| Name | Category | Theorems |
carrier đ | CompOp | 1067 mathmath: HasColimit.colimitCocone_pt_isAddCommGroup, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d, Rep.resCoindHomEquiv_symm_apply_hom, TopModuleCat.hom_cokerÏ, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, Representation.repOfTprodIso_inv_apply, Rep.resCoindHomEquiv_apply_hom, groupCohomology.instEpiModuleCatH2Ï, hom_zero, groupHomology.Ï_comp_H2Iso_hom_assoc, instReflectsIsomorphismsForgetLinearMapIdCarrier, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, PresheafOfModules.Sheafify.app_eq_of_isLocallyInjective, of_coe, forget_preservesLimits, TopModuleCat.hom_zero, CommRingCat.KaehlerDifferential.map_d, MonoidalCategory.braiding_hom_apply, biproductIsoPi_inv_comp_Ï, FilteredColimits.colimit_smul_mk_eq, groupHomology.mapCyclesâ_comp_assoc, restrictScalars.map_apply, forgetâ_reflectsLimitsOfSize, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, CategoryTheory.linearCoyoneda_obj_obj_carrier, Rep.MonoidalClosed.linearHomEquiv_symm_hom, groupCohomology.isoCocyclesâ_hom_comp_i_apply, groupCohomology.mem_cocyclesâ_def, ContinuousCohomology.I_obj_V_isAddCommGroup, groupHomology.coinfNatTrans_app, CategoryTheory.Iso.toCoalgEquiv_symm, forget_preservesLimitsOfSize, groupCohomology.dââ_hom_apply, LightCondensed.ihomPoints_apply, LinearMap.id_fgModuleCat_comp, groupHomology.dââ_single_one, groupHomology.boundariesâ_le_cyclesâ, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, forgetâPreservesColimitsOfSize, TopModuleCat.instPreservesLimitTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitOfModuleCatCompLinearMapForget, FGModuleCat.hom_hom_id, Rep.diagonalSuccIsoFree_inv_hom_single, groupCohomology.dââ_comp_dââ, Representation.repOfTprodIso_apply, freeHomEquiv_apply, epi_as_hom''_mkQ, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, forgetâAddCommGroup_preservesLimitsOfSize, toMatrixModCat_map, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIsoâ_apply, LightCondensed.forget_obj_val_map, ContinuousCohomology.I_obj_V_carrier, groupCohomology.cocyclesIsoâ_hom_comp_f, Rep.resCoindAdjunction_counit_app_hom_hom, CoalgCat.MonoidalCategoryAux.tensorHom_toLinearMap, groupHomology.dââ_single, TopModuleCat.hom_zero_apply, groupCohomology.eq_dââ_comp_inv, extendScalarsId_hom_app_one_tmul, groupCohomology.H1Ï_comp_map_assoc, groupHomology.mapCyclesâ_comp_apply, groupHomology.cyclesIsoâ_inv_comp_iCycles_apply, Rep.leftRegularHom_hom, groupCohomology.Ï_comp_H0Iso_hom, FDRep.endRingEquiv_symm_comp_Ï, groupCohomology.Ï_comp_H1Iso_hom_assoc, Îč_coprodIsoDirectSum_hom_apply, restrictScalarsComp'App_hom_apply, PresheafOfModules.epi_iff_surjective, CoalgCat.of_comul, LightCondensed.ihomPoints_symm_comp, isZero_iff_subsingleton, groupCohomology.eq_dââ_comp_inv, CategoryTheory.whiskering_linearCoyoneda, cokernel_Ï_cokernelIsoRangeQuotient_hom_apply, CategoryTheory.ShortComplex.moduleCatMk_Xâ_carrier, Rep.indToCoindAux_self, groupCohomology.mapCocyclesâ_comp_i, AlternatingMap.postcomp_apply, groupHomology.eq_dââ_comp_inv, QuadraticModuleCat.toIsometry_comp, Rep.coe_res_obj_Ï, Rep.invariantsFunctor_obj_carrier, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, monoidalClosed_uncurry, Rep.diagonalHomEquiv_symm_apply, groupCohomology.H0IsoOfIsTrivial_hom, CondensedMod.isDiscrete_tfae, CoalgCat.MonoidalCategoryAux.associator_hom_toLinearMap, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_i_hom, groupCohomology.coe_mapCocyclesâ, groupHomology.mem_cyclesâ_iff, Iso.homCongr_eq_arrowCongr, CoextendScalars.smul_apply', groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, groupHomology.cyclesMap_comp_isoCyclesâ_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isModule, directLimitCocone_pt_carrier, toMatrixModCat_obj_carrier, groupCohomology.dââ_hom_apply, instSmallSubtypeForallCarrierObjMemSubmoduleSectionsSubmodule, groupHomology.comp_dââ_eq, PresheafOfModules.pushforward_map_app_apply, CategoryTheory.preadditiveYonedaObj_obj_carrier, groupCohomology.coboundariesToCocyclesâ_apply, groupHomology.mapCyclesâ_comp_assoc, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_assoc, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, FGModuleCat.instPreservesFiniteColimitsModuleCatForgetâLinearMapIdCarrierObjIsFG, PresheafOfModules.sections_property, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, PresheafOfModules.toSheafify_app_apply', PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, Rep.coinvariantsAdjunction_counit_app, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ, forget_preservesEpimorphisms, PresheafOfModules.Derivation.d_map, QuadraticModuleCat.forgetâ_map_associator_inv, LinearMap.comp_id_fgModuleCat, RestrictionCoextensionAdj.HomEquiv.toRestriction_hom_apply, TopModuleCat.instIsRightAdjointTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, groupCohomology.comp_dââ_eq, toMatrixModCat_obj_isAddCommGroup, groupCohomology.mem_cocyclesâ_of_addMonoidHom, groupCohomology.cocyclesâ.dââ_apply, groupCohomology.dââ_hom_apply, Rep.linearization_single, extendRestrictScalarsAdj_homEquiv_apply, groupHomology.dââ_single_one_thd, hom_surjective, TopModuleCat.coe_freeObj, hom_tensorHom, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, CoalgCat.tensorObj_isAddCommGroup, forgetâ_addCommGrp_essSurj, groupCohomology.dArrowIsoââ_inv_right, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.dââ_comp_dââ_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, groupCohomology.eq_dââ_comp_inv_assoc, PresheafOfModules.congr_map_apply, PresheafOfModules.freeYonedaEquiv_symm_app, Rep.finsuppToCoinvariantsTensorFree_single, groupCohomology.eq_dââ_comp_inv_apply, groupCohomology.eq_dââ_comp_inv_apply, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, PresheafOfModules.restrictScalarsObj_map, groupHomology.chainsâToCoinvariantsKer_surjective, Rep.coinvariantsTensorFreeLEquiv_symm_apply, TopModuleCat.continuousSMul, Profinite.NobelingProof.GoodProducts.linearIndependent_comp_of_eval, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, forgetâAddCommGroup_reflectsLimitOfShape, forget_reflectsLimitsOfSize, groupHomology.cyclesâ_eq_top_of_isTrivial, ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, Rep.resCoindAdjunction_unit_app_hom_hom, groupHomology.dââ_comp_dââ_assoc, groupCohomology.mem_cocyclesâ_def, endRingEquiv_symm_apply_hom, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_right, FGModuleCat.instFiniteHomModuleCatObjIsFG, Rep.homEquiv_apply_hom, FilteredColimits.colimit_zero_eq, Rep.FiniteCyclicGroup.groupHomologyÏOdd_eq_zero_iff, PresheafOfModules.pushforwardâ_obj_obj_carrier, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, forget_preservesMonomorphisms, groupCohomology.mapCocyclesâ_comp_i_apply, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, MonoidalCategory.associator_hom_apply, groupHomology.single_one_snd_sub_single_one_fst_mem_boundariesâ, CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_apply, groupHomology.dââArrowIso_hom_left, Rep.norm_comm_apply, groupHomology.cyclesâIsoOfIsTrivial_hom_apply, HasLimit.productLimitCone_cone_Ï, HasColimit.colimitCocone_Îč_app, CoalgCat.moduleCat_of_toModuleCat, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_apply, groupCohomology.coboundariesâ_eq_bot_of_isTrivial, MonoidalCategory.tensorHom_tmul, groupHomology.dââ_single_inv_mul_Ï_add_single, QuadraticModuleCat.forgetâ_map, PresheafOfModules.Derivation.postcomp_d_apply, smulShortComplex_Xâ_isAddCommGroup, forgetâ_addCommGroup_full, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles, PresheafOfModules.Derivation.d_one, groupCohomology.cocyclesâ_map_one_fst, PresheafOfModules.sectionsMap_coe, groupCohomology.mapCocyclesâ_comp_i_assoc, groupHomology.dââ_comp_coinvariantsMk_apply, ExtendRestrictScalarsAdj.Counit.map_hom_apply, Rep.Ï_hom, Rep.diagonalSuccIsoFree_inv_hom_single_single, groupCohomology.H1IsoOfIsTrivial_inv_apply, PresheafOfModules.Sheafify.map_smul_eq, PresheafOfModules.map_comp_apply, biprodIsoProd_inv_comp_snd_apply, RestrictionCoextensionAdj.counit'_app, groupHomology.chainsMap_f_3_comp_chainsIsoâ, PresheafOfModules.pushforward_map_app_apply', groupHomology.mapCyclesâ_id_comp_assoc, groupHomology.eq_dââ_comp_inv, PresheafOfModules.Derivation.d_mul, isFG_iff, groupCohomology.cocyclesâIsoOfIsTrivial_hom_hom_apply_apply, CategoryTheory.linearYoneda_obj_obj_carrier, MonoidalCategory.whiskerLeft_def, groupCohomology.H2Ï_comp_map_apply, groupHomology.mapCyclesâ_comp, FDRep.instPreservesFiniteColimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.ihom_ev_app_hom, homLinearEquiv_symm_apply, hom_smul, groupCohomology.dArrowIsoââ_hom_right, uliftFunctorForgetIso_hom_app, Rep.MonoidalClosed.linearHomEquivComm_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_map_app, smul_naturality, CategoryTheory.ShortComplex.moduleCat_zero_apply, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, Rep.coe_linearization_obj, FGModuleCat.hom_comp, ContinuousCohomology.I_obj_Ï_apply, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_assoc, imageIsoRange_hom_subtype, GradedObject.finrankSupport_subset_iff, CategoryTheory.Iso.toIsometryEquiv_toFun, groupHomology.mapCyclesâ_comp_i, CoextendScalars.smul_apply, groupCohomology.shortComplexH0_f, binaryProductLimitCone_cone_Ï_app_right, groupCohomology.cocyclesOfIsCocycleâ_coe, exteriorPower.desc_mk, PresheafOfModules.unit_map_one, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, HasColimit.colimitCocone_pt_isModule, PresheafOfModules.toPresheaf_obj_coe, groupCohomology.coboundariesâ_le_cocyclesâ, CategoryTheory.preadditiveYoneda_obj, CategoryTheory.Abelian.Pseudoelement.ModuleCat.eq_range_of_pseudoequal, Rep.standardComplex.ΔToSingleâ_comp_eq, MonoidalCategory.tensorHom_def, Rep.coindVEquiv_symm_apply_coe, groupCohomology.H1IsoOfIsTrivial_H1Ï_apply_apply, imageIsoRange_inv_image_Îč_apply, CategoryTheory.preadditiveYonedaMap_app, groupCohomology.comp_dââ_eq, CondensedMod.isDiscrete_iff_isDiscrete_forget, PresheafOfModules.map_smul, FGModuleCat.FGModuleCatEvaluation_apply, epi_iff_surjective, groupCohomology.coboundariesâ.val_eq_coe, PresheafOfModules.Monoidal.tensorObj_map_tmul, TopModuleCat.coe_of, exteriorPower.map_mk, TopModuleCat.ofHom_hom, subsingleton_of_isZero, cokernel_Ï_cokernelIsoRangeQuotient_hom, Rep.ofModuleMonoidAlgebra_obj_coe, groupHomology.single_one_fst_sub_single_one_snd_mem_boundariesâ, id_apply, Rep.FiniteCyclicGroup.groupCohomologyÏOdd_eq_iff, groupCohomology.infNatTrans_app, FGModuleCat.instPreservesFiniteLimitsModuleCatForgetâLinearMapIdCarrierObjIsFG, groupCohomology.dââ_apply_mem_cocyclesâ, Rep.invariantsAdjunction_unit_app, hom_inv_apply, groupHomology.mapCyclesâ_id_comp, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, monoidalClosed_curry, groupCohomology.dââ_apply_mem_cocyclesâ, QuadraticModuleCat.instMonoidalCategory.tensorObj_form, CoalgCat.tensorHom_def, Module.Flat.iff_rTensor_preserves_shortComplex_exact, MonoidalCategory.leftUnitor_hom_apply, Rep.indToCoindAux_fst_mul_inv, exteriorPower.isoâ_hom_apply, groupHomology.cyclesMap_comp_cyclesIsoâ_hom_apply, Rep.coinvariantsFunctor_obj_carrier, Rep.applyAsHom_comm_apply, groupHomology.dââ_single_inv_self_Ï_sub_self_inv, groupHomology.chainsMap_f_single, restrictScalarsId'App_hom_apply, groupCohomology.subtype_comp_dââ_apply, ContinuousCohomology.Iobj_Ï_apply, SheafOfModules.pushforwardComp_inv_app_val_app, FilteredColimits.forget_preservesFilteredColimits, groupCohomology.H2Ï_eq_iff, CoalgCat.toComonObj_X, groupCohomology.comp_dââ_eq, groupCohomology.cocyclesâ_map_one_snd, homAddEquiv_symm_apply_hom, Rep.coinvariantsTensorFreeLEquiv_apply, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, Module.Flat.iff_lTensor_preserves_shortComplex_exact, CategoryTheory.ShortComplex.moduleCatMk_Xâ_carrier, groupHomology.mapCyclesâ_comp_i, localizedModule_isLocalizedModule, range_eq_top_of_epi, groupCohomology.map_H0Iso_hom_f, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_zero_iff, PresheafOfModules.mono_iff_surjective, groupHomology.boundariesOfIsBoundaryâ_coe, Derivation.d_mul, Rep.indToCoindAux_comm, groupCohomology.dArrowIsoââ_inv_left, groupCohomology.Ï_comp_H1Iso_hom, Rep.FiniteCyclicGroup.groupCohomologyÏEven_eq_zero_iff, ContinuousCohomology.I_obj_V_isModule, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_left, groupHomology.cyclesIsoâ_comp_H0Ï_apply, CoalgCat.associator_def, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_assoc_apply, groupHomology.eq_dââ_comp_inv_apply, CondensedMod.epi_iff_surjective_on_stonean, hom_whiskerRight, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.exists_d_comp_eq_d, groupCohomology.cocyclesâ_Ï_map_inv_sub_map_inv, hom_inv_associator, FGModuleCat.hom_id, Rep.toAdditive_symm_apply, lof_coprodIsoDirectSum_inv, groupHomology.single_one_fst_sub_single_one_fst_mem_boundariesâ, TopModuleCat.hom_add, BialgCat.forgetâ_coalgebra_obj, CoalgCat.MonoidalCategoryAux.tensorObj_comul, CoalgCat.comul_def, inv_hom_apply, forgetâAddCommGroup_preservesLimits, directLimitIsColimit_desc, groupHomology.mapCyclesâ_id_comp_apply, MonoidalCategory.rightUnitor_def, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_assoc, CategoryTheory.Iso.toLinearEquiv_symm, PresheafOfModules.presheaf_map_apply_coe, smulShortComplex_g, Rep.ofMulDistribMulAction_Ï_apply_apply, PresheafOfModules.Derivation.congr_d, Rep.instIsTrivialCarrierVModuleCatOfCompLinearMapIdÏ, groupCohomology.instEpiModuleCatH1Ï, MonoidalCategory.associator_def, groupCohomology.H2Ï_comp_map, FGModuleCat.instFiniteCarrierLimitModuleCatCompForgetâLinearMapIdObjIsFG, mono_iff_injective, groupHomology.Ï_comp_H2Iso_hom, forgetâ_obj, Rep.indResAdjunction_counit_app_hom_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, Rep.coindToInd_apply, PresheafOfModules.forgetToPresheafModuleCatObjMap_apply, groupHomology.mapCyclesâ_comp_i_apply, SheafOfModules.pushforwardCongr_hom_app_val_app, hom_whiskerLeft, Rep.FiniteCyclicGroup.groupHomologyÏEven_eq_iff, AlgCat.forgetâModule_preservesLimitsOfSize, groupHomology.mapCyclesâ_comp, comp_apply, restrictScalarsCongr_hom_app, MonoidalCategory.tensorUnit_carrier, kernelIsoKer_inv_kernel_Îč_apply, ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, groupHomology.cyclesIsoâ_inv_comp_cyclesMap_apply, CategoryTheory.whiskering_linearYoneda, Rep.coe_of, MonoidalCategory.rightUnitor_hom_apply, groupCohomology.isoCocyclesâ_hom_comp_i, CoalgCat.MonoidalCategory.inducingFunctorData_ÎŒIso, CoalgCat.whiskerRight_def, TopModuleCat.hom_zsmul, CoalgCat.MonoidalCategory.inducingFunctorData_ΔIso, FilteredColimits.M.mk_map, groupCohomology.Ï_comp_H0Iso_hom_apply, groupHomology.coe_mapCyclesâ, CategoryTheory.ShortComplex.Exact.moduleCat_range_eq_ker, CategoryTheory.whiskering_linearCoyonedaâ, FGModuleCat.obj_carrier, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, groupHomology.comp_dââ_eq, groupHomology.H1Ï_comp_map_apply, FGModuleCat.FGModuleCatCoevaluation_apply_one, groupCohomology.dArrowIsoââ_hom_left, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, groupHomology.Ï_comp_H0Iso_hom_apply, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, groupCohomology.eq_dââ_comp_inv_apply, MatrixModCat.toModuleCat_obj_carrier, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_assoc, groupCohomology.cocyclesâ_map_inv, Rep.freeLiftLEquiv_apply, hom_hom_leftUnitor, groupCohomology.mapCocyclesâ_one, PresheafOfModules.surjective_of_epi, adj_homEquiv, instIsScalarTowerLocalizationCarrierLocalizedModule, groupHomology.H2Ï_comp_map_assoc, Rep.indToCoindAux_mul_fst, hom_hom_rightUnitor, LightCondensed.forget_map_val_app, biprodIsoProd_inv_comp_snd, CoalgCat.tensorUnit_carrier, groupHomology.Ï_comp_H0IsoOfIsTrivial_hom_apply, CategoryTheory.Iso.toCoalgEquiv_refl, piIsoPi_inv_kernel_Îč_apply, MonModuleEquivalenceAlgebra.functor_map_hom_apply, Rep.ihom_obj_Ï_apply, ker_eq_bot_of_mono, CondensedMod.hom_naturality_apply, lof_coprodIsoDirectSum_inv_apply, groupHomology.dââArrowIso_inv_right, FDRep.instFaithfulRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Derivation.desc_d, range_mkQ_cokernelIsoRangeQuotient_inv, TannakaDuality.FiniteGroup.equivApp_inv, Rep.finsuppTensorRight_hom_hom, QuadraticModuleCat.forgetâ_map_associator_hom, PresheafOfModules.injective_of_mono, free_Δ_one, groupCohomology.norm_ofAlgebraAutOnUnits_eq, groupCohomology.Ï_comp_H0Iso_hom_assoc, MonModuleEquivalenceAlgebra.functor_obj_carrier, imageIsoRange_hom_subtype_assoc, groupCohomology.mem_cocyclesâ_iff, Rep.tensor_Ï, Rep.toAdditive_apply, QuadraticModuleCat.toIsometry_whiskerRight, PresheafOfModules.pushforward_obj_map_apply, groupCohomology.H2Ï_comp_map_assoc, groupHomology.dââ_comp_coinvariantsMk, groupHomology.dââ_comp_dââ_apply, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_liftK_hom, groupHomology.mapCyclesâ_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, CoalgCat.forget_reflects_isos, Rep.ofDistribMulAction_Ï_apply_apply, groupCohomology.dââ_ker_eq_invariants, CoalgCat.MonoidalCategoryAux.leftUnitor_hom_toLinearMap, Rep.linearization_η_hom_apply, smulNatTrans_apply_app, FGModuleCat.ihom_obj, TopModuleCat.hom_id, forget_reflectsLimits, Rep.leftRegularHomEquiv_symm_apply, TannakaDuality.FiniteGroup.equivApp_hom, uliftFunctorForgetIso_inv_app, PresheafOfModules.forgetToPresheafModuleCatObjObj_coe, groupHomology.H2Ï_eq_iff, FGModuleCat.instAdditiveModuleCatForgetâLinearMapIdCarrierObjIsFG, groupHomology.H1AddEquivOfIsTrivial_single, groupCohomology.mem_cocyclesâ_iff, CoalgCat.ofComonObjCoalgebraStruct_comul, MonoidalCategory.tensorÎŒ_eq_tensorTensorTensorComm, groupHomology.range_dââ_eq_coinvariantsKer, QuadraticModuleCat.toIsometry_tensorHom, PresheafOfModules.unitHomEquiv_apply_coe, groupCohomology.inhomogeneousCochains.d_comp_d, FreeMonoidal.ΔIso_inv_freeMk, groupHomology.isoCyclesâ_hom_comp_i_apply, Rep.ofModuleMonoidAlgebra_obj_Ï, groupCohomology.Ï_comp_H0IsoOfIsTrivial_hom_apply, QuadraticModuleCat.toIsometry_hom_leftUnitor, Rep.coinvariantsShortComplex_f, SheafOfModules.pushforwardCongr_inv_app_val_app, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, QuadraticModuleCat.toIsometry_hom_rightUnitor, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_assoc, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, RestrictionCoextensionAdj.unit'_app, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierOfCarrierStalkAbPresheafPrimeComplAsIdealHomToStalk, groupHomology.eq_dââ_comp_inv_assoc, imageIsoRange_inv_image_Îč, smulShortComplex_Xâ_carrier, free_η_freeMk, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom_assoc, ContinuousCohomology.I_map_hom, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom, groupHomology.inhomogeneousChains.d_single, groupCohomology.coboundariesOfIsCoboundaryâ_coe, exteriorPower.isoâ_hom_apply, TopModuleCat.freeMap_map, Representation.coind'_apply_apply, groupCohomology.dââ_comp_dââ_assoc, QuadraticModuleCat.Hom.toIsometry_injective, CoalgCat.Hom.toCoalgHom_injective, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_map, SheafOfModules.pushforwardPushforwardAdj_unit_app_val_app, PresheafOfModules.presheaf_obj_coe, hom_inv_rightUnitor, ExtendScalars.smul_tmul, hom_sum, QuadraticModuleCat.forgetâ_obj, FGModuleCat.instFiniteCarrierColimitModuleCatCompForgetâLinearMapIdObjIsFG, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_apply, CategoryTheory.Iso.toCoalgEquiv_trans, groupHomology.mapCyclesâ_id_comp_assoc, groupHomology.Ï_comp_H1Iso_hom_apply, Rep.coindIso_inv_hom_hom, hom_nsmul, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.cocyclesâ_map_mul_of_isTrivial, forget_obj, groupCohomology.subtype_comp_dââ_assoc, groupHomology.chainsMap_id_f_hom_eq_mapRange, PresheafOfModules.toPresheaf_map_app_apply, groupHomology.toCycles_comp_isoCyclesâ_hom, CategoryTheory.ShortComplex.ShortExact.moduleCat_exact_iff_function_exact, groupCohomology.map_id_comp_H0Iso_hom, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, PresheafOfModules.Derivation'.d_app, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_assoc_apply, HasColimit.instPreservesColimitAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrier, groupHomology.mapCyclesâ_id_comp, Rep.indToCoindAux_mul_snd, FilteredColimits.forgetâAddCommGroup_preservesFilteredColimits, instIsRightAdjointForgetLinearMapIdCarrier, coe_of, CategoryTheory.Iso.toIsometryEquiv_refl, QuadraticModuleCat.toIsometry_inv_rightUnitor, groupCohomology.cocyclesâIsoOfIsTrivial_inv_hom_apply_coe, ExtendScalars.map_tmul, FilteredColimits.colimit_add_mk_eq', QuadraticModuleCat.cliffordAlgebra_map, FilteredColimits.forget_reflectsFilteredColimits, groupCohomology.cocyclesOfIsMulCocycleâ_coe, LinearMap.id_moduleCat_comp, free_ÎŒ_freeMk_tmul_freeMk, forgetâ_obj_moduleCat_of, QuadraticModuleCat.toIsometry_whiskerLeft, groupHomology.eq_dââ_comp_inv, CategoryTheory.Iso.toLinearEquiv_apply, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, Derivation.d_map, groupHomology.isoShortComplexH1_inv, groupCohomology.coboundariesOfIsMulCoboundaryâ_coe, SheafOfModules.pushforwardComp_hom_app_val_app, groupHomology.eq_dââ_comp_inv_assoc, groupCohomology.dââ_comp_dââ, HomologicalComplex.eulerChar_eq_sum_finSet_of_finrankSupport_subset, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, Rep.linearization_obj_Ï, Rep.toCoinvariantsMkQ_hom, groupHomology.chainsMap_f_1_comp_chainsIsoâ_assoc, MonoidalCategory.tensorObj, groupHomology.isoCyclesâ_hom_comp_i_apply, SheafOfModules.Presentation.map_relations_I, instPreservesColimitsOfSizeAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrierOfHasColimitsOfSizeAddCommGrpMax, groupCohomology.cocyclesIsoâ_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, FreeMonoidal.ÎŒIso_hom_freeMk_tmul_freeMk, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_apply, CategoryTheory.ShortComplex.exact_iff_surjective_moduleCatToCycles, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_descH_hom, imageIsoRange_inv_image_Îč_assoc, MonoidalCategory.rightUnitor_inv_apply, groupCohomology.H1Ï_eq_zero_iff, groupHomology.H1AddEquivOfIsTrivial_symm_apply, Rep.invariantsAdjunction_counit_app_hom, Profinite.NobelingProof.GoodProducts.square_commutes, groupCohomology.cochainsMap_f, groupCohomology.coboundariesâ.val_eq_coe, groupHomology.dââ_single_one_fst, inhomogeneousCochains.d_hom_apply, CoalgCat.MonoidalCategoryAux.counit_tensorObj, Rep.coind'_ext_iff, CoalgCat.counit_def, PresheafOfModules.DifferentialsConstruction.relativeDifferentials'_map_d, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, TopModuleCat.instPreservesLimitsOfShapeTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitsOfShapeOfModuleCatForgetLinearMap, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, groupHomology.dââ_comp_dââ, PresheafOfModules.Elements.fromFreeYoneda_app_apply, binaryProductLimitCone_cone_Ï_app_left, HasColimit.coconePointSMul_apply, groupHomology.dââ_single_self_inv_Ï_sub_inv_self, kernelIsoKer_hom_ker_subtype, smulShortComplex_f, SheafOfModules.Presentation.mapRelations_mapGenerators, groupHomology.chainsMap_f_3_comp_chainsIsoâ_assoc, hom_add, groupHomology.single_Ï_self_add_single_inv_mem_boundariesâ, groupHomology.H1ToTensorOfIsTrivial_H1Ï_single, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, FGModuleCat.hom_hom_comp, Rep.FiniteCyclicGroup.groupHomologyÏEven_eq_zero_iff, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_carrier, groupCohomology.cocyclesMkâ_eq, AlgCat.forgetâ_module_obj, MonoidalCategory.leftUnitor_inv_apply, Îč_coprodIsoDirectSum_hom, instReflectsIsomorphismsAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrier, SheafOfModules.relationsOfIsCokernelFree_I, MonModuleEquivalenceAlgebra.algebraMap, MonoidalCategory.tensorÎŒ_apply, groupHomology.cyclesOfIsCycleâ_coe, Rep.quotientToInvariantsFunctor_obj_V, MonoidalCategory.tensorObj_isModule, groupHomology.inhomogeneousChains.ext_iff, MonoidalCategory.tensorObj_isAddCommGroup, groupHomology.dââ_apply_mem_cyclesâ, groupCohomology.coboundariesToCocyclesâ_apply, ihom_map_apply, MonModuleEquivalenceAlgebra.inverseObj_mul, ihom_coev_app, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, groupCohomology.cocyclesOfIsMulCocycleâ_coe, groupCohomology.H2Ï_eq_zero_iff, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_left, groupCohomology.mapCocyclesâ_comp_i_assoc, Rep.standardComplex.quasiIso_forgetâ_ΔToSingleâ, groupCohomology.cocyclesâ.val_eq_coe, TopModuleCat.isTopologicalAddGroup, groupCohomology.H1Ï_comp_map_apply, free_shortExact, PresheafOfModules.ofPresheaf_obj_carrier, Rep.leftRegularHom_hom_single, groupCohomology.cocyclesâ_map_one, groupHomology.eq_dââ_comp_inv_assoc, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f, hom_hom_associator, CoalgCat.forgetâ_obj, groupCohomology.Ï_comp_H2Iso_hom_assoc, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, Rep.finsuppTensorRight_inv_hom, Rep.coinvariantsMk_app_hom, Rep.ihom_obj_V_isAddCommGroup, PresheafOfModules.Îč_fromFreeYonedaCoproduct_apply, CategoryTheory.ShortComplex.moduleCat_exact_iff_ker_sub_range, CategoryTheory.ShortComplex.moduleCat_exact_iff, groupHomology.mapCyclesâ_hom, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, range_mkQ_cokernelIsoRangeQuotient_inv_apply, groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, mkOfSMul_smul, MatrixModCat.isScalarTower_toModuleCat, restrictScalars.smul_def, CoalgCat.whiskerLeft_def, TopModuleCat.hom_sub, kernelIsoKer_hom_ker_subtype_apply, QuadraticModuleCat.toIsometry_id, groupHomology.cyclesMkâ_eq, groupHomology.chainsMap_f_1_comp_chainsIsoâ, Rep.coindVEquiv_apply_hom, PresheafOfModules.Derivation.d_app, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.kernel_Îč_d_comp_d, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_assoc, groupHomology.H1Ï_eq_zero_iff, groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, groupHomology.