—DFunLike.coe
MulEquiv
CategoryTheory.End
ModuleCat
CommRing.toRing
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
CategoryTheory.End.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
CategoryTheory.Iso.conj
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHomInvPair.ids
Module.End
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearEquiv.instEquivLike
LinearEquiv.conj
CategoryTheory.Iso.toLinearEquiv
ModuleCat.Hom.hom
——
homCongr_eq_arrowCongr 📖mathematical—DFunLike.coe
Equiv
Quiver.Hom
ModuleCat
CommRing.toRing
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Iso.homCongr
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHomInvPair.ids
LinearMap
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearEquiv.instEquivLike
LinearEquiv.arrowCongr
RingHomCompTriple.ids
CategoryTheory.Iso.toLinearEquiv
ModuleCat.Hom.hom
——

(root)

Definitions

NameCategoryTheorems
linearEquivIsoModuleIso 📖CompOp
2 mathmath: linearEquivIsoModuleIso_hom, linearEquivIsoModuleIso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
linearEquivIsoModuleIso_hom 📖mathematical—CategoryTheory.Iso.hom
CategoryTheory.types
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
CategoryTheory.Iso
ModuleCat
ModuleCat.moduleCategory
ModuleCat.of
linearEquivIsoModuleIso
LinearEquiv.toModuleIso
—RingHomInvPair.ids
linearEquivIsoModuleIso_inv 📖mathematical—CategoryTheory.Iso.inv
CategoryTheory.types
LinearEquiv
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
CategoryTheory.Iso
ModuleCat
ModuleCat.moduleCategory
ModuleCat.of
linearEquivIsoModuleIso
CategoryTheory.Iso.toLinearEquiv
—RingHomInvPair.ids

---

← Back to Index