Ï_comp_H1Iso_hom_assoc, LightCondMod.hom_naturality_apply, TopModuleCat.forgetâ_TopCat_obj, groupHomology.chainsMap_f_2_comp_chainsIsoâ, groupHomology.dââ_single_one_fst, SheafOfModules.unitToPushforwardObjUnit_val_app_apply, HasLimit.productLimitCone_cone_pt_isModule, groupHomology.H2Ï_comp_map, Rep.trivialFunctor_map_hom, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_apply, TopModuleCat.hom_nsmul, groupCohomology.cocyclesâ.val_eq_coe, groupCohomology.eq_dââ_comp_inv, Rep.FiniteCyclicGroup.groupCohomologyÏEven_eq_iff, LightCondensed.ihomPoints_symm_apply, Derivation.d_add, groupHomology.H1Ï_comp_map_assoc, Rep.ihom_map_hom, groupHomology.instEpiModuleCatH1Ï, piIsoPi_hom_ker_subtype_apply, reflectsColimitsOfShape, groupHomology.H1AddEquivOfIsTrivial_apply, MonoidalCategory.whiskerRight_apply, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, Rep.coinvariantsTensor_hom_ext_iff, Rep.finsuppTensorLeft_inv_hom, TopModuleCat.instIsTopologicalAddGroupCarrier, free_ÎŽ_freeMk, forgetâAddCommGroup_reflectsLimitOfSize, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_right, PresheafOfModules.Derivation'.app_apply, CoalgCat.forgetâ_map, groupHomology.single_one_snd_sub_single_one_snd_mem_boundariesâ, Rep.unit_iso_comm, Rep.leftRegularHomEquiv_symm_single, inhomogeneousCochains.d_eq, HasLimit.productLimitCone_cone_pt_carrier, groupHomology.instEpiModuleCatH2Ï, piIsoPi_hom_ker_subtype, directLimitDiagram_obj_carrier, hom_id, groupCohomology.cocyclesMkâ_eq, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, LinearEquiv.toFGModuleCatIso_hom, TopModuleCat.instIsRightAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, groupHomology.H1Ï_comp_map, groupHomology.chainsMap_f_hom, AlgCat.forgetâModule_preservesLimits, groupHomology.dââ_apply_mem_cyclesâ, piIsoPi_inv_kernel_Îč, Rep.norm_hom, ExtendRestrictScalarsAdj.HomEquiv.evalAt_apply, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, TopModuleCat.instIsLeftAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, Rep.indResAdjunction_unit_app_hom_hom, Rep.ofHom_Ï, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.map_id_comp_H0Iso_hom_apply, groupHomology.boundariesOfIsBoundaryâ_coe, groupHomology.cyclesMkâ_eq, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, LightCondensed.ihom_map_val_app, groupHomology.mapCyclesâ_comp_i_assoc, groupCohomology.isoCocyclesâ_hom_comp_i, TopModuleCat.cokerÏ_surjective, FreeMonoidal.ÎŒIso_inv_freeMk, uliftFunctor_map, Rep.Action_Ï_eq_Ï, groupCohomology.mapCocyclesâ_comp_i_apply, hom_zsmul, ofHom_hom, Rep.coindMap_hom, groupHomology.mapCyclesâ_id_comp_apply, Rep.trivial_def, groupCohomology.cocyclesâ_ext_iff, instFiniteCarrierObjModuleCatIsFG, Rep.MonoidalClosed.linearHomEquiv_hom, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ, Rep.invariantsAdjunction_homEquiv_apply_hom, FGModuleCat.instLinearModuleCatForgetâLinearMapIdCarrierObjIsFG, AlgebraicGeometry.tilde.isUnit_algebraMap_end_basicOpen, localizedModuleMap_hom_apply, Rep.hom_comm_apply, SheafOfModules.pushforwardNatTrans_app_val_app, groupHomology.H2Ï_comp_map_apply, Hom.homâ_apply, CategoryTheory.Iso.toIsometryEquiv_invFun, TopModuleCat.hom_smul, HasColimit.colimitCocone_pt_carrier, CondensedMod.epi_iff_locallySurjective_on_compHaus, CategoryTheory.ShortComplex.moduleCat_exact_iff_range_eq_ker, uliftFunctor_obj, forgetâ_addCommGrp_additive, Module.Flat.iff_preservesFiniteLimits_tensorLeft, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, AlternatingMap.ext_iff, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, CoalgCat.MonoidalCategoryAux.comul_tensorObj, groupCohomology.coboundariesâ_ext_iff, Rep.finsuppTensorLeft_hom_hom, Rep.FiniteCyclicGroup.groupHomologyÏOdd_eq_iff, groupHomology.inhomogeneousChains.d_comp_d, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_K, projective_of_module_projective, MatrixModCat.toModuleCat_map, MonoidalCategory.leftUnitor_def, groupCohomology.Ï_comp_H2Iso_hom_apply, HasLimit.lift_hom_apply, binaryProductLimitCone_isLimit_lift, TopModuleCat.instPreservesLimitsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, homLinearEquiv_apply, Rep.coinvariantsTensorMk_apply, TopModuleCat.kerÎč_apply, Rep.indMap_hom, ContinuousCohomology.I_obj_V_topologicalSpace, groupHomology.isoCyclesâ_hom_comp_i_assoc, Rep.homEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, AlgCat.forgetâ_module_map, FilteredColimits.M.mk_surjective, FDRep.forgetâ_Ï, extendScalarsComp_hom_app_one_tmul, Rep.invariantsFunctor_map_hom, Iso.conj_eq_conj, groupHomology.dââ_eq_zero_of_isTrivial, CoalgCat.toComon_map_hom, groupCohomology.Ï_comp_H1Iso_hom_apply, Rep.standardComplex.forgetâToModuleCatHomotopyEquiv_f_0_eq, groupCohomology.dââ_comp_dââ_assoc, MonoidalCategory.tensorObj_def, FDRep.instPreservesFiniteLimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, groupHomology.dââ_single_one_snd, SheafOfModules.pushforwardPushforwardEquivalence_unit_app_val_app, biprodIsoProd_inv_comp_fst, groupHomology.Ï_map_apply, CoalgCat.rightUnitor_def, BialgCat.forgetâ_coalgebra_map, groupHomology.dââ_comp_dââ, groupHomology.dââ_single_one_snd, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, QuadraticModuleCat.cliffordAlgebra_obj_carrier, groupHomology.Ï_comp_H2Iso_hom_apply, CoalgCat.tensorObj_carrier, SheafOfModules.relationsOfIsCokernelFree_s, forgetâ_reflectsLimits, FDRep.of_Ï, forgetâPreservesColimitsOfShape, MatrixModCat.toModuleCat_obj_isAddCommGroup, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, Rep.ihom_coev_app_hom, biproductIsoPi_inv_comp_Ï_apply, groupHomology.mapCyclesâ_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_Ï_hom, Rep.leftRegularHomEquiv_apply, restrictScalars.smul_def', PresheafOfModules.pushforward_obj_map_apply', groupHomology.isoCyclesâ_inv_comp_iCycles, free_shortExact_rank_add, groupHomology.cyclesMap_comp_isoCyclesâ_hom_assoc, FGModuleCat.FGModuleCatEvaluation_apply', forgetâAddCommGroup_reflectsLimit, groupHomology.isoShortComplexH2_inv, groupHomology.coe_mapCyclesâ, groupHomology.toCycles_comp_isoCyclesâ_hom, HasLimit.productLimitCone_cone_pt_isAddCommGroup, hom_inv_leftUnitor, TopModuleCat.instReflectsIsomorphismsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, groupCohomology.dââ_comp_dââ_apply, free_map_apply, groupHomology.chainsMap_f_2_comp_chainsIsoâ_assoc, Representation.linHom.mem_invariants_iff_comm, groupHomology.mapCyclesâ_comp_i_apply, binaryProductLimitCone_cone_pt, groupCohomology.cocyclesIsoâ_hom_comp_f_apply, ofHomâ_hom_apply_hom, SheafOfModules.pushforwardPushforwardAdj_counit_app_val_app, groupHomology.boundariesToCyclesâ_apply, groupCohomology.subtype_comp_dââ, MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, groupHomology.cyclesOfIsCycleâ_coe, Rep.freeLift_hom, groupHomology.isoCyclesâ_hom_comp_i, CoalgCat.tensorObj_instCoalgebra, groupHomology.Ï_comp_H1Iso_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, groupHomology.isoCyclesâ_inv_comp_iCycles, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_apply, groupHomology.dââ_single_inv, groupHomology.mkH1OfIsTrivial_apply, groupCohomology.Ï_map_apply, Rep.indToCoindAux_snd_mul_inv, hom_sub, CoalgCat.ofComonObjCoalgebraStruct_counit, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, Rep.res_obj_Ï, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom, CategoryTheory.Presieve.FamilyOfElements.isCompatible_map_smul_aux, ofHomâ_comprâ, Algebra.instSMulCommClassCarrier, PresheafOfModules.freeYonedaEquiv_comp, forgetâAddCommGroup_preservesLimit, groupCohomology.coboundariesâ_le_cocyclesâ, Rep.ihom_obj_V_isModule, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_iff, CoalgCat.tensorObj_isModule, FreeMonoidal.ΔIso_hom_one, CategoryTheory.preadditiveCoyonedaObj_obj_carrier, groupHomology.dââArrowIso_hom_right, QuadraticModuleCat.toIsometry_inv_leftUnitor, Rep.freeLift_hom_single_single, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, groupHomology.single_one_mem_boundariesâ, mono_iff_ker_eq_bot, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_assoc, groupHomology.Ï_comp_H1Iso_inv_apply, FGModuleCat.instFullModuleCatForgetâLinearMapIdCarrierObjIsFG, groupCohomology.isoCocyclesâ_hom_comp_i_apply, extendRestrictScalarsAdj_unit_app_apply, hom_bijective, Rep.diagonalHomEquiv_apply, groupHomology.dââ_single, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, SheafOfModules.Presentation.IsFinite.finite_relations, Rep.freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, groupHomology.cyclesâIsoOfIsTrivial_inv_apply, groupHomology.eq_dââ_comp_inv_apply, Rep.epi_iff_surjective, SheafOfModules.pushforwardNatTrans_app_val_app_apply, CategoryTheory.whiskering_linearYonedaâ, CategoryTheory.ShortComplex.moduleCatMk_Xâ_carrier, groupCohomology.coboundariesâ_ext_iff, groupHomology.dââ_comp_coinvariantsMk_assoc, MonoidalCategory.whiskerLeft_apply, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, Rep.indToCoindAux_of_not_rel, groupCohomology.cocyclesOfIsCocycleâ_coe, groupHomology.cyclesMkâ_eq, groupHomology.isoCyclesâ_hom_comp_i, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_apply, Rep.applyAsHom_hom, CoalgCat.toCoalgHom_id, forget_map, groupHomology.chainsMap_f_0_comp_chainsIsoâ_apply, groupCohomology.H1Ï_comp_map, TopModuleCat.hom_comp, groupHomology.single_inv_Ï_self_add_single_mem_boundariesâ, smulShortComplex_Xâ_isModule, Rep.indResHomEquiv_apply_hom, homAddEquiv_apply, PresheafOfModules.ofPresheaf_map, CommRingCat.KaehlerDifferential.ext_iff, GradedObject.eulerChar_eq_sum_finSet_of_finrankSupport_subset, PresheafOfModules.germ_ringCat_smul, groupCohomology.cocyclesMkâ_eq, endRingEquiv_apply, groupHomology.lsingle_comp_chainsMap_f_assoc, HasColimit.reflectsColimit, PresheafOfModules.naturality_apply, groupHomology.single_mem_cyclesâ_iff, groupCohomology.isoShortComplexH1_inv, groupHomology.boundariesâ_le_cyclesâ, CoalgCat.toCoalgHom_comp, mono_as_hom'_subtype, extendScalarsId_inv_app_apply, semilinearMapAddEquiv_symm_apply_apply, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, PresheafOfModules.fromFreeYonedaCoproduct_app_mk, hom_comp, MonoidalCategory.braiding_inv_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, Rep.diagonalSuccIsoFree_hom_hom_single, CoalgCat.MonoidalCategoryAux.rightUnitor_hom_toLinearMap, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d_assoc, sMulCommClass_mk, AlgebraicGeometry.structurePresheafInModuleCat_obj_carrier, QuadraticModuleCat.moduleCat_of_toModuleCat, PresheafOfModules.germ_smul, CoalgCat.leftUnitor_def, CoalgCat.of_counit, hom_neg, Rep.ihom_obj_Ï, instInvertibleCarrierOutModuleCatValSkeleton, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ, Rep.free_ext_iff, PresheafOfModules.toSheafify_app_apply, MonoidalCategory.whiskerRight_def, isScalarTower_of_algebra_moduleCat, Rep.instPreservesLimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, groupCohomology.cocyclesâ_ext_iff, Algebra.instIsScalarTowerCarrier, groupCohomology.map_H0Iso_hom_f_assoc, ofHom_apply, TannakaDuality.FiniteGroup.ofRightFDRep_hom, kernelIsoKer_inv_kernel_Îč, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, simple_iff_isSimpleModule', restrictScalarsCongr_inv_app, groupCohomology.eq_dââ_comp_inv_assoc, Representation.linHom.invariantsEquivRepHom_apply_hom, groupCohomology.H1InfRes_f, imageIsoRange_hom_subtype_apply, LinearMap.comp_id_moduleCat, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, TopModuleCat.hom_neg, MatrixModCat.toModuleCat_obj_isModule, epi_iff_range_eq_top, instFreeCarrierXâModuleCatProjectiveShortComplex, forgetâAddCommGroupIsEquivalence, groupHomology.dââArrowIso_inv_left, monoidalClosed_pre_app, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, groupHomology.single_mem_cyclesâ_iff, Rep.coinvariantsFunctor_map_hom, groupHomology.dââ_single_Ï_add_single_inv_mul, HasLimit.productLimitCone_isLimit_lift, hom_injective, MonoidalCategory.tensorObj_carrier, Rep.linearization_map_hom_single, groupCohomology.isoShortComplexH2_inv, CategoryTheory.preadditiveCoyoneda_obj, groupCohomology.map_id_comp_H0Iso_hom_assoc, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, groupHomology.eq_dââ_comp_inv_apply, Rep.ihom_obj_V_carrier, LinearEquiv.toFGModuleCatIso_inv, ContinuousCohomology.const_app_hom, semilinearMapAddEquiv_apply, CoextendScalars.map'_hom_apply_apply, Rep.coindIso_hom_hom_hom, RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply, SheafOfModules.pushforwardPushforwardEquivalence_counit_app_val_app, groupHomology.H0Ï_comp_H0Iso_hom_apply, Rep.barComplex.d_single, freeDesc_apply, CategoryTheory.ShortComplex.ShortExact.moduleCat_surjective_g, Rep.mono_iff_injective, FDRep.dualTensorIsoLinHom_hom_hom, ExtendScalars.hom_ext_iff, groupHomology.dââ_comp_dââ_assoc, groupCohomology.coe_mapCocyclesâ, groupCohomology.eq_dââ_comp_inv_assoc, isSimpleModule_of_simple, toKernelSubobject_arrow, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isAddCommGroup, CategoryTheory.Iso.toLinearMap_toLinearEquiv, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom_assoc, Condensed.instAB4CondensedMod, groupCohomology.H1Ï_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIsoâ_apply, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, Rep.instPreservesColimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, HomologicalComplex.homologyEulerChar_eq_sum_finSet_of_finrankSupport_subset, CategoryTheory.ShortComplex.ShortExact.moduleCat_injective_f, groupHomology.mapCyclesâ_quotientGroupMk'_epi, groupHomology.mapCyclesâ_comp_i_assoc, groupHomology.H0Ï_comp_map_apply, restrictScalarsId'App_inv_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, PresheafOfModules.Sheafify.SMulCandidate.h, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, groupHomology.Ï_comp_H2Iso_inv_apply, FDRep.instFullRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, groupCohomology.coboundariesOfIsCoboundaryâ_coe, Rep.FiniteCyclicGroup.resolution.Ï_f, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, restrictScalarsComp'App_inv_apply, FDRep.endRingEquiv_comp_Ï, CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForgetâLinearMapIdCarrierAddMonoidHomCarrier, groupHomology.mem_cyclesâ_iff, Rep.FiniteCyclicGroup.groupCohomologyÏOdd_eq_zero_iff, groupCohomology.mapCocyclesâ_comp_i, groupHomology.boundariesToCyclesâ_apply, groupHomology.single_mem_cyclesâ_iff_inv, groupHomology.dââ_single, TopModuleCat.hom_forgetâ_TopCat_map, ihom_ev_app, groupCohomology.cocyclesâ.dââ_apply, Rep.indResHomEquiv_symm_apply_hom, groupHomology.isoCyclesâ_hom_comp_i_assoc, FilteredColimits.colimit_add_mk_eq, groupHomology.comp_dââ_eq, groupCohomology.Ï_comp_H2Iso_hom, free_hom_ext_iff, CategoryTheory.Iso.toIsometryEquiv_symm, groupHomology.H2Ï_eq_zero_iff, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierObjOppositeOpensCarrierCarrierCommRingCatSpecModuleCatPresheafModulesSheafModulesSpecToSheafOpBasicOpenPowersHomToOpen, CategoryTheory.Iso.toIsometryEquiv_trans, MonoidalCategory.associator_inv_apply, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, QuadraticModuleCat.hom_hom_associator, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, groupHomology.H1Ï_eq_iff, biprodIsoProd_inv_comp_fst_apply, groupHomology.dââ_comp_dââ_apply, CoextendScalars.map_apply, groupHomology.chainsMap_f, Rep.quotientToCoinvariantsFunctor_obj_V, SheafOfModules.unitHomEquiv_apply_coe, groupHomology.chainsMap_f_2_comp_chainsIsoâ_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom, QuadraticModuleCat.hom_inv_associator, forgetâ_map, groupCohomology.dââ_eq_zero, toMatrixModCat_obj_isModule
|
endRingEquiv đ | CompOp | 7 mathmath: FDRep.endRingEquiv_symm_comp_Ï, endRingEquiv_symm_apply_hom, Rep.Action_Ï_eq_Ï, FDRep.of_Ï, endRingEquiv_apply, Rep.ihom_obj_Ï, FDRep.endRingEquiv_comp_Ï
|
equivalenceSemimoduleCat đ | CompOp | â |
hasForgetToAddCommGroup đ | CompOp | 38 mathmath: HasColimit.colimitCocone_pt_isAddCommGroup, forgetâ_reflectsLimitsOfSize, forgetâPreservesColimitsOfSize, forgetâAddCommGroup_preservesLimitsOfSize, forgetâ_addCommGrp_essSurj, forgetâAddCommGroup_reflectsLimitOfShape, HasColimit.colimitCocone_Îč_app, forgetâ_addCommGroup_full, FGModuleCat.instFiniteCarrierSigmaObjModuleCatOfFinite, smul_naturality, HasColimit.colimitCocone_pt_isModule, CategoryTheory.preadditiveYoneda_obj, forgetâAddCommGroup_preservesLimits, forgetâ_obj, CategoryTheory.whiskering_linearCoyonedaâ, smulNatTrans_apply_app, FGModuleCat.instFiniteCarrierColimitModuleCatCompForgetâLinearMapIdObjIsFG, HasColimit.instPreservesColimitAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrier, FilteredColimits.forgetâAddCommGroup_preservesFilteredColimits, forgetâ_obj_moduleCat_of, instPreservesColimitsOfSizeAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrierOfHasColimitsOfSizeAddCommGrpMax, HasColimit.coconePointSMul_apply, instReflectsIsomorphismsAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrier, mkOfSMul_smul, reflectsColimitsOfShape, forgetâAddCommGroup_reflectsLimitOfSize, HasColimit.colimitCocone_pt_carrier, forgetâ_addCommGrp_additive, forgetâ_reflectsLimits, forgetâPreservesColimitsOfShape, forgetâAddCommGroup_reflectsLimit, forgetâAddCommGroup_preservesLimit, CategoryTheory.whiskering_linearYonedaâ, HasColimit.reflectsColimit, forgetâAddCommGroupIsEquivalence, CategoryTheory.preadditiveCoyoneda_obj, CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForgetâLinearMapIdCarrierAddMonoidHomCarrier, forgetâ_map
|
homAddEquiv đ | CompOp | 4 mathmath: homLinearEquiv_symm_apply, homAddEquiv_symm_apply_hom, homLinearEquiv_apply, homAddEquiv_apply
|
homEquiv đ | CompOp | â |
homLinearEquiv đ | CompOp | 5 mathmath: homLinearEquiv_symm_apply, Hom.homâ_apply, homLinearEquiv_apply, monoidalClosed_pre_app, ihom_ev_app
|
homMk đ | CompOp | 3 mathmath: HasColimit.colimitCocone_Îč_app, forgetâ_map_homMk, homMk_hom_apply
|
instAddCommGroupCarrierMkOfSMul' đ | CompOp | 1 mathmath: HasColimit.colimitCocone_pt_isAddCommGroup
|
instAddCommGroupHom đ | CompOp | 10 mathmath: FGModuleCat.instFiniteHomModuleCatObjIsFG, homLinearEquiv_symm_apply, FGModuleCat.ihom_obj, hom_sum, Hom.homâ_apply, homLinearEquiv_apply, ofHomâ_hom_apply_hom, ofHomâ_comprâ, monoidalClosed_pre_app, ihom_ev_app
|
instAddHom đ | CompOp | 9 mathmath: PresheafOfModules.add_app, homLinearEquiv_symm_apply, homAddEquiv_symm_apply_hom, hom_add, AlgebraicGeometry.tilde.map_add, homLinearEquiv_apply, homAddEquiv_apply, semilinearMapAddEquiv_symm_apply_apply, semilinearMapAddEquiv_apply
|
instCoeSortType đ | CompOp | â |
instConcreteCategoryLinearMapIdCarrier đ | CompOp | 427 mathmath: HasColimit.colimitCocone_pt_isAddCommGroup, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, Representation.repOfTprodIso_inv_apply, instReflectsIsomorphismsForgetLinearMapIdCarrier, forget_preservesLimits, CommRingCat.KaehlerDifferential.map_d, MonoidalCategory.braiding_hom_apply, restrictScalars.map_apply, forgetâ_reflectsLimitsOfSize, groupCohomology.isoCocyclesâ_hom_comp_i_apply, forget_preservesLimitsOfSize, groupHomology.dââ_single_one, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, forgetâPreservesColimitsOfSize, Rep.diagonalSuccIsoFree_inv_hom_single, Representation.repOfTprodIso_apply, freeHomEquiv_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, forgetâAddCommGroup_preservesLimitsOfSize, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIsoâ_apply, LightCondensed.forget_obj_val_map, groupHomology.dââ_single, extendScalarsId_hom_app_one_tmul, groupHomology.mapCyclesâ_comp_apply, groupHomology.cyclesIsoâ_inv_comp_iCycles_apply, Îč_coprodIsoDirectSum_hom_apply, restrictScalarsComp'App_hom_apply, PresheafOfModules.epi_iff_surjective, LightCondensed.ihomPoints_symm_comp, CategoryTheory.whiskering_linearCoyoneda, cokernel_Ï_cokernelIsoRangeQuotient_hom_apply, AlternatingMap.postcomp_apply, linearIndependent_shortExact, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, monoidalClosed_uncurry, Rep.diagonalHomEquiv_symm_apply, CondensedMod.isDiscrete_tfae, groupCohomology.coe_mapCocyclesâ, PresheafOfModules.pushforward_map_app_apply, FGModuleCat.instPreservesFiniteColimitsModuleCatForgetâLinearMapIdCarrierObjIsFG, PresheafOfModules.sections_property, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, forget_preservesEpimorphisms, PresheafOfModules.Derivation.d_map, QuadraticModuleCat.forgetâ_map_associator_inv, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, groupCohomology.cocyclesâ.dââ_apply, extendRestrictScalarsAdj_homEquiv_apply, groupHomology.dââ_single_one_thd, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, forgetâ_addCommGrp_essSurj, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.dââ_comp_dââ_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, PresheafOfModules.congr_map_apply, PresheafOfModules.freeYonedaEquiv_symm_app, groupCohomology.eq_dââ_comp_inv_apply, groupCohomology.eq_dââ_comp_inv_apply, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, PresheafOfModules.restrictScalarsObj_map, groupHomology.chainsâToCoinvariantsKer_surjective, Profinite.NobelingProof.GoodProducts.linearIndependent_comp_of_eval, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, forgetâAddCommGroup_reflectsLimitOfShape, forget_reflectsLimitsOfSize, ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, Rep.FiniteCyclicGroup.groupHomologyÏOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_apply, forget_preservesMonomorphisms, groupCohomology.mapCocyclesâ_comp_i_apply, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, MonoidalCategory.associator_hom_apply, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_apply, Rep.norm_comm_apply, groupHomology.cyclesâIsoOfIsTrivial_hom_apply, HasColimit.colimitCocone_Îč_app, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_apply, MonoidalCategory.tensorHom_tmul, groupHomology.dââ_single_inv_mul_Ï_add_single, QuadraticModuleCat.forgetâ_map, forgetâ_addCommGroup_full, PresheafOfModules.sectionsMap_coe, groupHomology.dââ_comp_coinvariantsMk_apply, Rep.diagonalSuccIsoFree_inv_hom_single_single, groupCohomology.H1IsoOfIsTrivial_inv_apply, PresheafOfModules.map_comp_apply, biprodIsoProd_inv_comp_snd_apply, PresheafOfModules.pushforward_map_app_apply', groupCohomology.H2Ï_comp_map_apply, FDRep.instPreservesFiniteColimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, FGModuleCat.instFiniteCarrierSigmaObjModuleCatOfFinite, uliftFunctorForgetIso_hom_app, smul_naturality, CategoryTheory.ShortComplex.moduleCat_zero_apply, exteriorPower.desc_mk, PresheafOfModules.unit_map_one, HasColimit.colimitCocone_pt_isModule, CategoryTheory.preadditiveYoneda_obj, Rep.standardComplex.ΔToSingleâ_comp_eq, Rep.coindVEquiv_symm_apply_coe, groupCohomology.H1IsoOfIsTrivial_H1Ï_apply_apply, imageIsoRange_inv_image_Îč_apply, CondensedMod.isDiscrete_iff_isDiscrete_forget, PresheafOfModules.map_smul, FGModuleCat.FGModuleCatEvaluation_apply, epi_iff_surjective, PresheafOfModules.Monoidal.tensorObj_map_tmul, exteriorPower.map_mk, id_apply, Rep.FiniteCyclicGroup.groupCohomologyÏOdd_eq_iff, FGModuleCat.instPreservesFiniteLimitsModuleCatForgetâLinearMapIdCarrierObjIsFG, groupCohomology.dââ_apply_mem_cocyclesâ, hom_inv_apply, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, monoidalClosed_curry, groupCohomology.dââ_apply_mem_cocyclesâ, MonoidalCategory.leftUnitor_hom_apply, exteriorPower.isoâ_hom_apply, groupHomology.cyclesMap_comp_cyclesIsoâ_hom_apply, Rep.applyAsHom_comm_apply, groupHomology.dââ_single_inv_self_Ï_sub_self_inv, groupHomology.chainsMap_f_single, restrictScalarsId'App_hom_apply, groupCohomology.subtype_comp_dââ_apply, SheafOfModules.pushforwardComp_inv_app_val_app, FilteredColimits.forget_preservesFilteredColimits, groupCohomology.H2Ï_eq_iff, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_zero_iff, PresheafOfModules.mono_iff_surjective, Rep.indToCoindAux_comm, Rep.FiniteCyclicGroup.groupCohomologyÏEven_eq_zero_iff, groupHomology.cyclesIsoâ_comp_H0Ï_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_assoc_apply, groupHomology.eq_dââ_comp_inv_apply, CondensedMod.epi_iff_surjective_on_stonean, inv_hom_apply, forgetâAddCommGroup_preservesLimits, groupHomology.mapCyclesâ_id_comp_apply, PresheafOfModules.presheaf_map_apply_coe, FGModuleCat.instFiniteCarrierLimitModuleCatCompForgetâLinearMapIdObjIsFG, mono_iff_injective, forgetâ_obj, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, PresheafOfModules.forgetToPresheafModuleCatObjMap_apply, groupHomology.mapCyclesâ_comp_i_apply, SheafOfModules.pushforwardCongr_hom_app_val_app, Rep.FiniteCyclicGroup.groupHomologyÏEven_eq_iff, AlgCat.forgetâModule_preservesLimitsOfSize, comp_apply, restrictScalarsCongr_hom_app, kernelIsoKer_inv_kernel_Îč_apply, groupHomology.cyclesIsoâ_inv_comp_cyclesMap_apply, CategoryTheory.whiskering_linearYoneda, MonoidalCategory.rightUnitor_hom_apply, CoalgCat.MonoidalCategory.inducingFunctorData_ÎŒIso, CoalgCat.MonoidalCategory.inducingFunctorData_ΔIso, FilteredColimits.M.mk_map, groupCohomology.Ï_comp_H0Iso_hom_apply, groupHomology.coe_mapCyclesâ, CategoryTheory.whiskering_linearCoyonedaâ, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, groupHomology.H1Ï_comp_map_apply, FGModuleCat.FGModuleCatCoevaluation_apply_one, groupHomology.Ï_comp_H0Iso_hom_apply, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, groupCohomology.eq_dââ_comp_inv_apply, MonoidalCategory.tensorLift_tmul, Rep.freeLiftLEquiv_apply, PresheafOfModules.surjective_of_epi, FGModuleCat.instFiniteCarrierPiObjModuleCatOfFinite, adj_homEquiv, LightCondensed.forget_map_val_app, groupHomology.Ï_comp_H0IsoOfIsTrivial_hom_apply, piIsoPi_inv_kernel_Îč_apply, MonModuleEquivalenceAlgebra.functor_map_hom_apply, CondensedMod.hom_naturality_apply, lof_coprodIsoDirectSum_inv_apply, FDRep.instFaithfulRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Derivation.desc_d, QuadraticModuleCat.forgetâ_map_associator_hom, PresheafOfModules.injective_of_mono, free_Δ_one, groupCohomology.norm_ofAlgebraAutOnUnits_eq, PresheafOfModules.pushforward_obj_map_apply, groupHomology.dââ_comp_dââ_apply, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_liftK_hom, groupHomology.mapCyclesâ_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, Rep.linearization_η_hom_apply, smulNatTrans_apply_app, forget_reflectsLimits, uliftFunctorForgetIso_inv_app, groupHomology.H2Ï_eq_iff, FGModuleCat.instAdditiveModuleCatForgetâLinearMapIdCarrierObjIsFG, groupHomology.H1AddEquivOfIsTrivial_single, PresheafOfModules.unitHomEquiv_apply_coe, FreeMonoidal.ΔIso_inv_freeMk, groupHomology.isoCyclesâ_hom_comp_i_apply, groupCohomology.Ï_comp_H0IsoOfIsTrivial_hom_apply, SheafOfModules.pushforwardCongr_inv_app_val_app, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, free_η_freeMk, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_apply, groupHomology.inhomogeneousChains.d_single, exteriorPower.isoâ_hom_apply, SheafOfModules.pushforwardPushforwardAdj_unit_app_val_app, QuadraticModuleCat.forgetâ_obj, FGModuleCat.instFiniteCarrierColimitModuleCatCompForgetâLinearMapIdObjIsFG, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_apply, groupHomology.Ï_comp_H1Iso_hom_apply, groupCohomology.map_id_comp_H0Iso_hom_apply, forget_obj, PresheafOfModules.toPresheaf_map_app_apply, CategoryTheory.ShortComplex.ShortExact.moduleCat_exact_iff_function_exact, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_assoc_apply, HasColimit.instPreservesColimitAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrier, FilteredColimits.forgetâAddCommGroup_preservesFilteredColimits, instIsRightAdjointForgetLinearMapIdCarrier, ExtendScalars.map_tmul, FilteredColimits.forget_reflectsFilteredColimits, free_ÎŒ_freeMk_tmul_freeMk, forgetâ_obj_moduleCat_of, CategoryTheory.Iso.toLinearEquiv_apply, SheafOfModules.pushforwardComp_hom_app_val_app, groupHomology.isoCyclesâ_hom_comp_i_apply, SheafOfModules.Presentation.map_relations_I, instPreservesColimitsOfSizeAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrierOfHasColimitsOfSizeAddCommGrpMax, FreeMonoidal.ÎŒIso_hom_freeMk_tmul_freeMk, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_apply, MonoidalCategory.rightUnitor_inv_apply, groupCohomology.H1Ï_eq_zero_iff, Profinite.NobelingProof.GoodProducts.square_commutes, groupHomology.dââ_single_one_fst, Rep.coind'_ext_iff, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, PresheafOfModules.Elements.fromFreeYoneda_app_apply, HasColimit.coconePointSMul_apply, groupHomology.dââ_single_self_inv_Ï_sub_inv_self, SheafOfModules.Presentation.mapRelations_mapGenerators, groupHomology.H1ToTensorOfIsTrivial_H1Ï_single, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, Rep.FiniteCyclicGroup.groupHomologyÏEven_eq_zero_iff, groupCohomology.cocyclesMkâ_eq, AlgCat.forgetâ_module_obj, MonoidalCategory.leftUnitor_inv_apply, instReflectsIsomorphismsAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrier, SheafOfModules.relationsOfIsCokernelFree_I, MonModuleEquivalenceAlgebra.algebraMap, MonoidalCategory.tensorÎŒ_apply, groupHomology.dââ_apply_mem_cyclesâ, ihom_map_apply, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, groupCohomology.H2Ï_eq_zero_iff, Rep.standardComplex.quasiIso_forgetâ_ΔToSingleâ, groupCohomology.H1Ï_comp_map_apply, Rep.leftRegularHom_hom_single, CoalgCat.forgetâ_obj, PresheafOfModules.Îč_fromFreeYonedaCoproduct_apply, CategoryTheory.ShortComplex.moduleCat_exact_iff, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, range_mkQ_cokernelIsoRangeQuotient_inv_apply, mkOfSMul_smul, kernelIsoKer_hom_ker_subtype_apply, groupHomology.cyclesMkâ_eq, groupHomology.H1Ï_eq_zero_iff, LightCondMod.hom_naturality_apply, groupHomology.dââ_single_one_fst, SheafOfModules.unitToPushforwardObjUnit_val_app_apply, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_apply, Rep.FiniteCyclicGroup.groupCohomologyÏEven_eq_iff, piIsoPi_hom_ker_subtype_apply, reflectsColimitsOfShape, MonoidalCategory.whiskerRight_apply, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, free_ÎŽ_freeMk, forgetâAddCommGroup_reflectsLimitOfSize, CoalgCat.forgetâ_map, Rep.leftRegularHomEquiv_symm_single, groupCohomology.cocyclesMkâ_eq, LinearEquiv.toFGModuleCatIso_hom, TopModuleCat.instIsRightAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, AlgCat.forgetâModule_preservesLimits, groupHomology.dââ_apply_mem_cyclesâ, ExtendRestrictScalarsAdj.HomEquiv.evalAt_apply, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, TopModuleCat.instIsLeftAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.map_id_comp_H0Iso_hom_apply, groupHomology.cyclesMkâ_eq, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, LightCondensed.ihom_map_val_app, FreeMonoidal.ÎŒIso_inv_freeMk, groupCohomology.mapCocyclesâ_comp_i_apply, groupHomology.mapCyclesâ_id_comp_apply, FGModuleCat.instLinearModuleCatForgetâLinearMapIdCarrierObjIsFG, Rep.hom_comm_apply, SheafOfModules.pushforwardNatTrans_app_val_app, groupHomology.H2Ï_comp_map_apply, HasColimit.colimitCocone_pt_carrier, CondensedMod.epi_iff_locallySurjective_on_compHaus, forgetâ_addCommGrp_additive, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.groupHomologyÏOdd_eq_iff, groupCohomology.Ï_comp_H2Iso_hom_apply, HasLimit.lift_hom_apply, AlgCat.forgetâ_module_map, FDRep.forgetâ_Ï, extendScalarsComp_hom_app_one_tmul, groupCohomology.Ï_comp_H1Iso_hom_apply, Rep.standardComplex.forgetâToModuleCatHomotopyEquiv_f_0_eq, FDRep.instPreservesFiniteLimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, groupHomology.dââ_single_one_snd, SheafOfModules.pushforwardPushforwardEquivalence_unit_app_val_app, groupHomology.Ï_map_apply, groupHomology.dââ_single_one_snd, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, groupHomology.Ï_comp_H2Iso_hom_apply, SheafOfModules.relationsOfIsCokernelFree_s, forgetâ_reflectsLimits, forgetâPreservesColimitsOfShape, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, biproductIsoPi_inv_comp_Ï_apply, Rep.leftRegularHomEquiv_apply, PresheafOfModules.pushforward_obj_map_apply', forgetâAddCommGroup_reflectsLimit, groupHomology.coe_mapCyclesâ, groupCohomology.dââ_comp_dââ_apply, free_map_apply, groupHomology.mapCyclesâ_comp_i_apply, groupCohomology.cocyclesIsoâ_hom_comp_f_apply, SheafOfModules.pushforwardPushforwardAdj_counit_app_val_app, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_apply, groupHomology.dââ_single_inv, groupHomology.mkH1OfIsTrivial_apply, groupCohomology.Ï_map_apply, CategoryTheory.Presieve.FamilyOfElements.isCompatible_map_smul_aux, PresheafOfModules.freeYonedaEquiv_comp, forgetâAddCommGroup_preservesLimit, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_iff, FreeMonoidal.ΔIso_hom_one, Rep.freeLift_hom_single_single, groupHomology.Ï_comp_H1Iso_inv_apply, FGModuleCat.instFullModuleCatForgetâLinearMapIdCarrierObjIsFG, groupCohomology.isoCocyclesâ_hom_comp_i_apply, extendRestrictScalarsAdj_unit_app_apply, Rep.diagonalHomEquiv_apply, groupHomology.dââ_single, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, SheafOfModules.Presentation.IsFinite.finite_relations, groupHomology.cyclesâIsoOfIsTrivial_inv_apply, groupHomology.eq_dââ_comp_inv_apply, Rep.epi_iff_surjective, SheafOfModules.pushforwardNatTrans_app_val_app_apply, CategoryTheory.whiskering_linearYonedaâ, MonoidalCategory.whiskerLeft_apply, groupHomology.cyclesMkâ_eq, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_apply, forget_map, groupHomology.chainsMap_f_0_comp_chainsIsoâ_apply, span_rightExact, CommRingCat.KaehlerDifferential.ext_iff, groupCohomology.cocyclesMkâ_eq, HasColimit.reflectsColimit, PresheafOfModules.naturality_apply, extendScalarsId_inv_app_apply, semilinearMapAddEquiv_symm_apply_apply, PresheafOfModules.fromFreeYonedaCoproduct_app_mk, MonoidalCategory.braiding_inv_apply, Rep.diagonalSuccIsoFree_hom_hom_single, Rep.free_ext_iff, Rep.instPreservesLimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, ofHom_apply, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, restrictScalarsCongr_inv_app, imageIsoRange_hom_subtype_apply, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, forgetâAddCommGroupIsEquivalence, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, groupHomology.dââ_single_Ï_add_single_inv_mul, Rep.linearization_map_hom_single, CategoryTheory.preadditiveCoyoneda_obj, groupHomology.eq_dââ_comp_inv_apply, LinearEquiv.toFGModuleCatIso_inv, RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply, SheafOfModules.pushforwardPushforwardEquivalence_counit_app_val_app, groupHomology.H0Ï_comp_H0Iso_hom_apply, Rep.barComplex.d_single, freeDesc_apply, CategoryTheory.ShortComplex.ShortExact.moduleCat_surjective_g, Rep.mono_iff_injective, FDRep.dualTensorIsoLinHom_hom_hom, ExtendScalars.hom_ext_iff, groupCohomology.coe_mapCocyclesâ, toKernelSubobject_arrow, Condensed.instAB4CondensedMod, groupCohomology.H1Ï_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIsoâ_apply, Rep.instPreservesColimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, CategoryTheory.ShortComplex.ShortExact.moduleCat_injective_f, groupHomology.H0Ï_comp_map_apply, restrictScalarsId'App_inv_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, groupHomology.Ï_comp_H2Iso_inv_apply, FDRep.instFullRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, restrictScalarsComp'App_inv_apply, CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForgetâLinearMapIdCarrierAddMonoidHomCarrier, Rep.FiniteCyclicGroup.groupCohomologyÏOdd_eq_zero_iff, groupHomology.dââ_single, groupCohomology.cocyclesâ.dââ_apply, FilteredColimits.colimit_add_mk_eq, free_hom_ext_iff, groupHomology.H2Ï_eq_zero_iff, MonoidalCategory.associator_inv_apply, groupHomology.H1Ï_eq_iff, biprodIsoProd_inv_comp_fst_apply, groupHomology.dââ_comp_dââ_apply, CoextendScalars.map_apply, SheafOfModules.unitHomEquiv_apply_coe, groupHomology.chainsMap_f_2_comp_chainsIsoâ_apply, forgetâ_map
|
instInhabited đ | CompOp | â |
instLinear đ | CompOp | 9 mathmath: Rep.instLinearModuleCatObjFunctorCoinvariantsTensor, FGModuleCat.instFiniteHom, Rep.instLinearModuleCatCoinvariantsFunctor, Rep.instLinearModuleCatInvariantsFunctor, instMonoidalLinear, finite_ext, FGModuleCat.instLinearModuleCatForgetâLinearMapIdCarrierObjIsFG, ofHomâ_comprâ, instLinearUliftFunctor
|
instModuleCarrierMkOfSMul' đ | CompOp | 1 mathmath: HasColimit.colimitCocone_pt_isModule
|
instNegHom đ | CompOp | 3 mathmath: PresheafOfModules.neg_app, AlgebraicGeometry.tilde.map_neg, hom_neg
|
instPreadditive đ | CompOp | 473 mathmath: groupHomology.mapShortComplexH2_Ïâ, Rep.resCoindHomEquiv_symm_apply_hom, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, Rep.resCoindHomEquiv_apply_hom, groupCohomology.mapShortComplexH1_Ïâ, groupHomology.Ï_comp_H2Iso_hom_assoc, CategoryTheory.linearCoyoneda_obj_additive, biproductIsoPi_inv_comp_Ï, simple_of_finrank_eq_one, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom, CategoryTheory.additive_yonedaObj, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, Rep.MonoidalClosed.linearHomEquiv_symm_hom, groupCohomology.isoCocyclesâ_hom_comp_i_apply, MoritaEquivalence.linear, cokernel_Ï_ext, groupHomology.mapShortComplexH2_id, groupHomology.shortComplexH1_f, groupCohomology.inhomogeneousCochains.d_def, groupCohomology.Ï_comp_H0IsoOfIsTrivial_hom_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, groupHomology.chainsMap_f_3_comp_chainsIsoâ_apply, groupCohomology.cocyclesIsoâ_hom_comp_f, groupCohomology.eq_dââ_comp_inv, groupHomology.mapShortComplexH1_zero, FDRep.endRingEquiv_symm_comp_Ï, groupCohomology.Ï_comp_H1Iso_hom_assoc, groupHomology.mapShortComplexH2_zero, groupCohomology.eq_dââ_comp_inv, cokernel_Ï_cokernelIsoRangeQuotient_hom_apply, CategoryTheory.ShortComplex.moduleCatMk_Xâ_carrier, groupCohomology.instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor, groupCohomology.mapCocyclesâ_comp_i, groupHomology.H1CoresCoinf_exact, groupHomology.eq_dââ_comp_inv, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isAddCommGroup, groupHomology.chainsMap_id, Rep.barComplex.d_def, Rep.diagonalHomEquiv_symm_apply, groupCohomology.H0IsoOfIsTrivial_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_i_hom, groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_g, groupHomology.comp_dââ_eq, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_assoc, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isModule, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, groupHomology.H1CoresCoinf_Xâ, groupCohomology.mapShortComplexH1_Ïâ, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ, groupCohomology.cochainsMap_comp, groupCohomology.comp_dââ_eq, groupHomology.Ï_comp_H1Iso_inv, CategoryTheory.ShortComplex.moduleCatMk_g, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, groupHomology.instPreservesZeroMorphismsRepModuleCatFunctor, groupCohomology.dArrowIsoââ_inv_right, groupCohomology.map_H0Iso_hom_f_apply, shortExact_projectiveShortComplex, groupCohomology.eq_dââ_comp_inv_assoc, groupCohomology.eq_dââ_comp_inv_apply, groupCohomology.eq_dââ_comp_inv_apply, groupHomology.mapShortComplexH1_Ïâ, Rep.standardComplex.d_eq, endRingEquiv_symm_apply_hom, groupHomology.H1CoresCoinfOfTrivial_Xâ, groupHomology.chainsMap_id_f_map_mono, groupCohomology.mapShortComplexH2_comp_assoc, Rep.FiniteCyclicGroup.chainComplexFunctor_obj, Rep.FiniteCyclicGroup.groupHomologyÏOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupCohomology.mapCocyclesâ_comp_i_apply, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_apply, groupHomology.dââArrowIso_hom_left, AlgebraicGeometry.instAdditiveModuleCatCarrierModulesSpecOfFunctor, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_apply, instAdditiveLocalizationLocalizedModule_functor, groupCohomology.instMonoModuleCatFH1InfRes, smulShortComplex_Xâ_isAddCommGroup, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles, groupCohomology.mapCocyclesâ_comp_i_assoc, groupHomology.Ï_comp_H2Iso_inv_assoc, biprodIsoProd_inv_comp_snd_apply, groupHomology.chainsMap_f_3_comp_chainsIsoâ, groupHomology.eq_dââ_comp_inv, groupHomology.shortComplexH2_f, Rep.instLinearModuleCatObjFunctorCoinvariantsTensor, Profinite.NobelingProof.succ_exact, groupCohomology.dArrowIsoââ_hom_right, Rep.MonoidalClosed.linearHomEquivComm_hom, CategoryTheory.ShortComplex.moduleCat_zero_apply, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_assoc, groupHomology.mapCyclesâ_comp_i, groupCohomology.shortComplexH0_f, groupCohomology.shortComplexH0_g, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, groupCohomology.shortComplexH1_f, Rep.standardComplex.ΔToSingleâ_comp_eq, groupHomology.inhomogeneousChains.d_def, Rep.coindVEquiv_symm_apply_coe, groupCohomology.comp_dââ_eq, cokernel_Ï_cokernelIsoRangeQuotient_hom, groupHomology.H1CoresCoinf_Xâ, Rep.FiniteCyclicGroup.groupCohomologyÏOdd_eq_iff, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_assoc, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isAddCommGroup, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc, Module.Flat.iff_rTensor_preserves_shortComplex_exact, groupHomology.chainsMap_f_single, groupCohomology.Ï_comp_H0IsoOfIsTrivial_hom, cokernel_Ï_imageSubobject_ext, groupCohomology.cochainsMap_f_map_epi, groupCohomology.comp_dââ_eq, LinearMap.shortExact_shortComplexKer, Module.Flat.iff_lTensor_preserves_shortComplex_exact, CategoryTheory.ShortComplex.moduleCatMk_Xâ_carrier, groupHomology.mapCyclesâ_comp_i, groupCohomology.map_H0Iso_hom_f, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_zero_iff, Rep.barResolution_complex, FGModuleCat.instFiniteHom, groupCohomology.cochainsMap_zero, smulShortComplex_Xâ, groupCohomology.dArrowIsoââ_inv_left, groupCohomology.Ï_comp_H1Iso_hom, Rep.FiniteCyclicGroup.groupCohomologyÏEven_eq_zero_iff, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_assoc_apply, groupHomology.eq_dââ_comp_inv_apply, Rep.instAdditiveModuleCatObjFunctorCoinvariantsTensor, groupCohomology.H1InfRes_Xâ, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i, groupHomology.H1CoresCoinf_g, groupCohomology.cochainsMap_id_comp, smulShortComplex_g, groupCohomology.mapShortComplexH2_comp, groupCohomology.shortComplexH2_f, simple_iff_isSimpleModule, groupHomology.H1CoresCoinfOfTrivial_Xâ, groupHomology.H1CoresCoinf_Xâ, groupCohomology.cochainsMap_comp_assoc, groupHomology.Ï_comp_H2Iso_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, groupHomology.mapCyclesâ_comp_i_apply, groupHomology.chainsMap_f_map_epi, Rep.FiniteCyclicGroup.groupHomologyÏEven_eq_iff, kernelIsoKer_inv_kernel_Îč_apply, groupHomology.isoShortComplexH1_hom, groupCohomology.isoCocyclesâ_hom_comp_i, Rep.resIndAdjunction_homEquiv_symm_apply, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, groupHomology.comp_dââ_eq, Rep.instLinearModuleCatCoinvariantsFunctor, Rep.coindMap'_hom, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_Xâ, groupCohomology.dArrowIsoââ_hom_left, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, groupCohomology.eq_dââ_comp_inv_apply, groupCohomology.H1InfRes_Xâ, simple_of_isSimpleModule, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_assoc, Rep.freeLiftLEquiv_apply, groupHomology.chainsFunctor_obj, groupCohomology.instMonoModuleCatFShortComplexH0, biprodIsoProd_inv_comp_snd, Rep.instPreservesZeroMorphismsModuleCatInvariantsFunctor, Rep.FiniteCyclicGroup.chainComplexFunctor_map_f, groupHomology.dââArrowIso_inv_right, range_mkQ_cokernelIsoRangeQuotient_inv, groupCohomology.mapShortComplexH2_zero, Rep.resIndAdjunction_homEquiv_apply, groupHomology.chainsMap_id_f_map_epi, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, groupCohomology.cochainsMap_id_f_map_mono, groupHomology.chainsMap_id_comp, Rep.leftRegularHomEquiv_symm_apply, groupHomology.instEpiModuleCatGH1CoresCoinf, groupCohomology.mapShortComplexH1_id, Rep.coinvariantsShortComplex_g, FGModuleCat.instAdditiveModuleCatForgetâLinearMapIdCarrierObjIsFG, groupHomology.mapShortComplexH1_id_comp, groupHomology.mapShortComplexH1_comp, Rep.coindResAdjunction_homEquiv_apply, groupHomology.isoCyclesâ_hom_comp_i_apply, groupCohomology.Ï_comp_H0IsoOfIsTrivial_hom_apply, Rep.coinvariantsShortComplex_f, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_assoc, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, groupHomology.eq_dââ_comp_inv_assoc, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom, smulShortComplex_Xâ_carrier, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_apply, CategoryTheory.preservesHomology_preadditiveCoyonedaObj_of_projective, Algebra.instLinearRestrictScalars, groupCohomology.mapShortComplexH2_Ïâ, groupHomology.cyclesIsoâ_inv_comp_iCycles, Representation.coind'_apply_apply, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_apply, groupCohomology.mapShortComplexH2_id_comp_assoc, groupHomology.Ï_comp_H1Iso_hom_apply, Rep.coindIso_inv_hom_hom, groupHomology.mapShortComplexH2_comp, groupHomology.chainsMap_id_f_hom_eq_mapRange, groupHomology.toCycles_comp_isoCyclesâ_hom, CategoryTheory.ShortComplex.ShortExact.moduleCat_exact_iff_function_exact, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_assoc_apply, groupHomology.mapShortComplexH2_Ïâ, groupHomology.chainsMap_f_map_mono, groupHomology.shortComplexH0_f, groupHomology.eq_dââ_comp_inv, FDRep.instHasKernels, groupHomology.isoShortComplexH1_inv, groupHomology.eq_dââ_comp_inv_assoc, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, groupHomology.chainsMap_f_1_comp_chainsIsoâ_assoc, groupHomology.isoCyclesâ_hom_comp_i_apply, groupHomology.mapShortComplexH1_Ïâ, hasCokernels_moduleCat, groupCohomology.cocyclesIsoâ_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_apply, CategoryTheory.ShortComplex.exact_iff_surjective_moduleCatToCycles, groupCohomology.cochainsMap_f, groupHomology.chainsMap_comp, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, Rep.instLinearModuleCatInvariantsFunctor, kernelIsoKer_hom_ker_subtype, smulShortComplex_f, groupHomology.chainsMap_f_3_comp_chainsIsoâ_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, Rep.FiniteCyclicGroup.groupHomologyÏEven_eq_zero_iff, groupCohomology.cocyclesMkâ_eq, groupHomology.chainsMap_f_0_comp_chainsIsoâ_assoc, groupCohomology.H1InfRes_Xâ, groupHomology.shortComplexH0_exact, instAdditiveRestrictScalars, PresheafOfModules.instAdditiveModuleCatCarrierObjOppositeRingCatEvaluation, groupCohomology.mapCocyclesâ_comp_i_assoc, Rep.standardComplex.quasiIso_forgetâ_ΔToSingleâ, instAdditiveUliftFunctor, groupHomology.eq_dââ_comp_inv_assoc, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f, groupCohomology.Ï_comp_H2Iso_hom_assoc, groupCohomology.H1InfRes_g, CategoryTheory.preservesHomology_preadditiveYonedaObj_of_injective, Rep.standardComplex.d_comp_Δ, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_Xâ, FDRep.simple_iff_end_is_rank_one, CategoryTheory.linearYoneda_obj_additive, groupHomology.shortComplexH2_g, groupCohomology.mapShortComplexH1_id_comp, CategoryTheory.ShortComplex.moduleCat_exact_iff_ker_sub_range, CategoryTheory.ShortComplex.moduleCat_exact_iff, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, range_mkQ_cokernelIsoRangeQuotient_inv_apply, groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, groupCohomology.instPreservesZeroMorphismsRepModuleCatFunctor, groupHomology.isoShortComplexH2_hom, Rep.coindResAdjunction_homEquiv_symm_apply, kernelIsoKer_hom_ker_subtype_apply, groupHomology.cyclesMkâ_eq, groupHomology.chainsMap_f_1_comp_chainsIsoâ, Rep.coindVEquiv_apply_hom, groupCohomology.mapShortComplexH1_comp, groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, groupHomology.Ï_comp_H1Iso_hom_assoc, groupHomology.chainsMap_f_2_comp_chainsIsoâ, groupHomology.pOpcycles_comp_opcyclesIso_hom, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_apply, groupHomology.Ï_comp_H2Iso_inv, groupCohomology.eq_dââ_comp_inv, instMonoidalLinear, Rep.FiniteCyclicGroup.groupCohomologyÏEven_eq_iff, groupCohomology.cochainsMap_f_map_mono, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_f, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv, groupCohomology.isoShortComplexH1_hom, groupHomology.mapShortComplexH1_id, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, Rep.leftRegularHomEquiv_symm_single, restrictScalarsEquivalenceOfRingEquiv_additive, inhomogeneousCochains.d_eq, groupHomology.H1CoresCoinfOfTrivial_exact, MoritaEquivalence.instAdditiveModuleCatFunctorEqv, Rep.FiniteCyclicGroup.resolution_complex, groupHomology.chainsFunctor_map, groupCohomology.cocyclesMkâ_eq, groupHomology.instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, groupCohomology.cochainsMap_id_f_map_epi, groupHomology.chainsMap_f_hom, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_f'_hom, groupHomology.cyclesMkâ_eq, groupHomology.H1CoresCoinfOfTrivial_f, groupHomology.mapCyclesâ_comp_i_assoc, groupCohomology.isoCocyclesâ_hom_comp_i, Rep.Action_Ï_eq_Ï, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ, groupCohomology.H1InfRes_exact, groupCohomology.mapShortComplexH2_Ïâ, groupCohomology.mapCocyclesâ_comp_i_apply, ChainComplex.linearYonedaObj_d, Rep.standardComplex.instQuasiIsoNatΔToSingleâ, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_assoc, Rep.standardComplex.x_projective, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isModule, groupCohomology.instAdditiveRepCochainComplexModuleCatNatCochainsFunctor, Rep.MonoidalClosed.linearHomEquiv_hom, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ, FGModuleCat.instLinearModuleCatForgetâLinearMapIdCarrierObjIsFG, CategoryTheory.ShortComplex.moduleCat_exact_iff_range_eq_ker, Rep.FiniteCyclicGroup.resolution_quasiIso, forgetâ_addCommGrp_additive, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_Xâ, groupHomology.H1CoresCoinfOfTrivial_g, Rep.FiniteCyclicGroup.groupHomologyÏOdd_eq_iff, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_K, groupCohomology.mapShortComplexH1_id_comp_assoc, groupCohomology.Ï_comp_H2Iso_hom_apply, groupCohomology.mapShortComplexH1_zero, IsSMulRegular.smulShortComplex_shortExact, CategoryTheory.ShortComplex.moduleCatMk_f, groupCohomology.mapShortComplexH1_comp_assoc, groupHomology.isoCyclesâ_hom_comp_i_assoc, Rep.coinvariantsShortComplex_Xâ, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, groupCohomology.isoShortComplexH2_hom, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_assoc, groupCohomology.Ï_comp_H1Iso_hom_apply, Rep.standardComplex.forgetâToModuleCatHomotopyEquiv_f_0_eq, groupCohomology.mapShortComplexH2_id_comp, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isModule, biprodIsoProd_inv_comp_fst, groupHomology.instEpiModuleCatGShortComplexH0, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, groupHomology.Ï_comp_H2Iso_hom_apply, FDRep.of_Ï, biproductIsoPi_inv_comp_Ï_apply, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_Ï_hom, Rep.leftRegularHomEquiv_apply, groupHomology.isoCyclesâ_inv_comp_iCycles, groupHomology.chainsMap_zero, groupHomology.H1CoresCoinfOfTrivial_g_epi, groupHomology.mapShortComplexH2_id_comp, groupHomology.isoShortComplexH2_inv, groupHomology.toCycles_comp_isoCyclesâ_hom, groupHomology.chainsMap_f_2_comp_chainsIsoâ_assoc, groupHomology.mapCyclesâ_comp_i_apply, groupCohomology.cocyclesIsoâ_hom_comp_f_apply, groupCohomology.iCocycles_mk, groupHomology.isoCyclesâ_hom_comp_i, groupHomology.Ï_comp_H1Iso_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, groupHomology.isoCyclesâ_inv_comp_iCycles, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_apply, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, ofHomâ_comprâ, hasKernels_moduleCat, groupHomology.shortComplexH0_g, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_iff, groupCohomology.mapShortComplexH2_id, groupHomology.dââArrowIso_hom_right, groupCohomology.shortComplexH0_exact, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_assoc, groupHomology.Ï_comp_H1Iso_inv_apply, groupCohomology.isoCocyclesâ_hom_comp_i_apply, instMonoidalPreadditive, groupHomology.H1CoresCoinfOfTrivial_Xâ, Rep.diagonalHomEquiv_apply, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, Rep.freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, groupHomology.eq_dââ_comp_inv_apply, CategoryTheory.ShortComplex.moduleCatMk_Xâ_carrier, groupCohomology.cochainsFunctor_map, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, groupHomology.cyclesMkâ_eq, groupHomology.isoCyclesâ_hom_comp_i, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_apply, groupCohomology.shortComplexH2_g, Rep.coinvariantsShortComplex_Xâ, groupHomology.chainsMap_f_0_comp_chainsIsoâ_apply, smulShortComplex_Xâ_isModule, Rep.indResHomEquiv_apply_hom, groupHomology.mapShortComplexH1_Ïâ, instLinearUliftFunctor, groupCohomology.cocyclesMkâ_eq, endRingEquiv_apply, groupHomology.lsingle_comp_chainsMap_f_assoc, groupCohomology.isoShortComplexH1_inv, CategoryTheory.additive_coyonedaObj, groupHomology.cyclesIsoâ_inv_comp_iCycles_assoc, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, groupHomology.H1CoresCoinf_f, Rep.ihom_obj_Ï, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ, groupCohomology.cochainsMap_id_comp_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_assoc, groupCohomology.map_H0Iso_hom_f_assoc, CategoryTheory.ShortComplex.Exact.moduleCat_of_range_eq_ker, kernelIsoKer_inv_kernel_Îč, simple_iff_isSimpleModule', groupHomology.shortComplexH1_g, Rep.instPreservesZeroMorphismsModuleCatCoinvariantsFunctor, groupCohomology.eq_dââ_comp_inv_assoc, Representation.linHom.invariantsEquivRepHom_apply_hom, groupCohomology.H1InfRes_f, Rep.instAdditiveModuleCatInvariantsFunctor, smulShortComplex_Xâ, instFreeCarrierXâModuleCatProjectiveShortComplex, Rep.barComplex.d_comp_diagonalSuccIsoFree_inv_eq, groupHomology.dââArrowIso_inv_left, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï, groupCohomology.mapShortComplexH2_Ïâ, groupCohomology.isoShortComplexH2_inv, Algebra.restrictScalarsEquivalenceOfRingEquiv_linear, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, groupHomology.eq_dââ_comp_inv_apply, Rep.coinvariantsShortComplex_Xâ, Rep.coindIso_hom_hom_hom, groupHomology.mapShortComplexH2_Ïâ, groupCohomology.eq_dââ_comp_inv_assoc, toKernelSubobject_arrow, instHasBinaryBiproducts, groupHomology.chainsMap_f_1_comp_chainsIsoâ_apply, smulShortComplex_g_epi, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, Rep.coinvariantsShortComplex_shortExact, groupHomology.Ï_comp_H1Iso_inv_assoc, Rep.FiniteCyclicGroup.resolution_Ï, groupHomology.mapCyclesâ_comp_i_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc, groupCohomology.mapShortComplexH1_Ïâ, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, smulShortComplex_exact, groupHomology.Ï_comp_H2Iso_inv_apply, Rep.FiniteCyclicGroup.resolution.Ï_f, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, Rep.instAdditiveModuleCatCoinvariantsFunctor, groupCohomology.cochainsFunctor_obj, FDRep.endRingEquiv_comp_Ï, CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForgetâLinearMapIdCarrierAddMonoidHomCarrier, Rep.FiniteCyclicGroup.groupCohomologyÏOdd_eq_zero_iff, groupCohomology.mapCocyclesâ_comp_i, FDRep.simple_iff_char_is_norm_one, Rep.indResHomEquiv_symm_apply_hom, groupHomology.isoCyclesâ_hom_comp_i_assoc, groupHomology.comp_dââ_eq, groupCohomology.Ï_comp_H2Iso_hom, groupHomology.chainsMap_f_0_comp_chainsIsoâ, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isAddCommGroup, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, instHasFiniteBiproducts, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, biprodIsoProd_inv_comp_fst_apply, FGModuleCat.instIsIsoCoimageImageComparison, groupCohomology.shortComplexH1_g, groupHomology.chainsMap_f, groupHomology.chainsMap_f_2_comp_chainsIsoâ_apply, groupCohomology.cochainsMap_id, ChainComplex.linearYonedaObj_X
|
instSMulCarrierMkOfSMul' đ | CompOp | 1 mathmath: mkOfSMul'_smul
|
instSMulHom đ | CompOp | 1 mathmath: hom_smul
|
instSMulIntHom đ | CompOp | 2 mathmath: PresheafOfModules.zsmul_app, hom_zsmul
|
instSMulNatHom đ | CompOp | 1 mathmath: hom_nsmul
|
instSubHom đ | CompOp | 3 mathmath: AlgebraicGeometry.tilde.map_sub, PresheafOfModules.sub_app, hom_sub
|
instZeroHom đ | CompOp | 22 mathmath: hom_zero, groupHomology.mapâ_one, groupCohomology.dââ_comp_dââ, groupHomology.dââ_comp_dââ_assoc, groupCohomology.mapâ_one, groupCohomology.mapCocyclesâ_one, groupHomology.dââ_comp_coinvariantsMk, groupCohomology.inhomogeneousCochains.d_comp_d, groupCohomology.dââ_comp_dââ_assoc, groupCohomology.subtype_comp_dââ_assoc, groupCohomology.dââ_comp_dââ, groupHomology.dââ_comp_dââ, groupHomology.inhomogeneousChains.d_comp_d, groupHomology.dââ_eq_zero_of_isTrivial, groupCohomology.dââ_comp_dââ_assoc, AlgebraicGeometry.tilde.map_zero, groupHomology.dââ_comp_dââ, groupCohomology.subtype_comp_dââ, groupHomology.dââ_comp_coinvariantsMk_assoc, groupHomology.dââ_comp_dââ_assoc, PresheafOfModules.zero_app, groupCohomology.dââ_eq_zero
|
isAddCommGroup đ | CompOp | 822 mathmath: HasColimit.colimitCocone_pt_isAddCommGroup, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d, Rep.resCoindHomEquiv_symm_apply_hom, TopModuleCat.hom_cokerÏ, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, Representation.repOfTprodIso_inv_apply, Rep.resCoindHomEquiv_apply_hom, hom_zero, instReflectsIsomorphismsForgetLinearMapIdCarrier, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, PresheafOfModules.Sheafify.app_eq_of_isLocallyInjective, of_coe, forget_preservesLimits, TopModuleCat.hom_zero, CommRingCat.KaehlerDifferential.map_d, MonoidalCategory.braiding_hom_apply, biproductIsoPi_inv_comp_Ï, FilteredColimits.colimit_smul_mk_eq, restrictScalars.map_apply, forgetâ_reflectsLimitsOfSize, Rep.MonoidalClosed.linearHomEquiv_symm_hom, groupCohomology.isoCocyclesâ_hom_comp_i_apply, ContinuousCohomology.I_obj_V_isAddCommGroup, groupHomology.coinfNatTrans_app, CategoryTheory.Iso.toCoalgEquiv_symm, forget_preservesLimitsOfSize, LinearMap.id_fgModuleCat_comp, groupHomology.dââ_single_one, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, forgetâPreservesColimitsOfSize, TopModuleCat.instPreservesLimitTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitOfModuleCatCompLinearMapForget, FGModuleCat.hom_hom_id, Rep.diagonalSuccIsoFree_inv_hom_single, Representation.repOfTprodIso_apply, freeHomEquiv_apply, epi_as_hom''_mkQ, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, forgetâAddCommGroup_preservesLimitsOfSize, toMatrixModCat_map, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIsoâ_apply, LightCondensed.forget_obj_val_map, groupCohomology.cocyclesIsoâ_hom_comp_f, Rep.resCoindAdjunction_counit_app_hom_hom, CoalgCat.MonoidalCategoryAux.tensorHom_toLinearMap, groupHomology.dââ_single, TopModuleCat.hom_zero_apply, Rep.coindToInd_of_support_subset_orbit, extendScalarsId_hom_app_one_tmul, groupHomology.mapCyclesâ_comp_apply, groupHomology.cyclesIsoâ_inv_comp_iCycles_apply, Rep.leftRegularHom_hom, groupCohomology.Ï_comp_H0Iso_hom, FDRep.endRingEquiv_symm_comp_Ï, Îč_coprodIsoDirectSum_hom_apply, restrictScalarsComp'App_hom_apply, PresheafOfModules.epi_iff_surjective, LightCondensed.ihomPoints_symm_comp, CategoryTheory.whiskering_linearCoyoneda, cokernel_Ï_cokernelIsoRangeQuotient_hom_apply, AlternatingMap.postcomp_apply, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isAddCommGroup, QuadraticModuleCat.toIsometry_comp, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, monoidalClosed_uncurry, Rep.diagonalHomEquiv_symm_apply, groupCohomology.H0IsoOfIsTrivial_hom, CondensedMod.isDiscrete_tfae, CoalgCat.MonoidalCategoryAux.associator_hom_toLinearMap, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_i_hom, groupCohomology.coe_mapCocyclesâ, Iso.homCongr_eq_arrowCongr, CoextendScalars.smul_apply', groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isModule, instSmallSubtypeForallCarrierObjMemSubmoduleSectionsSubmodule, PresheafOfModules.pushforward_map_app_apply, FGModuleCat.instPreservesFiniteColimitsModuleCatForgetâLinearMapIdCarrierObjIsFG, PresheafOfModules.sections_property, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, PresheafOfModules.toSheafify_app_apply', PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, Rep.coinvariantsAdjunction_counit_app, forget_preservesEpimorphisms, PresheafOfModules.Derivation.d_map, QuadraticModuleCat.forgetâ_map_associator_inv, LinearMap.comp_id_fgModuleCat, RestrictionCoextensionAdj.HomEquiv.toRestriction_hom_apply, TopModuleCat.instIsRightAdjointTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, toMatrixModCat_obj_isAddCommGroup, groupCohomology.cocyclesâ.dââ_apply, groupCohomology.dââ_hom_apply, extendRestrictScalarsAdj_homEquiv_apply, groupHomology.dââ_single_one_thd, hom_surjective, hom_tensorHom, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, CoalgCat.tensorObj_isAddCommGroup, forgetâ_addCommGrp_essSurj, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.dââ_comp_dââ_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, PresheafOfModules.congr_map_apply, PresheafOfModules.freeYonedaEquiv_symm_app, Rep.finsuppToCoinvariantsTensorFree_single, groupCohomology.eq_dââ_comp_inv_apply, groupCohomology.eq_dââ_comp_inv_apply, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, PresheafOfModules.restrictScalarsObj_map, groupHomology.chainsâToCoinvariantsKer_surjective, Rep.coinvariantsTensorFreeLEquiv_symm_apply, TopModuleCat.continuousSMul, Profinite.NobelingProof.GoodProducts.linearIndependent_comp_of_eval, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, forgetâAddCommGroup_reflectsLimitOfShape, forget_reflectsLimitsOfSize, ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, Rep.resCoindAdjunction_unit_app_hom_hom, endRingEquiv_symm_apply_hom, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_right, FGModuleCat.instFiniteHomModuleCatObjIsFG, Rep.homEquiv_apply_hom, FilteredColimits.colimit_zero_eq, Rep.FiniteCyclicGroup.groupHomologyÏOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, forget_preservesMonomorphisms, groupCohomology.mapCocyclesâ_comp_i_apply, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, MonoidalCategory.associator_hom_apply, CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_apply, Rep.norm_comm_apply, groupHomology.cyclesâIsoOfIsTrivial_hom_apply, HasLimit.productLimitCone_cone_Ï, HasColimit.colimitCocone_Îč_app, CoalgCat.moduleCat_of_toModuleCat, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_apply, MonoidalCategory.tensorHom_tmul, groupHomology.dââ_single_inv_mul_Ï_add_single, QuadraticModuleCat.forgetâ_map, PresheafOfModules.Derivation.postcomp_d_apply, smulShortComplex_Xâ_isAddCommGroup, forgetâ_addCommGroup_full, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles, PresheafOfModules.Derivation.d_one, PresheafOfModules.sectionsMap_coe, groupHomology.dââ_comp_coinvariantsMk_apply, ExtendRestrictScalarsAdj.Counit.map_hom_apply, Rep.diagonalSuccIsoFree_inv_hom_single_single, groupCohomology.H1IsoOfIsTrivial_inv_apply, PresheafOfModules.Sheafify.map_smul_eq, PresheafOfModules.map_comp_apply, biprodIsoProd_inv_comp_snd_apply, RestrictionCoextensionAdj.counit'_app, PresheafOfModules.pushforward_map_app_apply', PresheafOfModules.Derivation.d_mul, isFG_iff, MonoidalCategory.whiskerLeft_def, groupCohomology.H2Ï_comp_map_apply, FDRep.instPreservesFiniteColimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.ihom_ev_app_hom, homLinearEquiv_symm_apply, hom_smul, uliftFunctorForgetIso_hom_app, Rep.MonoidalClosed.linearHomEquivComm_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_map_app, smul_naturality, CategoryTheory.ShortComplex.moduleCat_zero_apply, FGModuleCat.hom_comp, ContinuousCohomology.I_obj_Ï_apply, imageIsoRange_hom_subtype, GradedObject.finrankSupport_subset_iff, CategoryTheory.Iso.toIsometryEquiv_toFun, CoextendScalars.smul_apply, groupCohomology.shortComplexH0_f, binaryProductLimitCone_cone_Ï_app_right, exteriorPower.desc_mk, PresheafOfModules.unit_map_one, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, HasColimit.colimitCocone_pt_isModule, CategoryTheory.preadditiveYoneda_obj, CategoryTheory.linearCoyoneda_obj_obj_isAddCommGroup, CategoryTheory.Abelian.Pseudoelement.ModuleCat.eq_range_of_pseudoequal, Rep.standardComplex.ΔToSingleâ_comp_eq, MonoidalCategory.tensorHom_def, Rep.subtype_hom, Rep.coindVEquiv_symm_apply_coe, groupCohomology.H1IsoOfIsTrivial_H1Ï_apply_apply, imageIsoRange_inv_image_Îč_apply, CategoryTheory.preadditiveYonedaMap_app, CondensedMod.isDiscrete_iff_isDiscrete_forget, PresheafOfModules.map_smul, FGModuleCat.FGModuleCatEvaluation_apply, epi_iff_surjective, PresheafOfModules.Monoidal.tensorObj_map_tmul, exteriorPower.map_mk, TopModuleCat.ofHom_hom, cokernel_Ï_cokernelIsoRangeQuotient_hom, id_apply, Rep.FiniteCyclicGroup.groupCohomologyÏOdd_eq_iff, FGModuleCat.instPreservesFiniteLimitsModuleCatForgetâLinearMapIdCarrierObjIsFG, groupCohomology.dââ_apply_mem_cocyclesâ, Rep.invariantsAdjunction_unit_app, hom_inv_apply, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isAddCommGroup, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, monoidalClosed_curry, groupCohomology.dââ_apply_mem_cocyclesâ, QuadraticModuleCat.instMonoidalCategory.tensorObj_form, CoalgCat.tensorHom_def, Module.Flat.iff_rTensor_preserves_shortComplex_exact, MonoidalCategory.leftUnitor_hom_apply, exteriorPower.isoâ_hom_apply, groupHomology.cyclesMap_comp_cyclesIsoâ_hom_apply, Rep.coinvariantsFunctor_obj_carrier, Rep.applyAsHom_comm_apply, groupHomology.dââ_single_inv_self_Ï_sub_self_inv, groupHomology.chainsMap_f_single, restrictScalarsId'App_hom_apply, groupCohomology.subtype_comp_dââ_apply, ContinuousCohomology.Iobj_Ï_apply, SheafOfModules.pushforwardComp_inv_app_val_app, FilteredColimits.forget_preservesFilteredColimits, groupCohomology.H2Ï_eq_iff, CoalgCat.toComonObj_X, homAddEquiv_symm_apply_hom, Rep.coinvariantsTensorFreeLEquiv_apply, PresheafOfModules.pushforwardâ_obj_obj_isAddCommGroup, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, Module.Flat.iff_lTensor_preserves_shortComplex_exact, localizedModule_isLocalizedModule, range_eq_top_of_epi, groupCohomology.map_H0Iso_hom_f, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_zero_iff, PresheafOfModules.mono_iff_surjective, Derivation.d_mul, Rep.indToCoindAux_comm, Rep.FiniteCyclicGroup.groupCohomologyÏEven_eq_zero_iff, ContinuousCohomology.I_obj_V_isModule, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_left, groupHomology.cyclesIsoâ_comp_H0Ï_apply, CoalgCat.associator_def, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_assoc_apply, groupHomology.eq_dââ_comp_inv_apply, CondensedMod.epi_iff_surjective_on_stonean, hom_whiskerRight, hom_inv_associator, FGModuleCat.hom_id, lof_coprodIsoDirectSum_inv, TopModuleCat.hom_add, BialgCat.forgetâ_coalgebra_obj, CoalgCat.MonoidalCategoryAux.tensorObj_comul, CoalgCat.comul_def, inv_hom_apply, forgetâAddCommGroup_preservesLimits, directLimitIsColimit_desc, groupHomology.mapCyclesâ_id_comp_apply, MonoidalCategory.rightUnitor_def, CategoryTheory.Iso.toLinearEquiv_symm, PresheafOfModules.presheaf_map_apply_coe, smulShortComplex_g, directLimitCocone_pt_isAddCommGroup, CategoryTheory.linearYoneda_obj_obj_isAddCommGroup, PresheafOfModules.Derivation.congr_d, MonoidalCategory.associator_def, FGModuleCat.instFiniteCarrierLimitModuleCatCompForgetâLinearMapIdObjIsFG, mono_iff_injective, forgetâ_obj, Rep.indResAdjunction_counit_app_hom_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, Rep.coindToInd_apply, PresheafOfModules.forgetToPresheafModuleCatObjMap_apply, groupHomology.mapCyclesâ_comp_i_apply, SheafOfModules.pushforwardCongr_hom_app_val_app, hom_whiskerLeft, Rep.FiniteCyclicGroup.groupHomologyÏEven_eq_iff, AlgCat.forgetâModule_preservesLimitsOfSize, comp_apply, restrictScalarsCongr_hom_app, kernelIsoKer_inv_kernel_Îč_apply, ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, groupHomology.cyclesIsoâ_inv_comp_cyclesMap_apply, CategoryTheory.whiskering_linearYoneda, MonoidalCategory.rightUnitor_hom_apply, CoalgCat.MonoidalCategory.inducingFunctorData_ÎŒIso, CoalgCat.whiskerRight_def, TopModuleCat.hom_zsmul, CoalgCat.MonoidalCategory.inducingFunctorData_ΔIso, FilteredColimits.M.mk_map, groupCohomology.Ï_comp_H0Iso_hom_apply, groupHomology.coe_mapCyclesâ, CategoryTheory.ShortComplex.Exact.moduleCat_range_eq_ker, CategoryTheory.whiskering_linearCoyonedaâ, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, groupHomology.H1Ï_comp_map_apply, FGModuleCat.FGModuleCatCoevaluation_apply_one, groupHomology.Ï_comp_H0Iso_hom_apply, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, groupCohomology.eq_dââ_comp_inv_apply, MatrixModCat.toModuleCat_obj_carrier, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_assoc, Rep.freeLiftLEquiv_apply, hom_hom_leftUnitor, PresheafOfModules.surjective_of_epi, adj_homEquiv, instIsScalarTowerLocalizationCarrierLocalizedModule, hom_hom_rightUnitor, LightCondensed.forget_map_val_app, biprodIsoProd_inv_comp_snd, groupHomology.Ï_comp_H0IsoOfIsTrivial_hom_apply, CategoryTheory.Iso.toCoalgEquiv_refl, piIsoPi_inv_kernel_Îč_apply, MonModuleEquivalenceAlgebra.functor_map_hom_apply, ker_eq_bot_of_mono, CondensedMod.hom_naturality_apply, lof_coprodIsoDirectSum_inv_apply, FDRep.instFaithfulRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Derivation.desc_d, range_mkQ_cokernelIsoRangeQuotient_inv, TannakaDuality.FiniteGroup.equivApp_inv, Rep.finsuppTensorRight_hom_hom, QuadraticModuleCat.forgetâ_map_associator_hom, PresheafOfModules.injective_of_mono, free_Δ_one, groupCohomology.norm_ofAlgebraAutOnUnits_eq, groupCohomology.Ï_comp_H0Iso_hom_assoc, imageIsoRange_hom_subtype_assoc, QuadraticModuleCat.toIsometry_whiskerRight, PresheafOfModules.pushforward_obj_map_apply, groupHomology.dââ_comp_dââ_apply, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_liftK_hom, groupHomology.mapCyclesâ_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, CoalgCat.forget_reflects_isos, groupCohomology.dââ_ker_eq_invariants, CoalgCat.MonoidalCategoryAux.leftUnitor_hom_toLinearMap, Rep.linearization_η_hom_apply, smulNatTrans_apply_app, FGModuleCat.ihom_obj, TopModuleCat.hom_id, forget_reflectsLimits, TannakaDuality.FiniteGroup.equivApp_hom, uliftFunctorForgetIso_inv_app, CoalgCat.tensorUnit_isAddCommGroup, groupHomology.H2Ï_eq_iff, FGModuleCat.instAdditiveModuleCatForgetâLinearMapIdCarrierObjIsFG, groupHomology.H1AddEquivOfIsTrivial_single, CoalgCat.ofComonObjCoalgebraStruct_comul, MonoidalCategory.tensorÎŒ_eq_tensorTensorTensorComm, groupHomology.range_dââ_eq_coinvariantsKer, QuadraticModuleCat.toIsometry_tensorHom, PresheafOfModules.unitHomEquiv_apply_coe, FreeMonoidal.ΔIso_inv_freeMk, groupHomology.isoCyclesâ_hom_comp_i_apply, Rep.ofModuleMonoidAlgebra_obj_Ï, groupCohomology.Ï_comp_H0IsoOfIsTrivial_hom_apply, QuadraticModuleCat.toIsometry_hom_leftUnitor, Rep.coinvariantsShortComplex_f, SheafOfModules.pushforwardCongr_inv_app_val_app, QuadraticModuleCat.toIsometry_hom_rightUnitor, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_assoc, RestrictionCoextensionAdj.unit'_app, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierOfCarrierStalkAbPresheafPrimeComplAsIdealHomToStalk, imageIsoRange_inv_image_Îč, smulShortComplex_Xâ_carrier, free_η_freeMk, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_apply, ContinuousCohomology.I_map_hom, groupHomology.inhomogeneousChains.d_single, exteriorPower.isoâ_hom_apply, TopModuleCat.freeMap_map, QuadraticModuleCat.Hom.toIsometry_injective, CoalgCat.Hom.toCoalgHom_injective, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_map, SheafOfModules.pushforwardPushforwardAdj_unit_app_val_app, hom_inv_rightUnitor, ExtendScalars.smul_tmul, hom_sum, QuadraticModuleCat.forgetâ_obj, FGModuleCat.instFiniteCarrierColimitModuleCatCompForgetâLinearMapIdObjIsFG, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_apply, CategoryTheory.Iso.toCoalgEquiv_trans, groupHomology.Ï_comp_H1Iso_hom_apply, hom_nsmul, groupCohomology.map_id_comp_H0Iso_hom_apply, forget_obj, directLimitDiagram_obj_isAddCommGroup, groupCohomology.subtype_comp_dââ_assoc, groupHomology.chainsMap_id_f_hom_eq_mapRange, PresheafOfModules.toPresheaf_map_app_apply, CategoryTheory.ShortComplex.ShortExact.moduleCat_exact_iff_function_exact, groupCohomology.map_id_comp_H0Iso_hom, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, PresheafOfModules.Derivation'.d_app, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_assoc_apply, HasColimit.instPreservesColimitAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrier, FilteredColimits.forgetâAddCommGroup_preservesFilteredColimits, instIsRightAdjointForgetLinearMapIdCarrier, CategoryTheory.Iso.toIsometryEquiv_refl, QuadraticModuleCat.toIsometry_inv_rightUnitor, ExtendScalars.map_tmul, FilteredColimits.colimit_add_mk_eq', QuadraticModuleCat.cliffordAlgebra_map, FilteredColimits.forget_reflectsFilteredColimits, LinearMap.id_moduleCat_comp, free_ÎŒ_freeMk_tmul_freeMk, forgetâ_obj_moduleCat_of, QuadraticModuleCat.toIsometry_whiskerLeft, CategoryTheory.Iso.toLinearEquiv_apply, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, Derivation.d_map, SheafOfModules.pushforwardComp_hom_app_val_app, HomologicalComplex.eulerChar_eq_sum_finSet_of_finrankSupport_subset, Rep.toCoinvariantsMkQ_hom, MonoidalCategory.tensorObj, groupHomology.isoCyclesâ_hom_comp_i_apply, SheafOfModules.Presentation.map_relations_I, instPreservesColimitsOfSizeAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrierOfHasColimitsOfSizeAddCommGrpMax, groupCohomology.cocyclesIsoâ_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, FreeMonoidal.ÎŒIso_hom_freeMk_tmul_freeMk, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_apply, CategoryTheory.ShortComplex.exact_iff_surjective_moduleCatToCycles, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_descH_hom, imageIsoRange_inv_image_Îč_assoc, MonoidalCategory.rightUnitor_inv_apply, groupCohomology.H1Ï_eq_zero_iff, groupHomology.H1AddEquivOfIsTrivial_symm_apply, Rep.invariantsAdjunction_counit_app_hom, Profinite.NobelingProof.GoodProducts.square_commutes, groupCohomology.cochainsMap_f, groupHomology.dââ_single_one_fst, CoalgCat.MonoidalCategoryAux.counit_tensorObj, Rep.coind'_ext_iff, CoalgCat.counit_def, PresheafOfModules.DifferentialsConstruction.relativeDifferentials'_map_d, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, TopModuleCat.instPreservesLimitsOfShapeTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitsOfShapeOfModuleCatForgetLinearMap, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, PresheafOfModules.Elements.fromFreeYoneda_app_apply, binaryProductLimitCone_cone_Ï_app_left, HasColimit.coconePointSMul_apply, groupHomology.dââ_single_self_inv_Ï_sub_inv_self, kernelIsoKer_hom_ker_subtype, smulShortComplex_f, SheafOfModules.Presentation.mapRelations_mapGenerators, hom_add, groupHomology.H1ToTensorOfIsTrivial_H1Ï_single, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, FGModuleCat.hom_hom_comp, Rep.FiniteCyclicGroup.groupHomologyÏEven_eq_zero_iff, groupCohomology.cocyclesMkâ_eq, AlgCat.forgetâ_module_obj, MonoidalCategory.leftUnitor_inv_apply, Îč_coprodIsoDirectSum_hom, instReflectsIsomorphismsAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrier, SheafOfModules.relationsOfIsCokernelFree_I, MonModuleEquivalenceAlgebra.algebraMap, MonoidalCategory.tensorÎŒ_apply, Rep.quotientToInvariantsFunctor_obj_V, MonoidalCategory.tensorObj_isModule, MonoidalCategory.tensorObj_isAddCommGroup, groupHomology.dââ_apply_mem_cyclesâ, ihom_map_apply, MonModuleEquivalenceAlgebra.inverseObj_mul, ihom_coev_app, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, groupCohomology.H2Ï_eq_zero_iff, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_left, Rep.standardComplex.quasiIso_forgetâ_ΔToSingleâ, TopModuleCat.isTopologicalAddGroup, groupCohomology.H1Ï_comp_map_apply, free_shortExact, Rep.leftRegularHom_hom_single, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f, hom_hom_associator, CoalgCat.forgetâ_obj, Rep.finsuppTensorRight_inv_hom, Rep.coinvariantsMk_app_hom, Rep.ihom_obj_V_isAddCommGroup, PresheafOfModules.Îč_fromFreeYonedaCoproduct_apply, CategoryTheory.ShortComplex.moduleCat_exact_iff_ker_sub_range, CategoryTheory.ShortComplex.moduleCat_exact_iff, groupHomology.mapCyclesâ_hom, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, range_mkQ_cokernelIsoRangeQuotient_inv_apply, mkOfSMul_smul, MatrixModCat.isScalarTower_toModuleCat, restrictScalars.smul_def, CoalgCat.whiskerLeft_def, TopModuleCat.hom_sub, kernelIsoKer_hom_ker_subtype_apply, CategoryTheory.preadditiveYonedaObj_obj_isAddCommGroup, QuadraticModuleCat.toIsometry_id, groupHomology.cyclesMkâ_eq, Rep.coindVEquiv_apply_hom, PresheafOfModules.Derivation.d_app, groupHomology.H1Ï_eq_zero_iff, LightCondMod.hom_naturality_apply, TopModuleCat.forgetâ_TopCat_obj, groupHomology.dââ_single_one_fst, SheafOfModules.unitToPushforwardObjUnit_val_app_apply, HasLimit.productLimitCone_cone_pt_isModule, Rep.trivialFunctor_map_hom, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_apply, TopModuleCat.hom_nsmul, Rep.FiniteCyclicGroup.groupCohomologyÏEven_eq_iff, Derivation.d_add, Rep.ihom_map_hom, piIsoPi_hom_ker_subtype_apply, reflectsColimitsOfShape, groupHomology.H1AddEquivOfIsTrivial_apply, MonoidalCategory.whiskerRight_apply, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, Rep.coinvariantsTensor_hom_ext_iff, Rep.finsuppTensorLeft_inv_hom, TopModuleCat.instIsTopologicalAddGroupCarrier, free_ÎŽ_freeMk, forgetâAddCommGroup_reflectsLimitOfSize, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_right, PresheafOfModules.Derivation'.app_apply, CoalgCat.forgetâ_map, Rep.leftRegularHomEquiv_symm_single, piIsoPi_hom_ker_subtype, hom_id, groupCohomology.cocyclesMkâ_eq, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, LinearEquiv.toFGModuleCatIso_hom, TopModuleCat.instIsRightAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, groupHomology.chainsMap_f_hom, AlgCat.forgetâModule_preservesLimits, groupHomology.dââ_apply_mem_cyclesâ, piIsoPi_inv_kernel_Îč, Rep.norm_hom, ExtendRestrictScalarsAdj.HomEquiv.evalAt_apply, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, TopModuleCat.instIsLeftAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, Rep.indResAdjunction_unit_app_hom_hom, Rep.ofHom_Ï, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.map_id_comp_H0Iso_hom_apply, groupHomology.cyclesMkâ_eq, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, LightCondensed.ihom_map_val_app, TopModuleCat.cokerÏ_surjective, FreeMonoidal.ÎŒIso_inv_freeMk, uliftFunctor_map, Rep.Action_Ï_eq_Ï, MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, groupCohomology.mapCocyclesâ_comp_i_apply, hom_zsmul, ofHom_hom, Rep.coindMap_hom, groupHomology.mapCyclesâ_id_comp_apply, instFiniteCarrierObjModuleCatIsFG, Rep.MonoidalClosed.linearHomEquiv_hom, Rep.invariantsAdjunction_homEquiv_apply_hom, FGModuleCat.instLinearModuleCatForgetâLinearMapIdCarrierObjIsFG, AlgebraicGeometry.tilde.isUnit_algebraMap_end_basicOpen, localizedModuleMap_hom_apply, Rep.hom_comm_apply, SheafOfModules.pushforwardNatTrans_app_val_app, groupHomology.H2Ï_comp_map_apply, Hom.homâ_apply, CategoryTheory.Iso.toIsometryEquiv_invFun, TopModuleCat.hom_smul, HasColimit.colimitCocone_pt_carrier, CondensedMod.epi_iff_locallySurjective_on_compHaus, CategoryTheory.ShortComplex.moduleCat_exact_iff_range_eq_ker, uliftFunctor_obj, forgetâ_addCommGrp_additive, Module.Flat.iff_preservesFiniteLimits_tensorLeft, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, CoalgCat.MonoidalCategoryAux.comul_tensorObj, Rep.finsuppTensorLeft_hom_hom, Rep.FiniteCyclicGroup.groupHomologyÏOdd_eq_iff, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_K, projective_of_module_projective, MatrixModCat.toModuleCat_map, MonoidalCategory.leftUnitor_def, groupCohomology.Ï_comp_H2Iso_hom_apply, HasLimit.lift_hom_apply, binaryProductLimitCone_isLimit_lift, TopModuleCat.instPreservesLimitsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, homLinearEquiv_apply, Rep.coinvariantsTensorMk_apply, TopModuleCat.kerÎč_apply, Rep.indMap_hom, Rep.homEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, AlgCat.forgetâ_module_map, FDRep.forgetâ_Ï, extendScalarsComp_hom_app_one_tmul, Rep.invariantsFunctor_map_hom, Iso.conj_eq_conj, CoalgCat.toComon_map_hom, groupCohomology.Ï_comp_H1Iso_hom_apply, Rep.standardComplex.forgetâToModuleCatHomotopyEquiv_f_0_eq, MonoidalCategory.tensorObj_def, FDRep.instPreservesFiniteLimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, groupHomology.dââ_single_one_snd, SheafOfModules.pushforwardPushforwardEquivalence_unit_app_val_app, biprodIsoProd_inv_comp_fst, groupHomology.Ï_map_apply, CoalgCat.rightUnitor_def, BialgCat.forgetâ_coalgebra_map, groupHomology.dââ_single_one_snd, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, QuadraticModuleCat.cliffordAlgebra_obj_carrier, groupHomology.Ï_comp_H2Iso_hom_apply, CoalgCat.tensorObj_carrier, SheafOfModules.relationsOfIsCokernelFree_s, forgetâ_reflectsLimits, FDRep.of_Ï, forgetâPreservesColimitsOfShape, MatrixModCat.toModuleCat_obj_isAddCommGroup, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, Rep.ihom_coev_app_hom, biproductIsoPi_inv_comp_Ï_apply, groupHomology.mapCyclesâ_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_Ï_hom, Rep.leftRegularHomEquiv_apply, restrictScalars.smul_def', PresheafOfModules.pushforward_obj_map_apply', free_shortExact_rank_add, FGModuleCat.FGModuleCatEvaluation_apply', forgetâAddCommGroup_reflectsLimit, groupHomology.coe_mapCyclesâ, HasLimit.productLimitCone_cone_pt_isAddCommGroup, hom_inv_leftUnitor, TopModuleCat.instReflectsIsomorphismsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, groupCohomology.dââ_comp_dââ_apply, free_map_apply, groupHomology.mapCyclesâ_comp_i_apply, binaryProductLimitCone_cone_pt, groupCohomology.cocyclesIsoâ_hom_comp_f_apply, ofHomâ_hom_apply_hom, SheafOfModules.pushforwardPushforwardAdj_counit_app_val_app, groupCohomology.subtype_comp_dââ, Rep.freeLift_hom, CoalgCat.tensorObj_instCoalgebra, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_apply, groupHomology.dââ_single_inv, groupHomology.mkH1OfIsTrivial_apply, groupCohomology.Ï_map_apply, hom_sub, CoalgCat.ofComonObjCoalgebraStruct_counit, CategoryTheory.Presieve.FamilyOfElements.isCompatible_map_smul_aux, ofHomâ_comprâ, Algebra.instSMulCommClassCarrier, PresheafOfModules.freeYonedaEquiv_comp, forgetâAddCommGroup_preservesLimit, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_iff, CoalgCat.tensorObj_isModule, FreeMonoidal.ΔIso_hom_one, QuadraticModuleCat.toIsometry_inv_leftUnitor, Rep.freeLift_hom_single_single, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, mono_iff_ker_eq_bot, groupHomology.Ï_comp_H1Iso_inv_apply, FGModuleCat.instFullModuleCatForgetâLinearMapIdCarrierObjIsFG, groupCohomology.isoCocyclesâ_hom_comp_i_apply, extendRestrictScalarsAdj_unit_app_apply, hom_bijective, Rep.diagonalHomEquiv_apply, groupHomology.dââ_single, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, SheafOfModules.Presentation.IsFinite.finite_relations, groupHomology.inhomogeneousChains.d_eq, groupHomology.cyclesâIsoOfIsTrivial_inv_apply, groupHomology.eq_dââ_comp_inv_apply, Rep.epi_iff_surjective, SheafOfModules.pushforwardNatTrans_app_val_app_apply, CategoryTheory.whiskering_linearYonedaâ, MonoidalCategory.whiskerLeft_apply, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, groupHomology.cyclesMkâ_eq, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_apply, Rep.applyAsHom_hom, CoalgCat.toCoalgHom_id, forget_map, groupHomology.chainsMap_f_0_comp_chainsIsoâ_apply, TopModuleCat.hom_comp, smulShortComplex_Xâ_isModule, Rep.indResHomEquiv_apply_hom, homAddEquiv_apply, PresheafOfModules.ofPresheaf_map, CommRingCat.KaehlerDifferential.ext_iff, GradedObject.eulerChar_eq_sum_finSet_of_finrankSupport_subset, PresheafOfModules.germ_ringCat_smul, groupCohomology.cocyclesMkâ_eq, endRingEquiv_apply, groupHomology.lsingle_comp_chainsMap_f_assoc, HasColimit.reflectsColimit, PresheafOfModules.naturality_apply, CoalgCat.toCoalgHom_comp, mono_as_hom'_subtype, extendScalarsId_inv_app_apply, semilinearMapAddEquiv_symm_apply_apply, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, PresheafOfModules.fromFreeYonedaCoproduct_app_mk, hom_comp, MonoidalCategory.braiding_inv_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, Rep.diagonalSuccIsoFree_hom_hom_single, CoalgCat.MonoidalCategoryAux.rightUnitor_hom_toLinearMap, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d_assoc, sMulCommClass_mk, QuadraticModuleCat.moduleCat_of_toModuleCat, PresheafOfModules.germ_smul, CoalgCat.leftUnitor_def, hom_neg, Rep.ihom_obj_Ï, instInvertibleCarrierOutModuleCatValSkeleton, Rep.free_ext_iff, PresheafOfModules.toSheafify_app_apply, MonoidalCategory.whiskerRight_def, isScalarTower_of_algebra_moduleCat, Rep.instPreservesLimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, Algebra.instIsScalarTowerCarrier, groupCohomology.map_H0Iso_hom_f_assoc, ofHom_apply, TannakaDuality.FiniteGroup.ofRightFDRep_hom, kernelIsoKer_inv_kernel_Îč, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, simple_iff_isSimpleModule', restrictScalarsCongr_inv_app, Representation.linHom.invariantsEquivRepHom_apply_hom, Rep.mkQ_hom, imageIsoRange_hom_subtype_apply, LinearMap.comp_id_moduleCat, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, TopModuleCat.hom_neg, MatrixModCat.toModuleCat_obj_isModule, epi_iff_range_eq_top, forgetâAddCommGroupIsEquivalence, monoidalClosed_pre_app, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, Rep.coinvariantsFunctor_map_hom, groupHomology.dââ_single_Ï_add_single_inv_mul, HasLimit.productLimitCone_isLimit_lift, hom_injective, MonoidalCategory.tensorObj_carrier, Rep.linearization_map_hom_single, CategoryTheory.preadditiveCoyoneda_obj, groupCohomology.map_id_comp_H0Iso_hom_assoc, groupHomology.eq_dââ_comp_inv_apply, LinearEquiv.toFGModuleCatIso_inv, ContinuousCohomology.const_app_hom, semilinearMapAddEquiv_apply, CoextendScalars.map'_hom_apply_apply, RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply, PresheafOfModules.ofPresheaf_obj_isAddCommGroup, CategoryTheory.preadditiveCoyonedaObj_obj_isAddCommGroup, SheafOfModules.pushforwardPushforwardEquivalence_counit_app_val_app, groupHomology.H0Ï_comp_H0Iso_hom_apply, Rep.barComplex.d_single, freeDesc_apply, CategoryTheory.ShortComplex.ShortExact.moduleCat_surjective_g, Rep.mono_iff_injective, MonoidalCategory.tensorUnit_isAddCommGroup, FDRep.dualTensorIsoLinHom_hom_hom, ExtendScalars.hom_ext_iff, groupCohomology.coe_mapCocyclesâ, isSimpleModule_of_simple, toKernelSubobject_arrow, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isAddCommGroup, CategoryTheory.Iso.toLinearMap_toLinearEquiv, Condensed.instAB4CondensedMod, groupCohomology.H1Ï_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIsoâ_apply, Rep.instPreservesColimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, HomologicalComplex.homologyEulerChar_eq_sum_finSet_of_finrankSupport_subset, CategoryTheory.ShortComplex.ShortExact.moduleCat_injective_f, groupHomology.H0Ï_comp_map_apply, restrictScalarsId'App_inv_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, PresheafOfModules.Sheafify.SMulCandidate.h, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, groupHomology.Ï_comp_H2Iso_inv_apply, FDRep.instFullRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, restrictScalarsComp'App_inv_apply, FDRep.endRingEquiv_comp_Ï, CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForgetâLinearMapIdCarrierAddMonoidHomCarrier, Rep.FiniteCyclicGroup.groupCohomologyÏOdd_eq_zero_iff, groupHomology.dââ_single, TopModuleCat.hom_forgetâ_TopCat_map, ihom_ev_app, groupCohomology.cocyclesâ.dââ_apply, Rep.indResHomEquiv_symm_apply_hom, FilteredColimits.colimit_add_mk_eq, free_hom_ext_iff, CategoryTheory.Iso.toIsometryEquiv_symm, groupHomology.H2Ï_eq_zero_iff, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierObjOppositeOpensCarrierCarrierCommRingCatSpecModuleCatPresheafModulesSheafModulesSpecToSheafOpBasicOpenPowersHomToOpen, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isAddCommGroup, CategoryTheory.Iso.toIsometryEquiv_trans, MonoidalCategory.associator_inv_apply, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, QuadraticModuleCat.hom_hom_associator, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, groupHomology.H1Ï_eq_iff, biprodIsoProd_inv_comp_fst_apply, groupHomology.dââ_comp_dââ_apply, CoextendScalars.map_apply, groupHomology.chainsMap_f, Rep.quotientToCoinvariantsFunctor_obj_V, SheafOfModules.unitHomEquiv_apply_coe, groupHomology.chainsMap_f_2_comp_chainsIsoâ_apply, QuadraticModuleCat.hom_inv_associator, forgetâ_map, toMatrixModCat_obj_isModule
|
isModule đ | CompOp | 1017 mathmath: HasColimit.colimitCocone_pt_isAddCommGroup, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d, Rep.resCoindHomEquiv_symm_apply_hom, TopModuleCat.hom_cokerÏ, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, Representation.repOfTprodIso_inv_apply, Rep.resCoindHomEquiv_apply_hom, groupCohomology.instEpiModuleCatH2Ï, hom_zero, groupHomology.Ï_comp_H2Iso_hom_assoc, instReflectsIsomorphismsForgetLinearMapIdCarrier, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, PresheafOfModules.Sheafify.app_eq_of_isLocallyInjective, of_coe, forget_preservesLimits, TopModuleCat.hom_zero, directLimitDiagram_obj_isModule, CommRingCat.KaehlerDifferential.map_d, MonoidalCategory.braiding_hom_apply, biproductIsoPi_inv_comp_Ï, FilteredColimits.colimit_smul_mk_eq, groupHomology.mapCyclesâ_comp_assoc, restrictScalars.map_apply, forgetâ_reflectsLimitsOfSize, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, Rep.MonoidalClosed.linearHomEquiv_symm_hom, groupCohomology.isoCocyclesâ_hom_comp_i_apply, PresheafOfModules.ofPresheaf_obj_isModule, groupCohomology.mem_cocyclesâ_def, groupHomology.coinfNatTrans_app, CategoryTheory.Iso.toCoalgEquiv_symm, forget_preservesLimitsOfSize, groupCohomology.dââ_hom_apply, LinearMap.id_fgModuleCat_comp, groupHomology.dââ_single_one, groupHomology.boundariesâ_le_cyclesâ, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, forgetâPreservesColimitsOfSize, TopModuleCat.instPreservesLimitTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitOfModuleCatCompLinearMapForget, FGModuleCat.hom_hom_id, Rep.diagonalSuccIsoFree_inv_hom_single, groupCohomology.dââ_comp_dââ, Representation.repOfTprodIso_apply, freeHomEquiv_apply, epi_as_hom''_mkQ, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, forgetâAddCommGroup_preservesLimitsOfSize, toMatrixModCat_map, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIsoâ_apply, LightCondensed.forget_obj_val_map, groupCohomology.cocyclesIsoâ_hom_comp_f, Rep.resCoindAdjunction_counit_app_hom_hom, CoalgCat.MonoidalCategoryAux.tensorHom_toLinearMap, groupHomology.dââ_single, TopModuleCat.hom_zero_apply, groupCohomology.eq_dââ_comp_inv, extendScalarsId_hom_app_one_tmul, groupCohomology.H1Ï_comp_map_assoc, groupHomology.mapCyclesâ_comp_apply, groupHomology.cyclesIsoâ_inv_comp_iCycles_apply, Rep.leftRegularHom_hom, groupCohomology.Ï_comp_H0Iso_hom, FDRep.endRingEquiv_symm_comp_Ï, groupCohomology.Ï_comp_H1Iso_hom_assoc, Îč_coprodIsoDirectSum_hom_apply, restrictScalarsComp'App_hom_apply, PresheafOfModules.epi_iff_surjective, LightCondensed.ihomPoints_symm_comp, groupCohomology.eq_dââ_comp_inv, CategoryTheory.whiskering_linearCoyoneda, cokernel_Ï_cokernelIsoRangeQuotient_hom_apply, Rep.indToCoindAux_self, groupCohomology.mapCocyclesâ_comp_i, AlternatingMap.postcomp_apply, groupHomology.eq_dââ_comp_inv, QuadraticModuleCat.toIsometry_comp, Rep.coe_res_obj_Ï, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, monoidalClosed_uncurry, Rep.diagonalHomEquiv_symm_apply, groupCohomology.H0IsoOfIsTrivial_hom, CondensedMod.isDiscrete_tfae, CoalgCat.MonoidalCategoryAux.associator_hom_toLinearMap, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_i_hom, groupCohomology.coe_mapCocyclesâ, groupHomology.mem_cyclesâ_iff, Iso.homCongr_eq_arrowCongr, CoextendScalars.smul_apply', groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, groupHomology.cyclesMap_comp_isoCyclesâ_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isModule, groupCohomology.dââ_hom_apply, instSmallSubtypeForallCarrierObjMemSubmoduleSectionsSubmodule, groupHomology.comp_dââ_eq, PresheafOfModules.pushforward_map_app_apply, groupCohomology.coboundariesToCocyclesâ_apply, groupHomology.mapCyclesâ_comp_assoc, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_assoc, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isModule, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, FGModuleCat.instPreservesFiniteColimitsModuleCatForgetâLinearMapIdCarrierObjIsFG, PresheafOfModules.sections_property, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, PresheafOfModules.toSheafify_app_apply', PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, Rep.coinvariantsAdjunction_counit_app, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ, forget_preservesEpimorphisms, PresheafOfModules.Derivation.d_map, QuadraticModuleCat.forgetâ_map_associator_inv, LinearMap.comp_id_fgModuleCat, RestrictionCoextensionAdj.HomEquiv.toRestriction_hom_apply, TopModuleCat.instIsRightAdjointTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, groupCohomology.comp_dââ_eq, groupCohomology.mem_cocyclesâ_of_addMonoidHom, groupCohomology.cocyclesâ.dââ_apply, groupCohomology.dââ_hom_apply, Rep.linearization_single, extendRestrictScalarsAdj_homEquiv_apply, groupHomology.dââ_single_one_thd, hom_surjective, hom_tensorHom, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, CoalgCat.tensorObj_isAddCommGroup, forgetâ_addCommGrp_essSurj, groupCohomology.dArrowIsoââ_inv_right, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.dââ_comp_dââ_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, groupCohomology.eq_dââ_comp_inv_assoc, PresheafOfModules.congr_map_apply, PresheafOfModules.freeYonedaEquiv_symm_app, Rep.finsuppToCoinvariantsTensorFree_single, groupCohomology.eq_dââ_comp_inv_apply, groupCohomology.eq_dââ_comp_inv_apply, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, PresheafOfModules.restrictScalarsObj_map, groupHomology.chainsâToCoinvariantsKer_surjective, Rep.coinvariantsTensorFreeLEquiv_symm_apply, TopModuleCat.continuousSMul, Profinite.NobelingProof.GoodProducts.linearIndependent_comp_of_eval, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, forgetâAddCommGroup_reflectsLimitOfShape, forget_reflectsLimitsOfSize, groupHomology.cyclesâ_eq_top_of_isTrivial, ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, Rep.resCoindAdjunction_unit_app_hom_hom, groupHomology.dââ_comp_dââ_assoc, groupCohomology.mem_cocyclesâ_def, endRingEquiv_symm_apply_hom, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_right, FGModuleCat.instFiniteHomModuleCatObjIsFG, Rep.homEquiv_apply_hom, Rep.FiniteCyclicGroup.groupHomologyÏOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, forget_preservesMonomorphisms, groupCohomology.mapCocyclesâ_comp_i_apply, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, MonoidalCategory.associator_hom_apply, groupHomology.single_one_snd_sub_single_one_fst_mem_boundariesâ, CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_apply, groupHomology.dââArrowIso_hom_left, Rep.norm_comm_apply, groupHomology.cyclesâIsoOfIsTrivial_hom_apply, HasLimit.productLimitCone_cone_Ï, HasColimit.colimitCocone_Îč_app, CoalgCat.moduleCat_of_toModuleCat, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_apply, groupCohomology.coboundariesâ_eq_bot_of_isTrivial, MonoidalCategory.tensorHom_tmul, groupHomology.dââ_single_inv_mul_Ï_add_single, QuadraticModuleCat.forgetâ_map, PresheafOfModules.Derivation.postcomp_d_apply, smulShortComplex_Xâ_isAddCommGroup, forgetâ_addCommGroup_full, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles, groupCohomology.cocyclesâ_map_one_fst, PresheafOfModules.sectionsMap_coe, groupCohomology.mapCocyclesâ_comp_i_assoc, groupHomology.dââ_comp_coinvariantsMk_apply, ExtendRestrictScalarsAdj.Counit.map_hom_apply, Rep.Ï_hom, Rep.diagonalSuccIsoFree_inv_hom_single_single, groupCohomology.H1IsoOfIsTrivial_inv_apply, PresheafOfModules.Sheafify.map_smul_eq, PresheafOfModules.map_comp_apply, biprodIsoProd_inv_comp_snd_apply, RestrictionCoextensionAdj.counit'_app, groupHomology.chainsMap_f_3_comp_chainsIsoâ, PresheafOfModules.pushforward_map_app_apply', groupHomology.mapCyclesâ_id_comp_assoc, groupHomology.eq_dââ_comp_inv, PresheafOfModules.Derivation.d_mul, isFG_iff, groupCohomology.cocyclesâIsoOfIsTrivial_hom_hom_apply_apply, MonoidalCategory.whiskerLeft_def, groupCohomology.H2Ï_comp_map_apply, groupHomology.mapCyclesâ_comp, FDRep.instPreservesFiniteColimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.ihom_ev_app_hom, homLinearEquiv_symm_apply, hom_smul, groupCohomology.dArrowIsoââ_hom_right, uliftFunctorForgetIso_hom_app, Rep.MonoidalClosed.linearHomEquivComm_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_map_app, smul_naturality, CategoryTheory.ShortComplex.moduleCat_zero_apply, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, FGModuleCat.hom_comp, ContinuousCohomology.I_obj_Ï_apply, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_assoc, imageIsoRange_hom_subtype, GradedObject.finrankSupport_subset_iff, CategoryTheory.Iso.toIsometryEquiv_toFun, groupHomology.mapCyclesâ_comp_i, CoextendScalars.smul_apply, groupCohomology.shortComplexH0_f, binaryProductLimitCone_cone_Ï_app_right, groupCohomology.cocyclesOfIsCocycleâ_coe, exteriorPower.desc_mk, PresheafOfModules.unit_map_one, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, HasColimit.colimitCocone_pt_isModule, groupCohomology.coboundariesâ_le_cocyclesâ, CategoryTheory.preadditiveYoneda_obj, CategoryTheory.Abelian.Pseudoelement.ModuleCat.eq_range_of_pseudoequal, Rep.standardComplex.ΔToSingleâ_comp_eq, MonoidalCategory.tensorHom_def, Rep.coindVEquiv_symm_apply_coe, groupCohomology.H1IsoOfIsTrivial_H1Ï_apply_apply, imageIsoRange_inv_image_Îč_apply, groupCohomology.comp_dââ_eq, CondensedMod.isDiscrete_iff_isDiscrete_forget, PresheafOfModules.map_smul, FGModuleCat.FGModuleCatEvaluation_apply, epi_iff_surjective, groupCohomology.coboundariesâ.val_eq_coe, PresheafOfModules.Monoidal.tensorObj_map_tmul, exteriorPower.map_mk, TopModuleCat.ofHom_hom, cokernel_Ï_cokernelIsoRangeQuotient_hom, groupHomology.single_one_fst_sub_single_one_snd_mem_boundariesâ, id_apply, Rep.FiniteCyclicGroup.groupCohomologyÏOdd_eq_iff, groupCohomology.infNatTrans_app, FGModuleCat.instPreservesFiniteLimitsModuleCatForgetâLinearMapIdCarrierObjIsFG, groupCohomology.dââ_apply_mem_cocyclesâ, Rep.invariantsAdjunction_unit_app, hom_inv_apply, groupHomology.mapCyclesâ_id_comp, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, monoidalClosed_curry, groupCohomology.dââ_apply_mem_cocyclesâ, QuadraticModuleCat.instMonoidalCategory.tensorObj_form, CoalgCat.tensorHom_def, Module.Flat.iff_rTensor_preserves_shortComplex_exact, MonoidalCategory.leftUnitor_hom_apply, Rep.indToCoindAux_fst_mul_inv, exteriorPower.isoâ_hom_apply, groupHomology.cyclesMap_comp_cyclesIsoâ_hom_apply, Rep.coinvariantsFunctor_obj_carrier, Rep.applyAsHom_comm_apply, groupHomology.dââ_single_inv_self_Ï_sub_self_inv, groupHomology.chainsMap_f_single, restrictScalarsId'App_hom_apply, groupCohomology.subtype_comp_dââ_apply, ContinuousCohomology.Iobj_Ï_apply, SheafOfModules.pushforwardComp_inv_app_val_app, FilteredColimits.forget_preservesFilteredColimits, groupCohomology.H2Ï_eq_iff, CoalgCat.toComonObj_X, groupCohomology.comp_dââ_eq, groupCohomology.cocyclesâ_map_one_snd, homAddEquiv_symm_apply_hom, Rep.coinvariantsTensorFreeLEquiv_apply, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, Module.Flat.iff_lTensor_preserves_shortComplex_exact, groupHomology.mapCyclesâ_comp_i, localizedModule_isLocalizedModule, range_eq_top_of_epi, groupCohomology.map_H0Iso_hom_f, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_zero_iff, PresheafOfModules.mono_iff_surjective, groupHomology.boundariesOfIsBoundaryâ_coe, Derivation.d_mul, Rep.indToCoindAux_comm, groupCohomology.dArrowIsoââ_inv_left, groupCohomology.Ï_comp_H1Iso_hom, Rep.FiniteCyclicGroup.groupCohomologyÏEven_eq_zero_iff, ContinuousCohomology.I_obj_V_isModule, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_left, groupHomology.cyclesIsoâ_comp_H0Ï_apply, CoalgCat.associator_def, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_assoc_apply, groupHomology.eq_dââ_comp_inv_apply, CondensedMod.epi_iff_surjective_on_stonean, hom_whiskerRight, groupCohomology.cocyclesâ_Ï_map_inv_sub_map_inv, hom_inv_associator, FGModuleCat.hom_id, lof_coprodIsoDirectSum_inv, groupHomology.single_one_fst_sub_single_one_fst_mem_boundariesâ, TopModuleCat.hom_add, BialgCat.forgetâ_coalgebra_obj, CoalgCat.MonoidalCategoryAux.tensorObj_comul, CoalgCat.comul_def, inv_hom_apply, forgetâAddCommGroup_preservesLimits, directLimitIsColimit_desc, CategoryTheory.preadditiveYonedaObj_obj_isModule, groupHomology.mapCyclesâ_id_comp_apply, MonoidalCategory.rightUnitor_def, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_assoc, CategoryTheory.Iso.toLinearEquiv_symm, PresheafOfModules.presheaf_map_apply_coe, smulShortComplex_g, Rep.ofMulDistribMulAction_Ï_apply_apply, Rep.instIsTrivialCarrierVModuleCatOfCompLinearMapIdÏ, groupCohomology.instEpiModuleCatH1Ï, MonoidalCategory.associator_def, groupCohomology.H2Ï_comp_map, FGModuleCat.instFiniteCarrierLimitModuleCatCompForgetâLinearMapIdObjIsFG, mono_iff_injective, groupHomology.Ï_comp_H2Iso_hom, forgetâ_obj, Rep.indResAdjunction_counit_app_hom_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, Rep.coindToInd_apply, PresheafOfModules.forgetToPresheafModuleCatObjMap_apply, groupHomology.mapCyclesâ_comp_i_apply, SheafOfModules.pushforwardCongr_hom_app_val_app, hom_whiskerLeft, Rep.FiniteCyclicGroup.groupHomologyÏEven_eq_iff, AlgCat.forgetâModule_preservesLimitsOfSize, groupHomology.mapCyclesâ_comp, comp_apply, restrictScalarsCongr_hom_app, kernelIsoKer_inv_kernel_Îč_apply, ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, groupHomology.cyclesIsoâ_inv_comp_cyclesMap_apply, CategoryTheory.whiskering_linearYoneda, MonoidalCategory.rightUnitor_hom_apply, groupCohomology.isoCocyclesâ_hom_comp_i, CoalgCat.MonoidalCategory.inducingFunctorData_ÎŒIso, CoalgCat.whiskerRight_def, TopModuleCat.hom_zsmul, CoalgCat.MonoidalCategory.inducingFunctorData_ΔIso, FilteredColimits.M.mk_map, groupCohomology.Ï_comp_H0Iso_hom_apply, groupHomology.coe_mapCyclesâ, CategoryTheory.ShortComplex.Exact.moduleCat_range_eq_ker, CategoryTheory.whiskering_linearCoyonedaâ, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, groupHomology.comp_dââ_eq, groupHomology.H1Ï_comp_map_apply, FGModuleCat.FGModuleCatCoevaluation_apply_one, groupCohomology.dArrowIsoââ_hom_left, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, groupHomology.Ï_comp_H0Iso_hom_apply, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, groupCohomology.eq_dââ_comp_inv_apply, MatrixModCat.toModuleCat_obj_carrier, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_assoc, groupCohomology.cocyclesâ_map_inv, Rep.freeLiftLEquiv_apply, hom_hom_leftUnitor, groupCohomology.mapCocyclesâ_one, PresheafOfModules.surjective_of_epi, adj_homEquiv, instIsScalarTowerLocalizationCarrierLocalizedModule, groupHomology.H2Ï_comp_map_assoc, Rep.indToCoindAux_mul_fst, hom_hom_rightUnitor, LightCondensed.forget_map_val_app, biprodIsoProd_inv_comp_snd, groupHomology.Ï_comp_H0IsoOfIsTrivial_hom_apply, CategoryTheory.Iso.toCoalgEquiv_refl, piIsoPi_inv_kernel_Îč_apply, MonModuleEquivalenceAlgebra.functor_map_hom_apply, Rep.ihom_obj_Ï_apply, ker_eq_bot_of_mono, CondensedMod.hom_naturality_apply, lof_coprodIsoDirectSum_inv_apply, groupHomology.dââArrowIso_inv_right, FDRep.instFaithfulRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Derivation.desc_d, range_mkQ_cokernelIsoRangeQuotient_inv, TannakaDuality.FiniteGroup.equivApp_inv, Rep.finsuppTensorRight_hom_hom, QuadraticModuleCat.forgetâ_map_associator_hom, PresheafOfModules.injective_of_mono, free_Δ_one, groupCohomology.norm_ofAlgebraAutOnUnits_eq, groupCohomology.Ï_comp_H0Iso_hom_assoc, imageIsoRange_hom_subtype_assoc, groupCohomology.mem_cocyclesâ_iff, Rep.tensor_Ï, QuadraticModuleCat.toIsometry_whiskerRight, PresheafOfModules.pushforward_obj_map_apply, groupCohomology.H2Ï_comp_map_assoc, groupHomology.dââ_comp_coinvariantsMk, groupHomology.dââ_comp_dââ_apply, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_liftK_hom, groupHomology.mapCyclesâ_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, CoalgCat.forget_reflects_isos, Rep.ofDistribMulAction_Ï_apply_apply, groupCohomology.dââ_ker_eq_invariants, CoalgCat.MonoidalCategoryAux.leftUnitor_hom_toLinearMap, Rep.linearization_η_hom_apply, smulNatTrans_apply_app, FGModuleCat.ihom_obj, TopModuleCat.hom_id, forget_reflectsLimits, Rep.leftRegularHomEquiv_symm_apply, TannakaDuality.FiniteGroup.equivApp_hom, uliftFunctorForgetIso_inv_app, groupHomology.H2Ï_eq_iff, FGModuleCat.instAdditiveModuleCatForgetâLinearMapIdCarrierObjIsFG, groupHomology.H1AddEquivOfIsTrivial_single, groupCohomology.mem_cocyclesâ_iff, CoalgCat.ofComonObjCoalgebraStruct_comul, MonoidalCategory.tensorÎŒ_eq_tensorTensorTensorComm, groupHomology.range_dââ_eq_coinvariantsKer, QuadraticModuleCat.toIsometry_tensorHom, PresheafOfModules.unitHomEquiv_apply_coe, groupCohomology.inhomogeneousCochains.d_comp_d, FreeMonoidal.ΔIso_inv_freeMk, groupHomology.isoCyclesâ_hom_comp_i_apply, Rep.ofModuleMonoidAlgebra_obj_Ï, groupCohomology.Ï_comp_H0IsoOfIsTrivial_hom_apply, QuadraticModuleCat.toIsometry_hom_leftUnitor, Rep.coinvariantsShortComplex_f, SheafOfModules.pushforwardCongr_inv_app_val_app, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, QuadraticModuleCat.toIsometry_hom_rightUnitor, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_assoc, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, RestrictionCoextensionAdj.unit'_app, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierOfCarrierStalkAbPresheafPrimeComplAsIdealHomToStalk, groupHomology.eq_dââ_comp_inv_assoc, imageIsoRange_inv_image_Îč, smulShortComplex_Xâ_carrier, free_η_freeMk, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom_assoc, ContinuousCohomology.I_map_hom, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom, groupHomology.inhomogeneousChains.d_single, groupCohomology.coboundariesOfIsCoboundaryâ_coe, exteriorPower.isoâ_hom_apply, TopModuleCat.freeMap_map, Representation.coind'_apply_apply, groupCohomology.dââ_comp_dââ_assoc, QuadraticModuleCat.Hom.toIsometry_injective, CoalgCat.Hom.toCoalgHom_injective, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_map, SheafOfModules.pushforwardPushforwardAdj_unit_app_val_app, hom_inv_rightUnitor, ExtendScalars.smul_tmul, hom_sum, QuadraticModuleCat.forgetâ_obj, FGModuleCat.instFiniteCarrierColimitModuleCatCompForgetâLinearMapIdObjIsFG, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_apply, CategoryTheory.Iso.toCoalgEquiv_trans, groupHomology.mapCyclesâ_id_comp_assoc, groupHomology.Ï_comp_H1Iso_hom_apply, Rep.coindIso_inv_hom_hom, hom_nsmul, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.cocyclesâ_map_mul_of_isTrivial, forget_obj, groupCohomology.subtype_comp_dââ_assoc, groupHomology.chainsMap_id_f_hom_eq_mapRange, PresheafOfModules.toPresheaf_map_app_apply, groupHomology.toCycles_comp_isoCyclesâ_hom, CategoryTheory.ShortComplex.ShortExact.moduleCat_exact_iff_function_exact, groupCohomology.map_id_comp_H0Iso_hom, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_assoc_apply, HasColimit.instPreservesColimitAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrier, groupHomology.mapCyclesâ_id_comp, Rep.indToCoindAux_mul_snd, FilteredColimits.forgetâAddCommGroup_preservesFilteredColimits, instIsRightAdjointForgetLinearMapIdCarrier, CategoryTheory.Iso.toIsometryEquiv_refl, QuadraticModuleCat.toIsometry_inv_rightUnitor, groupCohomology.cocyclesâIsoOfIsTrivial_inv_hom_apply_coe, ExtendScalars.map_tmul, QuadraticModuleCat.cliffordAlgebra_map, FilteredColimits.forget_reflectsFilteredColimits, groupCohomology.cocyclesOfIsMulCocycleâ_coe, LinearMap.id_moduleCat_comp, free_ÎŒ_freeMk_tmul_freeMk, forgetâ_obj_moduleCat_of, QuadraticModuleCat.toIsometry_whiskerLeft, groupHomology.eq_dââ_comp_inv, CategoryTheory.Iso.toLinearEquiv_apply, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, groupHomology.isoShortComplexH1_inv, groupCohomology.coboundariesOfIsMulCoboundaryâ_coe, SheafOfModules.pushforwardComp_hom_app_val_app, groupHomology.eq_dââ_comp_inv_assoc, groupCohomology.dââ_comp_dââ, HomologicalComplex.eulerChar_eq_sum_finSet_of_finrankSupport_subset, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, Rep.linearization_obj_Ï, Rep.toCoinvariantsMkQ_hom, groupHomology.chainsMap_f_1_comp_chainsIsoâ_assoc, MonoidalCategory.tensorObj, groupHomology.isoCyclesâ_hom_comp_i_apply, SheafOfModules.Presentation.map_relations_I, instPreservesColimitsOfSizeAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrierOfHasColimitsOfSizeAddCommGrpMax, groupCohomology.cocyclesIsoâ_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, FreeMonoidal.ÎŒIso_hom_freeMk_tmul_freeMk, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_apply, CategoryTheory.ShortComplex.exact_iff_surjective_moduleCatToCycles, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_descH_hom, imageIsoRange_inv_image_Îč_assoc, MonoidalCategory.rightUnitor_inv_apply, groupCohomology.H1Ï_eq_zero_iff, Rep.invariantsAdjunction_counit_app_hom, Profinite.NobelingProof.GoodProducts.square_commutes, groupCohomology.cochainsMap_f, groupCohomology.coboundariesâ.val_eq_coe, groupHomology.dââ_single_one_fst, inhomogeneousCochains.d_hom_apply, CoalgCat.MonoidalCategoryAux.counit_tensorObj, Rep.coind'_ext_iff, CoalgCat.counit_def, PresheafOfModules.DifferentialsConstruction.relativeDifferentials'_map_d, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, TopModuleCat.instPreservesLimitsOfShapeTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrierOfHasLimitsOfShapeOfModuleCatForgetLinearMap, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, groupHomology.dââ_comp_dââ, PresheafOfModules.Elements.fromFreeYoneda_app_apply, binaryProductLimitCone_cone_Ï_app_left, HasColimit.coconePointSMul_apply, groupHomology.dââ_single_self_inv_Ï_sub_inv_self, kernelIsoKer_hom_ker_subtype, smulShortComplex_f, SheafOfModules.Presentation.mapRelations_mapGenerators, groupHomology.chainsMap_f_3_comp_chainsIsoâ_assoc, hom_add, groupHomology.single_Ï_self_add_single_inv_mem_boundariesâ, groupHomology.H1ToTensorOfIsTrivial_H1Ï_single, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, FGModuleCat.hom_hom_comp, Rep.FiniteCyclicGroup.groupHomologyÏEven_eq_zero_iff, groupCohomology.cocyclesMkâ_eq, AlgCat.forgetâ_module_obj, MonoidalCategory.leftUnitor_inv_apply, Îč_coprodIsoDirectSum_hom, instReflectsIsomorphismsAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrier, SheafOfModules.relationsOfIsCokernelFree_I, MonModuleEquivalenceAlgebra.algebraMap, MonoidalCategory.tensorÎŒ_apply, groupHomology.cyclesOfIsCycleâ_coe, Rep.quotientToInvariantsFunctor_obj_V, MonoidalCategory.tensorObj_isModule, groupHomology.inhomogeneousChains.ext_iff, MonoidalCategory.tensorObj_isAddCommGroup, groupHomology.dââ_apply_mem_cyclesâ, groupCohomology.coboundariesToCocyclesâ_apply, ihom_map_apply, MonModuleEquivalenceAlgebra.inverseObj_mul, ihom_coev_app, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, groupCohomology.cocyclesOfIsMulCocycleâ_coe, groupCohomology.H2Ï_eq_zero_iff, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_left, groupCohomology.mapCocyclesâ_comp_i_assoc, Rep.standardComplex.quasiIso_forgetâ_ΔToSingleâ, groupCohomology.cocyclesâ.val_eq_coe, groupCohomology.H1Ï_comp_map_apply, free_shortExact, Rep.leftRegularHom_hom_single, groupCohomology.cocyclesâ_map_one, groupHomology.eq_dââ_comp_inv_assoc, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f, hom_hom_associator, CoalgCat.forgetâ_obj, groupCohomology.Ï_comp_H2Iso_hom_assoc, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, Rep.finsuppTensorRight_inv_hom, Rep.coinvariantsMk_app_hom, Rep.ihom_obj_V_isAddCommGroup, PresheafOfModules.Îč_fromFreeYonedaCoproduct_apply, CategoryTheory.ShortComplex.moduleCat_exact_iff_ker_sub_range, CategoryTheory.ShortComplex.moduleCat_exact_iff, groupHomology.mapCyclesâ_hom, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, range_mkQ_cokernelIsoRangeQuotient_inv_apply, groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, mkOfSMul_smul, MatrixModCat.isScalarTower_toModuleCat, restrictScalars.smul_def, CoalgCat.whiskerLeft_def, TopModuleCat.hom_sub, kernelIsoKer_hom_ker_subtype_apply, QuadraticModuleCat.toIsometry_id, groupHomology.cyclesMkâ_eq, groupHomology.chainsMap_f_1_comp_chainsIsoâ, Rep.coindVEquiv_apply_hom, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_assoc, groupHomology.H1Ï_eq_zero_iff, groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, groupHomology.Ï_comp_H1Iso_hom_assoc, LightCondMod.hom_naturality_apply, TopModuleCat.forgetâ_TopCat_obj, groupHomology.chainsMap_f_2_comp_chainsIsoâ, groupHomology.dââ_single_one_fst, SheafOfModules.unitToPushforwardObjUnit_val_app_apply, HasLimit.productLimitCone_cone_pt_isModule, groupHomology.H2Ï_comp_map, Rep.trivialFunctor_map_hom, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_apply, TopModuleCat.hom_nsmul, groupCohomology.cocyclesâ.val_eq_coe, groupCohomology.eq_dââ_comp_inv, Rep.FiniteCyclicGroup.groupCohomologyÏEven_eq_iff, groupHomology.H1Ï_comp_map_assoc, Rep.ihom_map_hom, groupHomology.instEpiModuleCatH1Ï, piIsoPi_hom_ker_subtype_apply, reflectsColimitsOfShape, MonoidalCategory.whiskerRight_apply, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, Rep.coinvariantsTensor_hom_ext_iff, Rep.finsuppTensorLeft_inv_hom, free_ÎŽ_freeMk, forgetâAddCommGroup_reflectsLimitOfSize, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_right, CoalgCat.forgetâ_map, groupHomology.single_one_snd_sub_single_one_snd_mem_boundariesâ, Rep.unit_iso_comm, Rep.leftRegularHomEquiv_symm_single, inhomogeneousCochains.d_eq, groupHomology.instEpiModuleCatH2Ï, piIsoPi_hom_ker_subtype, hom_id, groupCohomology.cocyclesMkâ_eq, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, LinearEquiv.toFGModuleCatIso_hom, TopModuleCat.instIsRightAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, groupHomology.H1Ï_comp_map, groupHomology.chainsMap_f_hom, AlgCat.forgetâModule_preservesLimits, groupHomology.dââ_apply_mem_cyclesâ, MonoidalCategory.tensorUnit_isModule, piIsoPi_inv_kernel_Îč, Rep.norm_hom, ExtendRestrictScalarsAdj.HomEquiv.evalAt_apply, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, TopModuleCat.instIsLeftAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, Rep.indResAdjunction_unit_app_hom_hom, Rep.ofHom_Ï, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.map_id_comp_H0Iso_hom_apply, groupHomology.boundariesOfIsBoundaryâ_coe, groupHomology.cyclesMkâ_eq, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, LightCondensed.ihom_map_val_app, groupHomology.mapCyclesâ_comp_i_assoc, groupCohomology.isoCocyclesâ_hom_comp_i, TopModuleCat.cokerÏ_surjective, FreeMonoidal.ÎŒIso_inv_freeMk, uliftFunctor_map, Rep.Action_Ï_eq_Ï, groupCohomology.mapCocyclesâ_comp_i_apply, hom_zsmul, ofHom_hom, Rep.coindMap_hom, groupHomology.mapCyclesâ_id_comp_apply, Rep.trivial_def, groupCohomology.cocyclesâ_ext_iff, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isModule, instFiniteCarrierObjModuleCatIsFG, Rep.MonoidalClosed.linearHomEquiv_hom, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ, Rep.invariantsAdjunction_homEquiv_apply_hom, FGModuleCat.instLinearModuleCatForgetâLinearMapIdCarrierObjIsFG, AlgebraicGeometry.tilde.isUnit_algebraMap_end_basicOpen, localizedModuleMap_hom_apply, Rep.hom_comm_apply, SheafOfModules.pushforwardNatTrans_app_val_app, groupHomology.H2Ï_comp_map_apply, Hom.homâ_apply, CategoryTheory.Iso.toIsometryEquiv_invFun, TopModuleCat.hom_smul, HasColimit.colimitCocone_pt_carrier, CondensedMod.epi_iff_locallySurjective_on_compHaus, CategoryTheory.ShortComplex.moduleCat_exact_iff_range_eq_ker, uliftFunctor_obj, forgetâ_addCommGrp_additive, Module.Flat.iff_preservesFiniteLimits_tensorLeft, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, CoalgCat.MonoidalCategoryAux.comul_tensorObj, groupCohomology.coboundariesâ_ext_iff, Rep.finsuppTensorLeft_hom_hom, Rep.FiniteCyclicGroup.groupHomologyÏOdd_eq_iff, groupHomology.inhomogeneousChains.d_comp_d, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_K, projective_of_module_projective, MatrixModCat.toModuleCat_map, MonoidalCategory.leftUnitor_def, groupCohomology.Ï_comp_H2Iso_hom_apply, HasLimit.lift_hom_apply, binaryProductLimitCone_isLimit_lift, TopModuleCat.instPreservesLimitsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, homLinearEquiv_apply, Rep.coinvariantsTensorMk_apply, TopModuleCat.kerÎč_apply, Rep.indMap_hom, groupHomology.isoCyclesâ_hom_comp_i_assoc, Rep.homEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, CategoryTheory.linearYoneda_obj_obj_isModule, AlgCat.forgetâ_module_map, FDRep.forgetâ_Ï, extendScalarsComp_hom_app_one_tmul, Rep.invariantsFunctor_map_hom, Iso.conj_eq_conj, groupHomology.dââ_eq_zero_of_isTrivial, CoalgCat.toComon_map_hom, groupCohomology.Ï_comp_H1Iso_hom_apply, Rep.standardComplex.forgetâToModuleCatHomotopyEquiv_f_0_eq, groupCohomology.dââ_comp_dââ_assoc, MonoidalCategory.tensorObj_def, FDRep.instPreservesFiniteLimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, groupHomology.dââ_single_one_snd, SheafOfModules.pushforwardPushforwardEquivalence_unit_app_val_app, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isModule, biprodIsoProd_inv_comp_fst, groupHomology.Ï_map_apply, CoalgCat.rightUnitor_def, BialgCat.forgetâ_coalgebra_map, groupHomology.dââ_comp_dââ, groupHomology.dââ_single_one_snd, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, QuadraticModuleCat.cliffordAlgebra_obj_carrier, groupHomology.Ï_comp_H2Iso_hom_apply, CoalgCat.tensorObj_carrier, SheafOfModules.relationsOfIsCokernelFree_s, forgetâ_reflectsLimits, FDRep.of_Ï, forgetâPreservesColimitsOfShape, MatrixModCat.toModuleCat_obj_isAddCommGroup, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, Rep.ihom_coev_app_hom, biproductIsoPi_inv_comp_Ï_apply, groupHomology.mapCyclesâ_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_Ï_hom, Rep.leftRegularHomEquiv_apply, restrictScalars.smul_def', PresheafOfModules.pushforward_obj_map_apply', groupHomology.isoCyclesâ_inv_comp_iCycles, free_shortExact_rank_add, groupHomology.cyclesMap_comp_isoCyclesâ_hom_assoc, FGModuleCat.FGModuleCatEvaluation_apply', forgetâAddCommGroup_reflectsLimit, groupHomology.isoShortComplexH2_inv, groupHomology.coe_mapCyclesâ, groupHomology.toCycles_comp_isoCyclesâ_hom, hom_inv_leftUnitor, TopModuleCat.instReflectsIsomorphismsTopCatForgetâContinuousLinearMapIdCarrierContinuousMapCarrier, groupCohomology.dââ_comp_dââ_apply, free_map_apply, groupHomology.chainsMap_f_2_comp_chainsIsoâ_assoc, Representation.linHom.mem_invariants_iff_comm, groupHomology.mapCyclesâ_comp_i_apply, binaryProductLimitCone_cone_pt, groupCohomology.cocyclesIsoâ_hom_comp_f_apply, ofHomâ_hom_apply_hom, SheafOfModules.pushforwardPushforwardAdj_counit_app_val_app, groupHomology.boundariesToCyclesâ_apply, groupCohomology.subtype_comp_dââ, groupHomology.cyclesOfIsCycleâ_coe, Rep.freeLift_hom, groupHomology.isoCyclesâ_hom_comp_i, CoalgCat.tensorObj_instCoalgebra, groupHomology.Ï_comp_H1Iso_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, groupHomology.isoCyclesâ_inv_comp_iCycles, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_apply, groupHomology.dââ_single_inv, groupHomology.mkH1OfIsTrivial_apply, groupCohomology.Ï_map_apply, Rep.indToCoindAux_snd_mul_inv, hom_sub, CoalgCat.ofComonObjCoalgebraStruct_counit, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, Rep.res_obj_Ï, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom, CategoryTheory.Presieve.FamilyOfElements.isCompatible_map_smul_aux, ofHomâ_comprâ, Algebra.instSMulCommClassCarrier, PresheafOfModules.freeYonedaEquiv_comp, forgetâAddCommGroup_preservesLimit, groupCohomology.coboundariesâ_le_cocyclesâ, Rep.ihom_obj_V_isModule, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_iff, CoalgCat.tensorObj_isModule, FreeMonoidal.ΔIso_hom_one, groupHomology.dââArrowIso_hom_right, QuadraticModuleCat.toIsometry_inv_leftUnitor, Rep.freeLift_hom_single_single, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, groupHomology.single_one_mem_boundariesâ, mono_iff_ker_eq_bot, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_assoc, groupHomology.Ï_comp_H1Iso_inv_apply, FGModuleCat.instFullModuleCatForgetâLinearMapIdCarrierObjIsFG, groupCohomology.isoCocyclesâ_hom_comp_i_apply, extendRestrictScalarsAdj_unit_app_apply, hom_bijective, Rep.diagonalHomEquiv_apply, groupHomology.dââ_single, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, SheafOfModules.Presentation.IsFinite.finite_relations, Rep.freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, groupHomology.cyclesâIsoOfIsTrivial_inv_apply, groupHomology.eq_dââ_comp_inv_apply, Rep.epi_iff_surjective, SheafOfModules.pushforwardNatTrans_app_val_app_apply, CategoryTheory.whiskering_linearYonedaâ, groupCohomology.coboundariesâ_ext_iff, groupHomology.dââ_comp_coinvariantsMk_assoc, MonoidalCategory.whiskerLeft_apply, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, Rep.indToCoindAux_of_not_rel, groupCohomology.cocyclesOfIsCocycleâ_coe, groupHomology.cyclesMkâ_eq, groupHomology.isoCyclesâ_hom_comp_i, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_apply, Rep.applyAsHom_hom, CoalgCat.toCoalgHom_id, CoalgCat.tensorUnit_isModule, forget_map, CategoryTheory.preadditiveCoyonedaObj_obj_isModule, groupHomology.chainsMap_f_0_comp_chainsIsoâ_apply, groupCohomology.H1Ï_comp_map, TopModuleCat.hom_comp, groupHomology.single_inv_Ï_self_add_single_mem_boundariesâ, smulShortComplex_Xâ_isModule, Rep.indResHomEquiv_apply_hom, homAddEquiv_apply, PresheafOfModules.ofPresheaf_map, MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, directLimitCocone_pt_isModule, CommRingCat.KaehlerDifferential.ext_iff, GradedObject.eulerChar_eq_sum_finSet_of_finrankSupport_subset, PresheafOfModules.germ_ringCat_smul, groupCohomology.cocyclesMkâ_eq, endRingEquiv_apply, groupHomology.lsingle_comp_chainsMap_f_assoc, HasColimit.reflectsColimit, PresheafOfModules.naturality_apply, groupHomology.single_mem_cyclesâ_iff, groupCohomology.isoShortComplexH1_inv, groupHomology.boundariesâ_le_cyclesâ, CoalgCat.toCoalgHom_comp, mono_as_hom'_subtype, extendScalarsId_inv_app_apply, semilinearMapAddEquiv_symm_apply_apply, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, PresheafOfModules.fromFreeYonedaCoproduct_app_mk, hom_comp, MonoidalCategory.braiding_inv_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, Rep.diagonalSuccIsoFree_hom_hom_single, CoalgCat.MonoidalCategoryAux.rightUnitor_hom_toLinearMap, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d_assoc, sMulCommClass_mk, QuadraticModuleCat.moduleCat_of_toModuleCat, PresheafOfModules.germ_smul, CoalgCat.leftUnitor_def, hom_neg, Rep.ihom_obj_Ï, instInvertibleCarrierOutModuleCatValSkeleton, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ, Rep.free_ext_iff, PresheafOfModules.toSheafify_app_apply, MonoidalCategory.whiskerRight_def, isScalarTower_of_algebra_moduleCat, Rep.instPreservesLimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, groupCohomology.cocyclesâ_ext_iff, Algebra.instIsScalarTowerCarrier, groupCohomology.map_H0Iso_hom_f_assoc, ofHom_apply, TannakaDuality.FiniteGroup.ofRightFDRep_hom, kernelIsoKer_inv_kernel_Îč, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, PresheafOfModules.pushforwardâ_obj_obj_isModule, simple_iff_isSimpleModule', restrictScalarsCongr_inv_app, groupCohomology.eq_dââ_comp_inv_assoc, Representation.linHom.invariantsEquivRepHom_apply_hom, groupCohomology.H1InfRes_f, imageIsoRange_hom_subtype_apply, LinearMap.comp_id_moduleCat, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, TopModuleCat.hom_neg, MatrixModCat.toModuleCat_obj_isModule, epi_iff_range_eq_top, forgetâAddCommGroupIsEquivalence, groupHomology.dââArrowIso_inv_left, monoidalClosed_pre_app, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, groupHomology.single_mem_cyclesâ_iff, Rep.coinvariantsFunctor_map_hom, groupHomology.dââ_single_Ï_add_single_inv_mul, HasLimit.productLimitCone_isLimit_lift, hom_injective, MonoidalCategory.tensorObj_carrier, Rep.linearization_map_hom_single, groupCohomology.isoShortComplexH2_inv, CategoryTheory.preadditiveCoyoneda_obj, groupCohomology.map_id_comp_H0Iso_hom_assoc, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, groupHomology.eq_dââ_comp_inv_apply, Rep.ihom_obj_V_carrier, LinearEquiv.toFGModuleCatIso_inv, ContinuousCohomology.const_app_hom, semilinearMapAddEquiv_apply, CoextendScalars.map'_hom_apply_apply, Rep.coindIso_hom_hom_hom, RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply, SheafOfModules.pushforwardPushforwardEquivalence_counit_app_val_app, groupHomology.H0Ï_comp_H0Iso_hom_apply, Rep.barComplex.d_single, freeDesc_apply, CategoryTheory.ShortComplex.ShortExact.moduleCat_surjective_g, Rep.mono_iff_injective, CategoryTheory.linearCoyoneda_obj_obj_isModule, FDRep.dualTensorIsoLinHom_hom_hom, ExtendScalars.hom_ext_iff, groupHomology.dââ_comp_dââ_assoc, groupCohomology.coe_mapCocyclesâ, groupCohomology.eq_dââ_comp_inv_assoc, isSimpleModule_of_simple, toKernelSubobject_arrow, CategoryTheory.Iso.toLinearMap_toLinearEquiv, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom_assoc, Condensed.instAB4CondensedMod, groupCohomology.H1Ï_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIsoâ_apply, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, Rep.instPreservesColimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, HomologicalComplex.homologyEulerChar_eq_sum_finSet_of_finrankSupport_subset, CategoryTheory.ShortComplex.ShortExact.moduleCat_injective_f, groupHomology.mapCyclesâ_quotientGroupMk'_epi, groupHomology.mapCyclesâ_comp_i_assoc, groupHomology.H0Ï_comp_map_apply, restrictScalarsId'App_inv_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, PresheafOfModules.Sheafify.SMulCandidate.h, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, groupHomology.Ï_comp_H2Iso_inv_apply, FDRep.instFullRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, groupCohomology.coboundariesOfIsCoboundaryâ_coe, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, restrictScalarsComp'App_inv_apply, FDRep.endRingEquiv_comp_Ï, CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForgetâLinearMapIdCarrierAddMonoidHomCarrier, groupHomology.mem_cyclesâ_iff, Rep.FiniteCyclicGroup.groupCohomologyÏOdd_eq_zero_iff, groupCohomology.mapCocyclesâ_comp_i, groupHomology.boundariesToCyclesâ_apply, groupHomology.single_mem_cyclesâ_iff_inv, groupHomology.dââ_single, TopModuleCat.hom_forgetâ_TopCat_map, ihom_ev_app, groupCohomology.cocyclesâ.dââ_apply, Rep.indResHomEquiv_symm_apply_hom, groupHomology.isoCyclesâ_hom_comp_i_assoc, FilteredColimits.colimit_add_mk_eq, groupHomology.comp_dââ_eq, groupCohomology.Ï_comp_H2Iso_hom, free_hom_ext_iff, CategoryTheory.Iso.toIsometryEquiv_symm, groupHomology.H2Ï_eq_zero_iff, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierObjOppositeOpensCarrierCarrierCommRingCatSpecModuleCatPresheafModulesSheafModulesSpecToSheafOpBasicOpenPowersHomToOpen, CategoryTheory.Iso.toIsometryEquiv_trans, MonoidalCategory.associator_inv_apply, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, QuadraticModuleCat.hom_hom_associator, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, groupHomology.H1Ï_eq_iff, biprodIsoProd_inv_comp_fst_apply, groupHomology.dââ_comp_dââ_apply, CoextendScalars.map_apply, groupHomology.chainsMap_f, Rep.quotientToCoinvariantsFunctor_obj_V, SheafOfModules.unitHomEquiv_apply_coe, groupHomology.chainsMap_f_2_comp_chainsIsoâ_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom, QuadraticModuleCat.hom_inv_associator, forgetâ_map, groupCohomology.dââ_eq_zero, toMatrixModCat_obj_isModule
|
mkOfSMul đ | CompOp | 2 mathmath: HasColimit.colimitCocone_Îč_app, mkOfSMul_smul
|
mkOfSMul' đ | CompOp | 2 mathmath: mkOfSMul'_smul, HasColimit.colimitCocone_pt_carrier
|
moduleCategory đ | CompOp | 1589 mathmath: HasColimit.colimitCocone_pt_isAddCommGroup, instIsRightAdjointCoextendScalars, instPreservesMonomorphismsRestrictScalars, PresheafOfModules.Monoidal.tensorObj_obj, groupHomology.mapShortComplexH2_Ïâ, Rep.resCoindHomEquiv_symm_apply_hom, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, Representation.repOfTprodIso_inv_apply, Rep.resCoindHomEquiv_apply_hom, groupCohomology.instEpiModuleCatH2Ï, groupCohomology.mapShortComplexH1_Ïâ, hom_zero, groupHomology.Ï_comp_H2Iso_hom_assoc, instReflectsIsomorphismsForgetLinearMapIdCarrier, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, LightCondensed.free_internallyProjective_iff_tensor_condition, CategoryTheory.linearCoyoneda_obj_additive, instFullUliftFunctor, forget_preservesLimits, directLimitDiagram_obj_isModule, CommRingCat.KaehlerDifferential.map_d, CategoryTheory.preadditiveCoyonedaObj_map, MonoidalCategory.braiding_hom_apply, Rep.coe_linearization_obj_Ï, biproductIsoPi_inv_comp_Ï, simple_of_finrank_eq_one, FilteredColimits.colimit_smul_mk_eq, groupHomology.mapCyclesâ_comp_assoc, restrictScalars.map_apply, Condensed.instAB4StarCondensedMod, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom, forgetâ_reflectsLimitsOfSize, CategoryTheory.additive_yonedaObj, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, CategoryTheory.linearCoyoneda_map_app, CategoryTheory.linearCoyoneda_obj_obj_carrier, Rep.MonoidalClosed.linearHomEquiv_symm_hom, projective_of_free, groupCohomology.isoCocyclesâ_hom_comp_i_apply, instEssentiallySmallFGModuleCat, groupHomology.mapâ_quotientGroupMk'_epi, groupCohomology.mem_cocyclesâ_def, TannakaDuality.FiniteGroup.toRightFDRepComp_in_rightRegular, MoritaEquivalence.linear, groupHomology.coinfNatTrans_app, groupHomology.mapShortComplexH2_id, forget_preservesLimitsOfSize, groupCohomology.dââ_hom_apply, restrictScalarsCongr_symm, LightCondensed.ihomPoints_apply, LinearMap.id_fgModuleCat_comp, restrictScalarsId'App_inv_naturality_assoc, groupHomology.dââ_single_one, groupHomology.shortComplexH1_f, FDRep.char_tensor, groupHomology.boundariesâ_le_cyclesâ, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, forgetâPreservesColimitsOfSize, groupCohomology.inhomogeneousCochains.d_def, groupCohomology.Ï_comp_H0IsoOfIsTrivial_hom_assoc, PresheafOfModules.add_app, FGModuleCat.hom_hom_id, Rep.diagonalSuccIsoFree_inv_hom_single, CondensedMod.IsSolid.isIso_solidification_map, groupCohomology.cocyclesMap_id_comp_assoc, groupHomology.mapâ_one, groupCohomology.dââ_comp_dââ, Representation.repOfTprodIso_apply, freeHomEquiv_apply, epi_as_hom''_mkQ, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, Rep.coindResAdjunction_counit_app, forgetâAddCommGroup_preservesLimitsOfSize, toMatrixModCat_map, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIsoâ_apply, LightCondensed.forget_obj_val_map, groupCohomology.cocyclesIsoâ_hom_comp_f, Rep.resCoindAdjunction_counit_app_hom_hom, groupHomology.dââ_single, CategoryTheory.Abelian.FreydMitchell.instFaithfulModuleCatEmbeddingRingFunctor, groupCohomology.eq_dââ_comp_inv, extendScalarsId_hom_app_one_tmul, groupCohomology.H1Ï_comp_map_assoc, groupHomology.mapCyclesâ_comp_apply, groupHomology.cyclesIsoâ_inv_comp_iCycles_apply, Rep.leftRegularHom_hom, PresheafOfModules.restrictScalars_map_app, groupHomology.mapShortComplexH1_zero, groupCohomology.Ï_comp_H0Iso_hom, FDRep.endRingEquiv_symm_comp_Ï, ofHom_comp, groupHomology.H0IsoOfIsTrivial_inv_eq_Ï, groupCohomology.Ï_comp_H1Iso_hom_assoc, Îč_coprodIsoDirectSum_hom_apply, restrictScalarsComp'App_hom_apply, PresheafOfModules.epi_iff_surjective, groupHomology.cyclesMap_id_comp, LightCondensed.ihomPoints_symm_comp, Rep.indFunctor_obj, isZero_iff_subsingleton, groupHomology.mapShortComplexH2_zero, groupCohomology.eq_dââ_comp_inv, CategoryTheory.whiskering_linearCoyoneda, cokernel_Ï_cokernelIsoRangeQuotient_hom_apply, CategoryTheory.ShortComplex.moduleCatMk_Xâ_carrier, Rep.indToCoindAux_self, Condensed.instAB5CondensedMod, groupCohomology.instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor, groupCohomology.mapCocyclesâ_comp_i, PresheafOfModules.evaluation_preservesColimitsOfShape, AlternatingMap.postcomp_apply, groupHomology.H1CoresCoinf_exact, groupHomology.eq_dââ_comp_inv, FGModuleCat.instHasColimitsOfShapeOfFinCategory, PresheafOfModules.comp_app, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isAddCommGroup, Rep.indCoindNatIso_hom_app, groupHomology.chainsMap_id, instSmallUnitsSkeletonModuleCat, Rep.coe_res_obj_Ï, Rep.invariantsFunctor_obj_carrier, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, Rep.barComplex.d_def, monoidalClosed_uncurry, Rep.diagonalHomEquiv_symm_apply, groupCohomology.H0IsoOfIsTrivial_hom, matrixEquivalence_inverse, TannakaDuality.FiniteGroup.forget_obj, CondensedMod.isDiscrete_tfae, CategoryTheory.linearYoneda_obj_map, Rep.coindFunctor_map, hasLimits', CategoryTheory.ShortComplex.moduleCatLeftHomologyData_i_hom, groupCohomology.coe_mapCocyclesâ, groupHomology.mem_cyclesâ_iff, Iso.homCongr_eq_arrowCongr, CoextendScalars.smul_apply', groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_g, groupHomology.cyclesMap_comp_isoCyclesâ_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isModule, directLimitCocone_pt_carrier, toMatrixModCat_obj_carrier, groupCohomology.dââ_hom_apply, preservesFiniteLimits_extendScalars_of_flat, instSmallSubtypeForallCarrierObjMemSubmoduleSectionsSubmodule, instAB4StarModuleCat, groupHomology.comp_dââ_eq, PresheafOfModules.pushforward_map_app_apply, Rep.instIsLeftAdjointSubtypeMemSubgroupCoindFunctorSubtype, CategoryTheory.preadditiveYonedaObj_obj_carrier, groupCohomology.coboundariesToCocyclesâ_apply, Rep.instIsRightAdjointCoindFunctor, groupHomology.mapCyclesâ_comp_assoc, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_assoc, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isModule, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, CondensedMod.LocallyConstant.instFullModuleCatFunctor, FGModuleCat.instPreservesFiniteColimitsModuleCatForgetâLinearMapIdCarrierObjIsFG, Rep.instIsTrivialObjModuleCatTrivialFunctor, PresheafOfModules.sections_property, groupHomology.H0Ï_comp_map, linearEquivIsoModuleIso_hom, groupHomology.H1CoresCoinf_Xâ, CondensedMod.LocallyConstant.instFullModuleCatSheafCompHausCoherentTopologyConstantSheaf, groupCohomology.mapShortComplexH1_Ïâ, AlgebraicGeometry.instIsLeftAdjointModuleCatCarrierModulesSpecOfFunctor, PresheafOfModules.toSheafify_app_apply', AlgebraicGeometry.tilde.map_id, PresheafOfModules.instPreservesLimitsOfShapeModuleCatCarrierObjOppositeRingCatEvaluation, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct, Rep.coinvariantsAdjunction_counit_app, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ, LightCondMod.instPreservesEpimorphismsLightCondSetForget, forget_preservesEpimorphisms, PresheafOfModules.Derivation.d_map, groupHomology.map_id, QuadraticModuleCat.forgetâ_map_associator_inv, LinearMap.comp_id_fgModuleCat, HasColimit.instHasColimit, RestrictionCoextensionAdj.HomEquiv.toRestriction_hom_apply, groupCohomology.cochainsMap_comp, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, AlgebraicGeometry.tilde.map_sub, groupCohomology.comp_dââ_eq, toMatrixModCat_obj_isAddCommGroup, groupCohomology.mem_cocyclesâ_of_addMonoidHom, groupCohomology.cocyclesâ.dââ_apply, groupCohomology.dââ_hom_apply, Rep.linearization_single, extendRestrictScalarsAdj_homEquiv_apply, groupHomology.Ï_comp_H1Iso_inv, groupHomology.dââ_single_one_thd, CategoryTheory.ShortComplex.moduleCatMk_g, LightCondMod.isDiscrete_tfae, restrictScalarsComp'_inv_app, hom_tensorHom, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, groupHomology.coresNatTrans_app, PresheafOfModules.free_map_app, groupHomology.instPreservesZeroMorphismsRepModuleCatFunctor, forgetâ_addCommGrp_essSurj, groupCohomology.dArrowIsoââ_inv_right, groupCohomology.map_H0Iso_hom_f_apply, shortExact_projectiveShortComplex, groupCohomology.dââ_comp_dââ_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, groupCohomology.eq_dââ_comp_inv_assoc, PresheafOfModules.congr_map_apply, groupCohomology.congr, CategoryTheory.Abelian.freyd_mitchell, PresheafOfModules.freeYonedaEquiv_symm_app, Rep.finsuppToCoinvariantsTensorFree_single, groupCohomology.eq_dââ_comp_inv_apply, groupCohomology.eq_dââ_comp_inv_apply, CondensedMod.LocallyConstant.instFaithfulModuleCatCondensedDiscrete, groupHomology.mapShortComplexH1_Ïâ, PresheafOfModules.restrictScalarsObj_map, PresheafOfModules.forgetToPresheafModuleCatObj_map, groupHomology.chainsâToCoinvariantsKer_surjective, enoughProjectives, restrictScalarsId'App_hom_naturality, Rep.coinvariantsTensorFreeLEquiv_symm_apply, Rep.standardComplex.d_eq, LinearEquiv.toModuleIso_inv, AlgebraicGeometry.Scheme.Modules.toOpen_fromTildeÎ_app, SheafOfModules.evaluationPreservesLimitsOfShape, Profinite.NobelingProof.GoodProducts.linearIndependent_comp_of_eval, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, forgetâAddCommGroup_reflectsLimitOfShape, exteriorPower.isoâ_hom_naturality, forget_reflectsLimitsOfSize, groupHomology.cyclesâ_eq_top_of_isTrivial, instIsEquivalenceFGModuleCatUlift, ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, groupHomology.Ï_comp_H0Iso_hom_assoc, Rep.resCoindAdjunction_unit_app_hom_hom, restrictScalars_isEquivalence_of_ringEquiv, groupHomology.dââ_comp_dââ_assoc, groupCohomology.mem_cocyclesâ_def, CoalgCat.comonEquivalence_inverse, Rep.trivial_projective_of_subsingleton, endRingEquiv_symm_apply_hom, FGModuleCat.instFiniteHomModuleCatObjIsFG, Rep.instEpiModuleCatHom, restrictScalarsComp'_hom_app, groupHomology.H1CoresCoinfOfTrivial_Xâ, Rep.homEquiv_apply_hom, groupHomology.chainsMap_id_f_map_mono, FilteredColimits.colimit_zero_eq, groupCohomology.mapShortComplexH2_comp_assoc, Rep.FiniteCyclicGroup.chainComplexFunctor_obj, Rep.FiniteCyclicGroup.groupHomologyÏOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, forget_preservesMonomorphisms, groupCohomology.mapCocyclesâ_comp_i_apply, instHasFiniteColimits, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, PresheafOfModules.id_app, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.full, MonoidalCategory.associator_hom_apply, groupHomology.single_one_snd_sub_single_one_fst_mem_boundariesâ, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_apply, groupHomology.dââArrowIso_hom_left, Rep.norm_comm_apply, AlgebraicGeometry.instAdditiveModuleCatCarrierModulesSpecOfFunctor, groupHomology.cyclesâIsoOfIsTrivial_hom_apply, HasLimit.productLimitCone_cone_Ï, HasColimit.colimitCocone_Îč_app, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_apply, PresheafOfModules.restrictScalarsObj_obj, groupCohomology.coboundariesâ_eq_bot_of_isTrivial, instHasSeparatorModuleCatOfSmall, Rep.coinvariantsAdjunction_homEquiv_symm_apply_hom, instAdditiveLocalizationLocalizedModule_functor, MonoidalCategory.tensorHom_tmul, groupHomology.dââ_single_inv_mul_Ï_add_single, QuadraticModuleCat.forgetâ_map, groupCohomology.instMonoModuleCatFH1InfRes, smulShortComplex_Xâ_isAddCommGroup, forgetâ_addCommGroup_full, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles, hasLimitsOfSize, groupCohomology.cocyclesâ_map_one_fst, Rep.indCoindIso_inv_hom_hom, PresheafOfModules.sectionsMap_coe, groupCohomology.mapCocyclesâ_comp_i_assoc, Rep.free_projective, groupHomology.dââ_comp_coinvariantsMk_apply, ExtendRestrictScalarsAdj.Counit.map_hom_apply, Rep.Ï_hom, Rep.diagonalSuccIsoFree_inv_hom_single_single, groupCohomology.H1IsoOfIsTrivial_inv_apply, Rep.instPreservesProjectiveObjectsActionModuleCatSubtypeMemSubgroupResSubtype, groupHomology.Ï_comp_H2Iso_inv_assoc, instPreservesFiniteColimitsUliftFunctor, PresheafOfModules.map_comp_apply, biprodIsoProd_inv_comp_snd_apply, RestrictionCoextensionAdj.counit'_app, groupHomology.chainsMap_f_3_comp_chainsIsoâ, PresheafOfModules.pushforward_map_app_apply', groupHomology.mapCyclesâ_id_comp_assoc, groupHomology.eq_dââ_comp_inv, groupHomology.shortComplexH2_f, CoalgCat.comonEquivalence_counitIso, groupCohomology.cocyclesâIsoOfIsTrivial_hom_hom_apply_apply, CategoryTheory.linearYoneda_obj_obj_carrier, Rep.instLinearModuleCatObjFunctorCoinvariantsTensor, MonoidalCategory.whiskerLeft_def, groupCohomology.H2Ï_comp_map_apply, groupHomology.mapCyclesâ_comp, groupHomology.map_comp, FDRep.instPreservesFiniteColimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.ihom_ev_app_hom, homLinearEquiv_symm_apply, Profinite.NobelingProof.succ_exact, hom_smul, groupCohomology.dArrowIsoââ_hom_right, FGModuleCat.instFiniteCarrierSigmaObjModuleCatOfFinite, uliftFunctorForgetIso_hom_app, groupCohomology.Ï_map_assoc, Rep.MonoidalClosed.linearHomEquivComm_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_map_app, smul_naturality, CategoryTheory.ShortComplex.moduleCat_zero_apply, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, CompHausLike.LocallyConstantModule.functor_map_val, Rep.coe_linearization_obj, Rep.instIsRightAdjointModuleCatInvariantsFunctor, groupCohomology.map_comp, FGModuleCat.hom_comp, SheafOfModules.evaluationPreservesLimitsOfSize, groupHomology.map_id_comp, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_assoc, CategoryTheory.faithful_linearYoneda, imageIsoRange_hom_subtype, groupHomology.mapCyclesâ_comp_i, CoextendScalars.smul_apply, Rep.coinvariantsTensorIndIso_inv, groupCohomology.shortComplexH0_f, binaryProductLimitCone_cone_Ï_app_right, groupCohomology.shortComplexH0_g, groupCohomology.cocyclesOfIsCocycleâ_coe, exteriorPower.desc_mk, PresheafOfModules.unit_map_one, groupHomology.functor_obj, PresheafOfModules.zsmul_app, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, matrixEquivalence_functor, HasColimit.colimitCocone_pt_isModule, groupCohomology.shortComplexH1_f, hasLimits, groupCohomology.coboundariesâ_le_cocyclesâ, CategoryTheory.preadditiveYoneda_obj, CategoryTheory.linearCoyoneda_obj_obj_isAddCommGroup, Rep.standardComplex.ΔToSingleâ_comp_eq, MonoidalCategory.tensorHom_def, groupHomology.inhomogeneousChains.d_def, PresheafOfModules.isoMk_hom_app, Rep.coindVEquiv_symm_apply_coe, CommRingCat.moduleCatRestrictScalarsPseudofunctor_mapId, restrictScalarsId'App_inv_naturality, groupCohomology.H1IsoOfIsTrivial_H1Ï_apply_apply, imageIsoRange_inv_image_Îč_apply, Rep.homEquiv_def, Rep.indCoindIso_hom_hom_hom, CategoryTheory.preadditiveYonedaMap_app, groupCohomology.comp_dââ_eq, CondensedMod.isDiscrete_iff_isDiscrete_forget, PresheafOfModules.map_smul, FGModuleCat.FGModuleCatEvaluation_apply, epi_iff_surjective, restrictScalarsId'_inv_app, groupCohomology.coboundariesâ.val_eq_coe, AlgebraicGeometry.instFullModuleCatCarrierModulesSpecOfFunctor, PresheafOfModules.Monoidal.tensorObj_map_tmul, exteriorPower.map_mk, cokernel_Ï_cokernelIsoRangeQuotient_hom, extendScalars_assoc_assoc, groupHomology.H1CoresCoinf_Xâ, Rep.ofModuleMonoidAlgebra_obj_coe, groupHomology.single_one_fst_sub_single_one_snd_mem_boundariesâ, id_apply, Rep.FiniteCyclicGroup.groupCohomologyÏOdd_eq_iff, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_assoc, groupCohomology.infNatTrans_app, FGModuleCat.instPreservesFiniteLimitsModuleCatForgetâLinearMapIdCarrierObjIsFG, groupCohomology.dââ_apply_mem_cocyclesâ, Rep.invariantsAdjunction_unit_app, hom_inv_apply, groupHomology.mapCyclesâ_id_comp, Rep.diagonal_succ_projective, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isAddCommGroup, CondensedMod.LocallyConstant.instFullModuleCatCondensedDiscrete, monoidalClosed_curry, groupCohomology.dââ_apply_mem_cocyclesâ, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc, exteriorPower.isoâ_hom_naturality, hasColimitsOfSize, PresheafOfModules.instPreservesLimitsOfSizeModuleCatCarrierObjOppositeRingCatEvaluation, Module.Flat.iff_rTensor_preserves_shortComplex_exact, groupHomology.cyclesMap_comp_assoc, MonoidalCategory.leftUnitor_hom_apply, Rep.indToCoindAux_fst_mul_inv, Rep.instIsLeftAdjointActionModuleCatRes, CategoryTheory.isSeparator_iff_faithful_preadditiveCoyonedaObj, exteriorPower.isoâ_hom_apply, groupHomology.cyclesMap_comp_cyclesIsoâ_hom_apply, Rep.coinvariantsFunctor_obj_carrier, Rep.applyAsHom_comm_apply, groupHomology.dââ_single_inv_self_Ï_sub_self_inv, groupHomology.chainsMap_f_single, restrictScalarsId'App_hom_apply, groupCohomology.Ï_comp_H0IsoOfIsTrivial_hom, groupCohomology.subtype_comp_dââ_apply, SheafOfModules.pushforwardComp_inv_app_val_app, LightCondensed.internallyProjective_iff_tensor_condition, FilteredColimits.forget_preservesFilteredColimits, groupCohomology.H2Ï_eq_iff, CoalgCat.toComonObj_X, groupCohomology.cochainsMap_f_map_epi, groupCohomology.comp_dââ_eq, FGModuleCat.instIsMonoidalClosedModuleCatIsFG, Rep.instProjective, groupCohomology.cocyclesâ_map_one_snd, restrictScalarsId'App_hom_naturality_assoc, homAddEquiv_symm_apply_hom, LinearMap.shortExact_shortComplexKer, Rep.coinvariantsTensorFreeLEquiv_apply, groupHomology.coinvariantsMk_comp_H0Iso_inv, image.lift_fac, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, TannakaDuality.FiniteGroup.sumSMulInv_apply, Module.Flat.iff_lTensor_preserves_shortComplex_exact, CategoryTheory.ShortComplex.moduleCatMk_Xâ_carrier, groupHomology.mapCyclesâ_comp_i, Rep.coinvariantsTensorIndIso_hom, groupCohomology.map_H0Iso_hom_f, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_zero_iff, PresheafOfModules.mono_iff_surjective, Rep.barResolution_complex, ExtendScalars.map'_id, groupHomology.boundariesOfIsBoundaryâ_coe, PresheafOfModules.freeObj_map, instPreservesFiniteColimitsLocalizationLocalizedModule_functor, FDRep.instFiniteDimensionalCarrierVFGModuleCat, FGModuleCat.instFiniteHom, groupCohomology.cochainsMap_zero, Rep.indToCoindAux_comm, smulShortComplex_Xâ, groupCohomology.dArrowIsoââ_inv_left, groupCohomology.Ï_comp_H1Iso_hom, Rep.FiniteCyclicGroup.groupCohomologyÏEven_eq_zero_iff, groupHomology.map_comp_assoc, Rep.coinvariantsTensorIndNatIso_inv_app, AlgebraicGeometry.tilde.isoTop_hom, Tilde.toOpen_res, groupHomology.cyclesIsoâ_comp_H0Ï_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_assoc_apply, groupHomology.eq_dââ_comp_inv_apply, CondensedMod.epi_iff_surjective_on_stonean, FDRep.average_char_eq_finrank_invariants, hom_whiskerRight, Rep.instAdditiveModuleCatObjFunctorCoinvariantsTensor, groupCohomology.cocyclesâ_Ï_map_inv_sub_map_inv, hom_inv_associator, PresheafOfModules.instEpiModuleCatCarrierObjOppositeRingCatApp, FGModuleCat.hom_id, Rep.toAdditive_symm_apply, groupCohomology.H1InfRes_Xâ, lof_coprodIsoDirectSum_inv, LightCondMod.LocallyConstant.instFullModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, groupCohomology.mapâ_one, Rep.coindResAdjunction_unit_app, groupHomology.single_one_fst_sub_single_one_fst_mem_boundariesâ, CategoryTheory.linearYoneda_map_app, instAB4ModuleCat, CommRingCat.moduleCatRestrictScalarsPseudofunctor_map, CoalgCat.comul_def, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i, inv_hom_apply, forgetâAddCommGroup_preservesLimits, CategoryTheory.Abelian.full_comp_preadditiveCoyonedaObj, directLimitIsColimit_desc, CategoryTheory.preadditiveYonedaObj_obj_isModule, groupHomology.mapCyclesâ_id_comp_apply, MonoidalCategory.rightUnitor_def, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_assoc, groupHomology.H1CoresCoinf_g, CategoryTheory.Iso.toLinearEquiv_symm, groupCohomology.cochainsMap_id_comp, PresheafOfModules.presheaf_map_apply_coe, smulShortComplex_g, directLimitCocone_pt_isAddCommGroup, Rep.ofMulDistribMulAction_Ï_apply_apply, groupCohomology.map_id, CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.full_embedding, groupCohomology.mapShortComplexH2_comp, ExtendScalars.map'_comp, groupCohomology.shortComplexH2_f, CategoryTheory.linearYoneda_obj_obj_isAddCommGroup, simple_iff_isSimpleModule, restrictScalarsComp'App_hom_naturality_assoc, Rep.instIsTrivialCarrierVModuleCatOfCompLinearMapIdÏ, groupCohomology.instEpiModuleCatH1Ï, MonoidalCategory.associator_def, groupHomology.H1CoresCoinfOfTrivial_Xâ, groupHomology.H1CoresCoinf_Xâ, IsProjective.iff_projective, groupCohomology.H2Ï_comp_map, groupCohomology.cochainsMap_comp_assoc, TopModuleCat.instIsRightAdjointModuleCatIndiscrete, FGModuleCat.instFiniteCarrierLimitModuleCatCompForgetâLinearMapIdObjIsFG, mono_iff_injective, groupHomology.Ï_comp_H2Iso_hom, forgetâ_obj, CategoryTheory.Injective.injective_iff_preservesEpimorphisms_preadditive_yoneda_obj', TopModuleCat.instIsLeftAdjointModuleCatWithModuleTopology, Rep.indResAdjunction_counit_app_hom_hom, FDRep.hom_hom_action_Ï, CompHausLike.LocallyConstantModule.functor_obj_val, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.preservesInjectiveObjects, FGModuleCat.FGModuleCatDual_obj, AlgebraicGeometry.tilde.functor_map, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, Rep.coindToInd_apply, PresheafOfModules.forgetToPresheafModuleCatObjMap_apply, groupHomology.mapCyclesâ_comp_i_apply, SheafOfModules.pushforwardCongr_hom_app_val_app, hom_whiskerLeft, groupHomology.chainsMap_f_map_epi, Rep.FiniteCyclicGroup.groupHomologyÏEven_eq_iff, AlgCat.forgetâModule_preservesLimitsOfSize, groupHomology.mapCyclesâ_comp, comp_apply, restrictScalarsCongr_hom_app, MonoidalCategory.tensorUnit_carrier, kernelIsoKer_inv_kernel_Îč_apply, groupHomology.isoShortComplexH1_hom, ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, groupHomology.cyclesIsoâ_inv_comp_cyclesMap_apply, CategoryTheory.whiskering_linearYoneda, Rep.coe_of, MonoidalCategory.rightUnitor_hom_apply, groupCohomology.mono_map_0_of_mono, Condensed.instHasLimitsOfSizeModuleCat, groupCohomology.isoCocyclesâ_hom_comp_i, CoalgCat.MonoidalCategory.inducingFunctorData_ÎŒIso, CoalgCat.MonoidalCategory.inducingFunctorData_ΔIso, FilteredColimits.M.mk_map, groupCohomology.Ï_comp_H0Iso_hom_apply, instIsRightAdjointRestrictScalars, Rep.resIndAdjunction_homEquiv_symm_apply, groupHomology.coe_mapCyclesâ, Rep.coinvariantsFunctor_hom_ext_iff, LightCondensed.instPreservesEpimorphismsFunctorDiscreteNatLightCondModLim, CategoryTheory.whiskering_linearCoyonedaâ, FGModuleCat.obj_carrier, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, groupHomology.comp_dââ_eq, groupHomology.H1Ï_comp_map_apply, localizedModule_functor_map, Rep.instLinearModuleCatCoinvariantsFunctor, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition', FGModuleCat.FGModuleCatCoevaluation_apply_one, Rep.coindMap'_hom, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_Xâ, Rep.normNatTrans_app, groupHomology.H0Ï_comp_map_assoc, instHasExtModuleCatOfSmall, groupCohomology.dArrowIsoââ_hom_left, instHasLimitsCondensedMod, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, groupHomology.Ï_comp_H0Iso_hom_apply, PresheafOfModules.toFreeYonedaCoproduct_fromFreeYonedaCoproduct_assoc, groupCohomology.eq_dââ_comp_inv_apply, groupCohomology.H1InfRes_Xâ, MonoidalCategory.tensorLift_tmul, simple_of_isSimpleModule, Rep.applyAsHom_comm_assoc, MatrixModCat.toModuleCat_obj_carrier, Rep.instEpiModuleCatAppActionCoinvariantsMk, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_assoc, groupCohomology.cocyclesâ_map_inv, Rep.freeLiftLEquiv_apply, hom_hom_leftUnitor, groupHomology.chainsFunctor_obj, groupCohomology.mapCocyclesâ_one, Rep.instEnoughProjectives, PresheafOfModules.surjective_of_epi, groupCohomology.instMonoModuleCatFShortComplexH0, FGModuleCat.instFiniteCarrierPiObjModuleCatOfFinite, adj_homEquiv, groupCohomology.functor_obj, groupCohomology.cocyclesMap_comp, CategoryTheory.preservesFiniteColimits_preadditiveYonedaObj_of_injective, groupHomology.H2Ï_comp_map_assoc, AlgebraicGeometry.tilde.map_comp_assoc, Rep.indToCoindAux_mul_fst, hom_hom_rightUnitor, LightCondensed.forget_map_val_app, biprodIsoProd_inv_comp_snd, groupHomology.Ï_comp_H0IsoOfIsTrivial_hom_apply, piIsoPi_inv_kernel_Îč_apply, MonModuleEquivalenceAlgebra.functor_map_hom_apply, Rep.ihom_obj_Ï_apply, Rep.instPreservesZeroMorphismsModuleCatInvariantsFunctor, AlgebraicGeometry.Scheme.Modules.toOpen_fromTildeÎ_app_assoc, CondensedMod.hom_naturality_apply, instIsLeftAdjointRestrictScalars, lof_coprodIsoDirectSum_inv_apply, Condensed.instIsRightKanExtensionFintypeCatCondensedModProfiniteProfiniteSolidProfiniteSolidCounit, Rep.FiniteCyclicGroup.chainComplexFunctor_map_f, groupHomology.dââArrowIso_inv_right, FDRep.instFaithfulRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Derivation.desc_d, range_mkQ_cokernelIsoRangeQuotient_inv, TannakaDuality.FiniteGroup.equivApp_inv, Rep.finsuppTensorRight_hom_hom, QuadraticModuleCat.forgetâ_map_associator_hom, exteriorPower.isoâ_hom_naturality_assoc, groupCohomology.resNatTrans_app, PresheafOfModules.injective_of_mono, free_Δ_one, PresheafOfModules.isoMk_inv_app, groupCohomology.norm_ofAlgebraAutOnUnits_eq, groupCohomology.Ï_comp_H0Iso_hom_assoc, groupCohomology.Ï_map, CategoryTheory.full_linearCoyoneda, TannakaDuality.FiniteGroup.forget_map, MonModuleEquivalenceAlgebra.functor_obj_carrier, imageIsoRange_hom_subtype_assoc, groupCohomology.mem_cocyclesâ_iff, groupCohomology.mapShortComplexH2_zero, CategoryTheory.Projective.projective_iff_preservesEpimorphisms_preadditiveCoyonedaObj, Rep.tensor_Ï, Rep.resIndAdjunction_homEquiv_apply, Rep.toAdditive_apply, PresheafOfModules.pushforward_obj_map_apply, groupHomology.chainsMap_id_f_map_epi, groupCohomology.H2Ï_comp_map_assoc, groupHomology.dââ_comp_coinvariantsMk, groupHomology.dââ_comp_dââ_apply, AlgebraicGeometry.tilde.isIso_toOpen_top, groupHomology.mapCyclesâ_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, Rep.ofDistribMulAction_Ï_apply_apply, groupCohomology.dââ_ker_eq_invariants, Rep.linearization_η_hom_apply, CategoryTheory.faithful_linearCoyoneda, smulNatTrans_apply_app, FGModuleCat.ihom_obj, groupCohomology.cochainsMap_id_f_map_mono, CoalgCat.comonEquivalence_functor, Rep.quotientToInvariantsFunctor_map_hom, groupHomology.chainsMap_id_comp, forget_reflectsLimits, Rep.leftRegularHomEquiv_symm_apply, TannakaDuality.FiniteGroup.equivApp_hom, uliftFunctorForgetIso_inv_app, FDRep.char_linHom, Rep.quotientToCoinvariantsFunctor_map_hom, groupHomology.instEpiModuleCatGH1CoresCoinf, groupCohomology.mapShortComplexH1_id, CommRingCat.moduleCatExtendScalarsPseudofunctor_map, Rep.coinvariantsShortComplex_g, groupHomology.H2Ï_eq_iff, FGModuleCat.instAdditiveModuleCatForgetâLinearMapIdCarrierObjIsFG, reflectsIsomorphisms_extendScalars_of_faithfullyFlat, ExtendRestrictScalarsAdj.homEquiv_symm_apply, groupHomology.H1AddEquivOfIsTrivial_single, LightCondMod.instReflectsEpimorphismsLightCondSetForget, CategoryTheory.preservesFiniteColimits_preadditiveCoyonedaObj_of_projective, groupCohomology.mem_cocyclesâ_iff, groupHomology.mapShortComplexH1_id_comp, CoalgCat.ofComonObjCoalgebraStruct_comul, MonoidalCategory.tensorÎŒ_eq_tensorTensorTensorComm, groupHomology.mapShortComplexH1_comp, groupHomology.range_dââ_eq_coinvariantsKer, PresheafOfModules.unitHomEquiv_apply_coe, Rep.coindResAdjunction_homEquiv_apply, groupCohomology.inhomogeneousCochains.d_comp_d, FreeMonoidal.ΔIso_inv_freeMk, groupHomology.isoCyclesâ_hom_comp_i_apply, Rep.Tor_map, Rep.ofModuleMonoidAlgebra_obj_Ï, PresheafOfModules.freeObj_obj, groupCohomology.Ï_comp_H0IsoOfIsTrivial_hom_apply, Rep.coinvariantsShortComplex_f, SheafOfModules.pushforwardCongr_inv_app_val_app, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, Rep.resIndAdjunction_counit_app, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_assoc, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, groupHomology.Ï_comp_H0IsoOfIsTrivial_hom, RestrictionCoextensionAdj.unit'_app, matrixEquivalence_unitIso, groupHomology.eq_dââ_comp_inv_assoc, imageIsoRange_inv_image_Îč, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom, Rep.ofMulActionSubsingletonIsoTrivial_inv_hom, smulShortComplex_Xâ_carrier, RingCat.moduleCatRestrictScalarsPseudofunctor_mapId, free_η_freeMk, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom_assoc, CategoryTheory.preservesHomology_preadditiveCoyonedaObj_of_projective, Rep.instIsLeftAdjointModuleCatCoinvariantsFunctor, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom, Algebra.instLinearRestrictScalars, groupHomology.inhomogeneousChains.d_single, groupCohomology.coboundariesOfIsCoboundaryâ_coe, groupCohomology.mapShortComplexH2_Ïâ, FGModuleRepr.instIsEquivalenceFGModuleCatEmbed, groupHomology.cyclesIsoâ_inv_comp_iCycles, instReflectsIsomorphismsRestrictScalars, exteriorPower.isoâ_hom_apply, FGModuleCat.instHasFiniteColimits, Representation.coind'_apply_apply, groupCohomology.dââ_comp_dââ_assoc, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_map, SheafOfModules.pushforwardPushforwardAdj_unit_app_val_app, Rep.diagonalOneIsoLeftRegular_inv_hom, hom_inv_rightUnitor, ExtendScalars.smul_tmul, LightCondensed.free_internallyProjective_iff_tensor_condition', groupHomology.map_id_comp_H0Iso_hom_assoc, instHasLimitsOfSizeCondensedMod, hom_sum, MonModuleEquivalenceAlgebra.inverse_obj_mon, restrictScalarsComp'App_hom_naturality, QuadraticModuleCat.forgetâ_obj, FGModuleCat.instFiniteCarrierColimitModuleCatCompForgetâLinearMapIdObjIsFG, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_apply, CommRingCat.moduleCatExtendScalarsPseudofunctor_obj, groupCohomology.mapShortComplexH2_id_comp_assoc, groupHomology.mapCyclesâ_id_comp_assoc, groupHomology.Ï_comp_H1Iso_hom_apply, Rep.coindIso_inv_hom_hom, hom_nsmul, groupHomology.mapShortComplexH2_comp, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.cocyclesâ_map_mul_of_isTrivial, forget_obj, directLimitDiagram_obj_isAddCommGroup, groupCohomology.subtype_comp_dââ_assoc, groupHomology.chainsMap_id_f_hom_eq_mapRange, CategoryTheory.preservesLimits_preadditiveYonedaObj, PresheafOfModules.toPresheaf_map_app_apply, groupHomology.toCycles_comp_isoCyclesâ_hom, CategoryTheory.ShortComplex.ShortExact.moduleCat_exact_iff_function_exact, groupCohomology.map_id_comp_H0Iso_hom, CoalgCat.comonEquivalence_unitIso, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, PresheafOfModules.neg_app, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_assoc_apply, HasColimit.instPreservesColimitAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrier, groupHomology.mapShortComplexH2_Ïâ, groupHomology.mapCyclesâ_id_comp, Rep.trivialFunctor_obj_V, Rep.indToCoindAux_mul_snd, FilteredColimits.forgetâAddCommGroup_preservesFilteredColimits, instIsRightAdjointForgetLinearMapIdCarrier, homEquiv_extendScalarsComp, groupCohomology.cocyclesâIsoOfIsTrivial_inv_hom_apply_coe, QuadraticModuleCat.toModuleCat_tensor, ExtendScalars.map_tmul, FilteredColimits.colimit_add_mk_eq', PresheafOfModules.map_comp, FilteredColimits.forget_reflectsFilteredColimits, RingCat.moduleCatRestrictScalarsPseudofunctor_map, groupCohomology.cocyclesOfIsMulCocycleâ_coe, groupHomology.chainsMap_f_map_mono, LinearMap.id_moduleCat_comp, restrictScalarsComp'App_inv_naturality, free_ÎŒ_freeMk_tmul_freeMk, forgetâ_obj_moduleCat_of, groupHomology.shortComplexH0_f, groupHomology.eq_dââ_comp_inv, CategoryTheory.Iso.toLinearEquiv_apply, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, FDRep.instHasKernels, instHasZeroObject, PresheafOfModules.evaluation_preservesColimitsOfSize, groupHomology.isoShortComplexH1_inv, groupCohomology.coboundariesOfIsMulCoboundaryâ_coe, SheafOfModules.pushforwardComp_hom_app_val_app, groupHomology.eq_dââ_comp_inv_assoc, groupCohomology.dââ_comp_dââ, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, Rep.linearization_obj_Ï, Rep.toCoinvariantsMkQ_hom, groupHomology.chainsMap_f_1_comp_chainsIsoâ_assoc, MonoidalCategory.tensorObj, restrictScalarsComp'App_inv_naturality_assoc, groupHomology.isoCyclesâ_hom_comp_i_apply, LightCondMod.LocallyConstant.instIsIsoLightCondSetMapForgetAppLightCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, groupHomology.mapShortComplexH1_Ïâ, PresheafOfModules.evaluation_preservesFiniteLimits, SheafOfModules.Presentation.map_relations_I, FGModuleCat.Iso.conj_eq_conj, instPreservesColimitsOfSizeAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrierOfHasColimitsOfSizeAddCommGrpMax, hasCokernels_moduleCat, groupCohomology.cocyclesIsoâ_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, FreeMonoidal.ÎŒIso_hom_freeMk_tmul_freeMk, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_apply, CategoryTheory.ShortComplex.exact_iff_surjective_moduleCatToCycles, imageIsoRange_inv_image_Îč_assoc, MonoidalCategory.rightUnitor_inv_apply, groupCohomology.H1Ï_eq_zero_iff, groupHomology.H1AddEquivOfIsTrivial_symm_apply, Rep.invariantsAdjunction_counit_app_hom, PresheafOfModules.sub_app, groupHomology.cyclesMap_comp_cyclesIsoâ_hom, Profinite.NobelingProof.GoodProducts.square_commutes, groupCohomology.cochainsMap_f, groupCohomology.coboundariesâ.val_eq_coe, groupHomology.dââ_single_one_fst, inhomogeneousCochains.d_hom_apply, Rep.coind'_ext_iff, CoalgCat.counit_def, PresheafOfModules.DifferentialsConstruction.relativeDifferentials'_map_d, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, groupHomology.chainsMap_comp, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, groupHomology.dââ_comp_dââ, PresheafOfModules.Elements.fromFreeYoneda_app_apply, binaryProductLimitCone_cone_Ï_app_left, HasColimit.coconePointSMul_apply, PresheafOfModules.pushforward_obj_obj, Rep.instLinearModuleCatInvariantsFunctor, groupHomology.dââ_single_self_inv_Ï_sub_inv_self, kernelIsoKer_hom_ker_subtype, projective_of_categoryTheory_projective, smulShortComplex_f, SheafOfModules.Presentation.mapRelations_mapGenerators, hasLimitsOfShape, groupHomology.chainsMap_f_3_comp_chainsIsoâ_assoc, hom_add, groupHomology.single_Ï_self_add_single_inv_mem_boundariesâ, groupHomology.H1ToTensorOfIsTrivial_H1Ï_single, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, FGModuleCat.hom_hom_comp, Rep.FiniteCyclicGroup.groupHomologyÏEven_eq_zero_iff, Rep.ofMulActionSubsingletonIsoTrivial_hom_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_carrier, instEnoughInjectivesModuleCatOfSmall, groupCohomology.cocyclesMkâ_eq, AlgCat.forgetâ_module_obj, isZero_groupCohomology_succ_of_subsingleton, MonoidalCategory.leftUnitor_inv_apply, groupCohomology.map_id_comp_assoc, Îč_coprodIsoDirectSum_hom, instReflectsIsomorphismsAddCommGrpCatForgetâLinearMapIdCarrierAddMonoidHomCarrier, SheafOfModules.relationsOfIsCokernelFree_I, MonModuleEquivalenceAlgebra.algebraMap, MonoidalCategory.tensorÎŒ_apply, Rep.linearizationTrivialIso_inv_hom, Rep.isZero_Tor_succ_of_projective, groupHomology.cyclesOfIsCycleâ_coe, groupHomology.chainsMap_f_0_comp_chainsIsoâ_assoc, groupCohomology.H1InfRes_Xâ, Rep.quotientToInvariantsFunctor_obj_V, FDRep.char_one, groupHomology.shortComplexH0_exact, MonoidalCategory.tensorObj_isModule, groupHomology.inhomogeneousChains.ext_iff, FGModuleCat.hom_ext_iff, CategoryTheory.Abelian.FreydMitchell.instPreservesFiniteLimitsModuleCatEmbeddingRingFunctor, MonoidalCategory.tensorObj_isAddCommGroup, groupHomology.dââ_apply_mem_cyclesâ, groupCohomology.coboundariesToCocyclesâ_apply, ihom_map_apply, LightCondMod.LocallyConstant.instFaithfulModuleCatLightCondensedDiscrete, instAdditiveRestrictScalars, MonModuleEquivalenceAlgebra.inverseObj_mul, ihom_coev_app, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, groupCohomology.cocyclesOfIsMulCocycleâ_coe, groupCohomology.H2Ï_eq_zero_iff, Rep.coinvariantsTensorIndNatIso_hom_app, groupHomology.Ï_map_assoc, PresheafOfModules.instAdditiveModuleCatCarrierObjOppositeRingCatEvaluation, groupHomology.congr, groupCohomology.mapCocyclesâ_comp_i_assoc, Rep.standardComplex.quasiIso_forgetâ_ΔToSingleâ, Rep.applyAsHom_comm, groupCohomology.cocyclesâ.val_eq_coe, instAdditiveUliftFunctor, TannakaDuality.FiniteGroup.sumSMulInv_single_id, PresheafOfModules.Hom.naturality_assoc, groupCohomology.H1Ï_comp_map_apply, Rep.leftRegularHom_hom_single, groupCohomology.cocyclesâ_map_one, groupHomology.eq_dââ_comp_inv_assoc, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f, hom_hom_associator, CoalgCat.forgetâ_obj, groupCohomology.Ï_comp_H2Iso_hom_assoc, groupCohomology.H1InfRes_g, instHasLimitsOfSizeLightCondMod_1, CategoryTheory.preservesHomology_preadditiveYonedaObj_of_injective, CategoryTheory.linearCoyoneda_obj_map, Rep.standardComplex.d_comp_Δ, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_Xâ, FDRep.simple_iff_end_is_rank_one, Rep.finsuppTensorRight_inv_hom, matrixEquivalence_counitIso, Rep.coinvariantsMk_app_hom, Rep.ihom_obj_V_isAddCommGroup, CategoryTheory.linearYoneda_obj_additive, Rep.indCoindNatIso_inv_app, groupHomology.shortComplexH2_g, AddCommGrpCat.injective_as_module_iff, PresheafOfModules.restriction_app, groupCohomology.mapShortComplexH1_id_comp, PresheafOfModules.Îč_fromFreeYonedaCoproduct_apply, CategoryTheory.ShortComplex.moduleCat_exact_iff_ker_sub_range, CategoryTheory.ShortComplex.moduleCat_exact_iff, groupCohomology.cocyclesMap_comp_assoc, groupHomology.mapCyclesâ_hom, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, range_mkQ_cokernelIsoRangeQuotient_inv_apply, groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, mkOfSMul_smul, groupCohomology.instPreservesZeroMorphismsRepModuleCatFunctor, groupHomology.isoShortComplexH2_hom, Rep.coindResAdjunction_homEquiv_symm_apply, LightCondMod.LocallyConstant.instFaithfulModuleCatFunctor, instMonoÎč, restrictScalars.smul_def, kernelIsoKer_hom_ker_subtype_apply, exteriorPower.isoâ_hom_naturality_assoc, CategoryTheory.preadditiveYonedaObj_obj_isAddCommGroup, groupHomology.cyclesMkâ_eq, groupHomology.chainsMap_f_1_comp_chainsIsoâ, restrictScalarsId'_hom_app, Rep.coindVEquiv_apply_hom, groupCohomology.mapShortComplexH1_comp, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_assoc, groupHomology.H1Ï_eq_zero_iff, groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, groupHomology.Ï_comp_H1Iso_hom_assoc, LightCondMod.hom_naturality_apply, PresheafOfModules.forgetToPresheafModuleCat_obj, groupHomology.chainsMap_f_2_comp_chainsIsoâ, groupHomology.dââ_single_one_fst, SheafOfModules.unitToPushforwardObjUnit_val_app_apply, HasLimit.productLimitCone_cone_pt_isModule, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeÎUnitOpensCarrierCarrierCommRingCatRingCatSheaf, PresheafOfModules.forgetToPresheafModuleCatObj_obj, groupHomology.pOpcycles_comp_opcyclesIso_hom, groupHomology.H2Ï_comp_map, Rep.trivialFunctor_map_hom, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_apply, Module.injective_iff_injective_object, groupCohomology.cocyclesâ.val_eq_coe, groupHomology.cyclesIsoâ_inv_comp_cyclesMap_assoc, groupHomology.Ï_comp_H2Iso_inv, groupCohomology.eq_dââ_comp_inv, instMonoidalLinear, Rep.FiniteCyclicGroup.groupCohomologyÏEven_eq_iff, groupCohomology.cochainsMap_f_map_mono, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_f, LightCondensed.ihomPoints_symm_apply, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv, groupCohomology.isoShortComplexH1_hom, groupHomology.mapShortComplexH1_id, PresheafOfModules.Monoidal.tensorHom_app, instFaithfulUliftFunctor, groupHomology.H1Ï_comp_map_assoc, groupCohomology.map_id_comp, Rep.ihom_map_hom, groupHomology.instEpiModuleCatH1Ï, piIsoPi_hom_ker_subtype_apply, reflectsColimitsOfShape, FGModuleCat.instHasLimitsOfShapeOfFinCategory, RingCat.moduleCatRestrictScalarsPseudofunctor_obj, groupHomology.H1AddEquivOfIsTrivial_apply, MonoidalCategory.whiskerRight_apply, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, CondensedMod.LocallyConstant.instIsIsoCondensedSetMapForgetAppCondensedModuleCatCounitDiscreteUnderlyingAdjObjFunctor, Rep.coinvariantsTensor_hom_ext_iff, Rep.finsuppTensorLeft_inv_hom, instPreservesLimitsOfSizeUliftFunctor, free_ÎŽ_freeMk, FGModuleCat.instFullUlift, forgetâAddCommGroup_reflectsLimitOfSize, PresheafOfModules.instMonoModuleCatCarrierObjOppositeRingCatApp, FilteredColimits.Îč_colimitDesc, CoalgCat.forgetâ_map, groupHomology.single_one_snd_sub_single_one_snd_mem_boundariesâ, Rep.unit_iso_comm, Rep.leftRegularHomEquiv_symm_single, restrictScalarsEquivalenceOfRingEquiv_additive, inhomogeneousCochains.d_eq, HasLimit.productLimitCone_cone_pt_carrier, groupHomology.instEpiModuleCatH2Ï, groupHomology.H1CoresCoinfOfTrivial_exact, MoritaEquivalence.instAdditiveModuleCatFunctorEqv, Rep.FiniteCyclicGroup.resolution_complex, piIsoPi_hom_ker_subtype, directLimitDiagram_obj_carrier, groupHomology.chainsFunctor_map, hom_id, groupCohomology.cocyclesMkâ_eq, LightCondMod.LocallyConstant.instFaithfulModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, Rep.leftRegularTensorTrivialIsoFree_inv_hom, extendScalars_id_comp_assoc, groupHomology.instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, LinearEquiv.toFGModuleCatIso_hom, TopModuleCat.instIsRightAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, AlgebraicGeometry.instFaithfulModuleCatCarrierModulesSpecOfFunctor, groupCohomology.cochainsMap_id_f_map_epi, instAB5ModuleCat, groupHomology.H1Ï_comp_map, groupHomology.chainsMap_f_hom, AlgCat.forgetâModule_preservesLimits, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles, groupHomology.dââ_apply_mem_cyclesâ, MonoidalCategory.tensorUnit_isModule, extendScalars_assoc', piIsoPi_inv_kernel_Îč, LightCondMod.LocallyConstant.instFullModuleCatFunctor, Rep.norm_hom, ExtendRestrictScalarsAdj.HomEquiv.evalAt_apply, SheafOfModules.Presentation.mapRelations_mapGenerators_assoc, TopModuleCat.instIsLeftAdjointModuleCatForgetâContinuousLinearMapIdCarrierLinearMap, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, Rep.indResAdjunction_unit_app_hom_hom, CategoryTheory.isCoseparator_iff_faithful_preadditiveYonedaObj, Rep.ofHom_Ï, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.map_id_comp_H0Iso_hom_apply, extendScalars_id_comp, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_f'_hom, groupHomology.boundariesOfIsBoundaryâ_coe, AlgebraicGeometry.tilde.map_add, RingCat.moduleCatRestrictScalarsPseudofunctor_mapComp, groupHomology.cyclesMkâ_eq, groupHomology.H1CoresCoinfOfTrivial_f, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, groupHomology.cyclesIsoâ_comp_H0Ï_assoc, Rep.coindFunctor'_obj, LightCondensed.ihom_map_val_app, groupHomology.mapCyclesâ_comp_i_assoc, groupCohomology.isoCocyclesâ_hom_comp_i, wellPowered_moduleCat, FGModuleCat.tensorObj_obj, FGModuleCat.tensorUnit_obj, FreeMonoidal.ÎŒIso_inv_freeMk, uliftFunctor_map, Rep.Action_Ï_eq_Ï, Rep.linearization_ÎŽ_hom, groupHomology.functor_map, groupHomology.instEpiModuleCatH0Ï, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ, groupCohomology.H1InfRes_exact, instPreservesFiniteLimitsUliftFunctor, MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, groupCohomology.mapShortComplexH2_Ïâ, groupCohomology.mapCocyclesâ_comp_i_apply, hom_zsmul, Rep.coindMap_hom, instHasFiniteLimitsLightCondMod, groupHomology.mapCyclesâ_id_comp_apply, ChainComplex.linearYonedaObj_d, Rep.standardComplex.instQuasiIsoNatΔToSingleâ, Rep.trivial_def, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_assoc, groupCohomology.cocyclesâ_ext_iff, finite_ext, Rep.standardComplex.x_projective, ExtendRestrictScalarsAdj.counit_app, directLimitCocone_Îč_app, AlgebraicGeometry.tilde.toOpen_res, AlgebraicGeometry.tilde.toOpen_res_assoc, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isModule, FGModuleCat.instHasFiniteLimits, CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.faithful_embedding, groupCohomology.instAdditiveRepCochainComplexModuleCatNatCochainsFunctor, instFiniteCarrierObjModuleCatIsFG, Rep.MonoidalClosed.linearHomEquiv_hom, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ, Rep.invariantsAdjunction_homEquiv_apply_hom, FGModuleCat.instLinearModuleCatForgetâLinearMapIdCarrierObjIsFG, isZero_Ext_succ_of_projective, AlgebraicGeometry.tilde.isUnit_algebraMap_end_basicOpen, CategoryTheory.full_linearYoneda, CategoryTheory.Abelian.preadditiveCoyonedaObj_map_surjective, Rep.hom_comm_apply, SheafOfModules.pushforwardNatTrans_app_val_app, groupHomology.H2Ï_comp_map_apply, Hom.homâ_apply, Rep.instPreservesEpimorphismsSubtypeMemSubgroupCoindFunctorSubtype, HasColimit.colimitCocone_pt_carrier, CondensedMod.epi_iff_locallySurjective_on_compHaus, CategoryTheory.ShortComplex.moduleCat_exact_iff_range_eq_ker, Rep.FiniteCyclicGroup.resolution_quasiIso, uliftFunctor_obj, forgetâ_addCommGrp_additive, Module.Flat.iff_preservesFiniteLimits_tensorLeft, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, groupCohomology.H1Map_id, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_Xâ, groupCohomology.coboundariesâ_ext_iff, Rep.finsuppTensorLeft_hom_hom, Rep.indFunctor_map, groupHomology.H1CoresCoinfOfTrivial_g, Rep.FiniteCyclicGroup.groupHomologyÏOdd_eq_iff, groupHomology.inhomogeneousChains.d_comp_d, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_K, instFaithfulRestrictScalars, MatrixModCat.toModuleCat_map, groupHomology.Ï_comp_H0Iso_hom, PresheafOfModules.map_id, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapComp, MonoidalCategory.leftUnitor_def, groupCohomology.mapShortComplexH1_id_comp_assoc, groupCohomology.Ï_comp_H2Iso_hom_apply, HasLimit.lift_hom_apply, groupCohomology.mapShortComplexH1_zero, binaryProductLimitCone_isLimit_lift, IsSMulRegular.smulShortComplex_shortExact, CategoryTheory.ShortComplex.moduleCatMk_f, homLinearEquiv_apply, groupCohomology.mapShortComplexH1_comp_assoc, Rep.coinvariantsTensorMk_apply, groupHomology.cyclesIsoâ_inv_comp_cyclesMap, localizedModule_functor_obj, instHasLimitsOfSizeLightCondMod, instProjectiveObjFree, Rep.indMap_hom, groupHomology.H0Ï_comp_H0Iso_hom, CategoryTheory.Abelian.FreydMitchell.instPreservesFiniteColimitsModuleCatEmbeddingRingFunctor, groupHomology.isoCyclesâ_hom_comp_i_assoc, Rep.coinvariantsShortComplex_Xâ, Rep.homEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, CategoryTheory.linearYoneda_obj_obj_isModule, AlgCat.forgetâ_module_map, FilteredColimits.M.mk_surjective, FDRep.forgetâ_Ï, extendScalarsComp_hom_app_one_tmul, Rep.invariantsFunctor_map_hom, Iso.conj_eq_conj, instHasColimitsCondensedMod, groupHomology.map_id_comp_H0Iso_hom, groupCohomology.isoShortComplexH2_hom, linearEquivIsoModuleIso_inv, groupHomology.dââ_eq_zero_of_isTrivial, CoalgCat.toComon_map_hom, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_assoc, groupCohomology.Ï_comp_H1Iso_hom_apply, Rep.standardComplex.forgetâToModuleCatHomotopyEquiv_f_0_eq, groupCohomology.dââ_comp_dââ_assoc, groupCohomology.cocyclesMap_id, Rep.instIsRightAdjointActionModuleCatRes, MonoidalCategory.tensorObj_def, AlgebraicGeometry.tilde.map_zero, preservesFiniteLimits_tensorLeft_of_ringHomFlat, FDRep.instPreservesFiniteLimitsRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, groupHomology.dââ_single_one_snd, SheafOfModules.pushforwardPushforwardEquivalence_unit_app_val_app, Rep.norm_comm_assoc, groupCohomology.mapShortComplexH2_id_comp, groupHomology.Ï_comp_H0IsoOfIsTrivial_hom_assoc, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isModule, FDRep.instFiniteCarrierVFGModuleCat, biprodIsoProd_inv_comp_fst, groupHomology.Ï_map_apply, CategoryTheory.Abelian.FreydMitchell.instFullModuleCatEmbeddingRingFunctor, Rep.resIndAdjunction_unit_app, instIsLeftAdjointExtendScalars, groupHomology.dââ_comp_dââ, groupHomology.dââ_single_one_snd, groupHomology.instEpiModuleCatGShortComplexH0, CategoryTheory.IsGrothendieckAbelian.instIsLeftAdjointModuleCatMulOppositeEndTensorObj, extendScalars_comp_id_assoc, instPreservesFiniteLimitsLocalizationLocalizedModule_functor, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, groupHomology.Ï_comp_H2Iso_hom_apply, SheafOfModules.relationsOfIsCokernelFree_s, forgetâ_reflectsLimits, FDRep.Iso.conj_Ï, FDRep.of_Ï, forgetâPreservesColimitsOfShape, CondensedMod.instHasLimitsOfSizeModuleCat, MatrixModCat.toModuleCat_obj_isAddCommGroup, Rep.diagonalOneIsoLeftRegular_hom_hom, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, Rep.ihom_coev_app_hom, biproductIsoPi_inv_comp_Ï_apply, groupHomology.mapCyclesâ_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_Ï_hom, Rep.leftRegularHomEquiv_apply, Rep.leftRegular_projective, CondensedMod.LocallyConstant.instFaithfulModuleCatFunctor, restrictScalars.smul_def', PresheafOfModules.pushforward_obj_map_apply', groupHomology.isoCyclesâ_inv_comp_iCycles, groupHomology.chainsMap_zero, groupHomology.H1CoresCoinfOfTrivial_g_epi, Module.injective_object_of_injective_module, FDRep.char_dual, groupHomology.cyclesMap_comp_isoCyclesâ_hom_assoc, PresheafOfModules.Hom.naturality, groupHomology.mapShortComplexH2_id_comp, FGModuleCat.FGModuleCatEvaluation_apply', forgetâAddCommGroup_reflectsLimit, groupHomology.isoShortComplexH2_inv, groupHomology.coe_mapCyclesâ, groupHomology.toCycles_comp_isoCyclesâ_hom, HasLimit.productLimitCone_cone_pt_isAddCommGroup, hom_inv_leftUnitor, SheafOfModules.forgetToSheafModuleCat_map_val, groupCohomology.dââ_comp_dââ_apply, Module.Flat.instPreservesFiniteLimitsModuleCatTensorLeftOfCarrier, free_map_apply, groupHomology.chainsMap_f_2_comp_chainsIsoâ_assoc, Representation.linHom.mem_invariants_iff_comm, groupHomology.mapCyclesâ_comp_i_apply, binaryProductLimitCone_cone_pt, LightCondMod.LocallyConstant.instHasSheafifyLightProfiniteCoherentTopologyModuleCat, AlgebraicGeometry.tilde.functor_obj, groupCohomology.cocyclesIsoâ_hom_comp_f_apply, ofHomâ_hom_apply_hom, SheafOfModules.pushforwardPushforwardAdj_counit_app_val_app, groupHomology.boundariesToCyclesâ_apply, groupCohomology.subtype_comp_dââ, MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, groupHomology.cyclesOfIsCycleâ_coe, Rep.freeLift_hom, groupHomology.isoCyclesâ_hom_comp_i, instPreservesInjectiveObjectsUliftFunctorOfSmall, AlgebraicGeometry.tilde.toOpen_map_app_assoc, groupHomology.Ï_comp_H1Iso_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, groupHomology.isoCyclesâ_inv_comp_iCycles, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_apply, groupHomology.dââ_single_inv, groupHomology.mkH1OfIsTrivial_apply, groupCohomology.Ï_map_apply, Rep.indToCoindAux_snd_mul_inv, LightCondensed.instCountableAB4StarLightCondMod, hom_sub, localCohomology.hasColimitDiagram, CoalgCat.ofComonObjCoalgebraStruct_counit, groupCohomology.cocyclesMap_id_comp, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.preservesFiniteLimits, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, Rep.res_obj_Ï, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom, CategoryTheory.Presieve.FamilyOfElements.isCompatible_map_smul_aux, instHasLimitsOfSize, ofHomâ_comprâ, LightCondMod.LocallyConstant.instFullModuleCatLightCondensedDiscrete, extendScalars_comp_id, PresheafOfModules.freeYonedaEquiv_comp, forgetâAddCommGroup_preservesLimit, groupCohomology.coboundariesâ_le_cocyclesâ, hasKernels_moduleCat, groupHomology.shortComplexH0_g, Rep.ihom_obj_V_isModule, CategoryTheory.ShortComplex.moduleCat_pOpcycles_eq_iff, FreeMonoidal.ΔIso_hom_one, CategoryTheory.preadditiveCoyonedaObj_obj_carrier, groupCohomology.mapShortComplexH2_id, groupHomology.dââArrowIso_hom_right, groupCohomology.shortComplexH0_exact, Rep.freeLift_hom_single_single, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, groupHomology.single_one_mem_boundariesâ, mono_iff_ker_eq_bot, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_assoc, groupHomology.Ï_comp_H1Iso_inv_apply, groupHomology.cyclesIsoâ_comp_H0Ï, FGModuleCat.instFullModuleCatForgetâLinearMapIdCarrierObjIsFG, groupCohomology.isoCocyclesâ_hom_comp_i_apply, extendRestrictScalarsAdj_unit_app_apply, instMonoidalPreadditive, groupHomology.H1CoresCoinfOfTrivial_Xâ, Rep.diagonalHomEquiv_apply, AlgebraicGeometry.tilde.map_comp, groupHomology.dââ_single, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, SheafOfModules.Presentation.IsFinite.finite_relations, Rep.coinvariantsAdjunction_unit_app_hom, Rep.freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, groupHomology.cyclesâIsoOfIsTrivial_inv_apply, groupHomology.eq_dââ_comp_inv_apply, Rep.epi_iff_surjective, SheafOfModules.pushforwardNatTrans_app_val_app_apply, CategoryTheory.whiskering_linearYonedaâ, CategoryTheory.ShortComplex.moduleCatMk_Xâ_carrier, groupCohomology.cochainsFunctor_map, groupCohomology.coboundariesâ_ext_iff, groupHomology.dââ_comp_coinvariantsMk_assoc, MonoidalCategory.whiskerLeft_apply, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, PresheafOfModules.Finite.evaluation_preservesFiniteColimits, Rep.indToCoindAux_of_not_rel, groupCohomology.cocyclesOfIsCocycleâ_coe, groupHomology.cyclesMkâ_eq, groupHomology.isoCyclesâ_hom_comp_i, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_apply, Rep.applyAsHom_hom, groupCohomology.shortComplexH2_g, forget_map, instIsGrothendieckAbelianModuleCat, Rep.coinvariantsShortComplex_Xâ, CommRingCat.moduleCatExtendScalarsPseudofunctor_mapId, CategoryTheory.preadditiveCoyonedaObj_obj_isModule, groupHomology.chainsMap_f_0_comp_chainsIsoâ_apply, groupHomology.H0Ï_comp_H0Iso_hom_assoc, groupCohomology.H1Ï_comp_map, groupHomology.single_inv_Ï_self_add_single_mem_boundariesâ, groupHomology.cyclesMap_comp, LightCondensed.internallyProjective_iff_tensor_condition', smulShortComplex_Xâ_isModule, TannakaDuality.FiniteGroup.map_mul_toRightFDRepComp, Rep.indResHomEquiv_apply_hom, MonModuleEquivalenceAlgebra.inverse_map_hom, homAddEquiv_apply, PresheafOfModules.ofPresheaf_map, MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, hasLimit, CategoryTheory.preservesLimits_preadditiveCoyonedaObj, instPreservesProjectiveObjectsUliftFunctorOfSmall, groupHomology.epi_map_0_of_epi, groupHomology.mapShortComplexH1_Ïâ, directLimitCocone_pt_isModule, instLinearUliftFunctor, CommRingCat.KaehlerDifferential.ext_iff, AlgebraicGeometry.instIsIsoFunctorModuleCatCarrierUnitModulesSpecOfAdjunction, groupHomology.cyclesMap_comp_cyclesIsoâ_hom_assoc, groupCohomology.cocyclesMkâ_eq, AlgebraicGeometry.tilde.map_neg, endRingEquiv_apply, groupHomology.lsingle_comp_chainsMap_f_assoc, directLimitDiagram_map, Rep.linearizationTrivialIso_hom_hom, ofHom_id, LightCondensed.instIsGrothendieckAbelianLightCondMod, HasColimit.reflectsColimit, PresheafOfModules.naturality_apply, groupHomology.single_mem_cyclesâ_iff, Rep.instIsRightAdjointSubtypeMemSubgroupIndFunctorSubtype, groupCohomology.isoShortComplexH1_inv, image.fac, CategoryTheory.additive_coyonedaObj, groupHomology.boundariesâ_le_cyclesâ, LightCondMod.isDiscrete_iff_isDiscrete_forget, mono_as_hom'_subtype, groupHomology.cyclesIsoâ_inv_comp_iCycles_assoc, FilteredColimits.Îč_colimitDesc_assoc, extendScalarsId_inv_app_apply, semilinearMapAddEquiv_symm_apply_apply, hasColimitsOfShape, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc, Rep.coinvariantsAdjunction_homEquiv_apply_hom, PresheafOfModules.fromFreeYonedaCoproduct_app_mk, hom_comp, MonoidalCategory.braiding_inv_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, groupHomology.H1CoresCoinf_f, Rep.diagonalSuccIsoFree_hom_hom_single, AlgebraicGeometry.structurePresheafInModuleCat_obj_carrier, hom_neg, Rep.ihom_obj_Ï, instInvertibleCarrierOutModuleCatValSkeleton, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ, Rep.free_ext_iff, MonoidalCategory.whiskerRight_def, AlgebraicGeometry.isIso_fromTildeÎ_iff, FGModuleCat.instFaithfulUlift, Rep.instPreservesLimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, groupCohomology.cochainsMap_id_comp_assoc, preservesLimit_restrictScalars, groupCohomology.cocyclesâ_ext_iff, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_assoc, groupCohomology.map_H0Iso_hom_f_assoc, ofHom_apply, CategoryTheory.ShortComplex.Exact.moduleCat_of_range_eq_ker, TannakaDuality.FiniteGroup.ofRightFDRep_hom, CommRingCat.moduleCatRestrictScalarsPseudofunctor_obj, kernelIsoKer_inv_kernel_Îč, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, AlgebraicGeometry.tilde.map_id_assoc, simple_iff_isSimpleModule', Rep.instIsLeftAdjointIndFunctor, groupHomology.shortComplexH1_g, Rep.instPreservesZeroMorphismsModuleCatCoinvariantsFunctor, restrictScalarsCongr_inv_app, groupCohomology.eq_dââ_comp_inv_assoc, Representation.linHom.invariantsEquivRepHom_apply_hom, groupHomology.cyclesMap_id, CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.preservesFiniteColimits_embedding, groupCohomology.H1InfRes_f, Rep.instAdditiveModuleCatInvariantsFunctor, imageIsoRange_hom_subtype_apply, LinearMap.comp_id_moduleCat, CondensedMod.LocallyConstant.instFaithfulModuleCatSheafCompHausCoherentTopologyConstantSheaf, FGModuleCat.Iso.conj_hom_eq_conj, smulShortComplex_Xâ, MatrixModCat.toModuleCat_obj_isModule, epi_iff_range_eq_top, instFreeCarrierXâModuleCatProjectiveShortComplex, forgetâAddCommGroupIsEquivalence, Rep.barComplex.d_comp_diagonalSuccIsoFree_inv_eq, groupHomology.dââArrowIso_inv_left, monoidalClosed_pre_app, SheafOfModules.forgetToSheafModuleCat_obj_val, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, Rep.coindFunctor'_map, groupHomology.single_mem_cyclesâ_iff, Rep.coinvariantsFunctor_map_hom, Rep.coindFunctor_obj, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï, groupHomology.dââ_single_Ï_add_single_inv_mul, PresheafOfModules.evaluation_obj, groupCohomology.mapShortComplexH2_Ïâ, LinearEquiv.toModuleIso_hom, HasLimit.productLimitCone_isLimit_lift, MonoidalCategory.tensorObj_carrier, Rep.linearization_map_hom_single, isZero_groupHomology_succ_of_subsingleton, groupCohomology.isoShortComplexH2_inv, Algebra.restrictScalarsEquivalenceOfRingEquiv_linear, CategoryTheory.preadditiveCoyoneda_obj, groupCohomology.map_id_comp_H0Iso_hom_assoc, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, Rep.ihom_obj_Ï_def, groupHomology.eq_dââ_comp_inv_apply, Rep.ihom_obj_V_carrier, LinearEquiv.toFGModuleCatIso_inv, semilinearMapAddEquiv_apply, CoextendScalars.map'_hom_apply_apply, Rep.coinvariantsShortComplex_Xâ, Rep.coindIso_hom_hom_hom, TannakaDuality.FiniteGroup.equivHom_surjective, RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply, freeHomEquiv_symm_apply, ulift_injective_of_injective, Rep.leftRegularTensorTrivialIsoFree_hom_hom, CategoryTheory.preadditiveCoyonedaObj_obj_isAddCommGroup, TannakaDuality.FiniteGroup.equivHom_injective, SheafOfModules.pushforwardPushforwardEquivalence_counit_app_val_app, groupHomology.H0Ï_comp_H0Iso_hom_apply, Rep.barComplex.d_single, freeDesc_apply, groupHomology.mapShortComplexH2_Ïâ, FDRep.hom_action_Ï, Rep.mono_iff_injective, MonoidalCategory.tensorUnit_isAddCommGroup, PresheafOfModules.evaluation_map, CategoryTheory.linearCoyoneda_obj_obj_isModule, FDRep.dualTensorIsoLinHom_hom_hom, homEquiv_extendScalarsId, ExtendScalars.hom_ext_iff, Rep.instMonoModuleCatHom, groupHomology.dââ_comp_dââ_assoc, groupCohomology.coe_mapCocyclesâ, groupCohomology.eq_dââ_comp_inv_assoc, groupHomology.coinvariantsMk_comp_H0Iso_inv_assoc, toKernelSubobject_arrow, groupCohomology.functor_map, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_obj_isAddCommGroup, CategoryTheory.Iso.toLinearMap_toLinearEquiv, instHasBinaryBiproducts, Rep.linearization_Δ_hom, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom_assoc, Condensed.instAB4CondensedMod, groupCohomology.H1Ï_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIsoâ_apply, smulShortComplex_g_epi, Rep.Tor_obj, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, Rep.coinvariantsShortComplex_shortExact, groupHomology.Ï_comp_H1Iso_inv_assoc, AlgebraicGeometry.instIsIsoModulesSpecOfCarrierFromTildeÎFreeOpensCarrierCarrierCommRingCat, Rep.FiniteCyclicGroup.resolution_Ï, Rep.instPreservesColimitsModuleCatForgetâHomSubtypeLinearMapIdCarrierV, groupHomology.mapCyclesâ_quotientGroupMk'_epi, PresheafOfModules.zero_app, groupHomology.Ï_map, groupHomology.mapCyclesâ_comp_i_assoc, groupHomology.H0Ï_comp_map_apply, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc, PresheafOfModules.map_comp_assoc, restrictScalarsId'App_inv_apply, groupCohomology.mapShortComplexH1_Ïâ, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, smulShortComplex_exact, groupHomology.Ï_comp_H2Iso_inv_apply, FDRep.instFullRepForgetâHomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, groupCohomology.coboundariesOfIsCoboundaryâ_coe, Rep.FiniteCyclicGroup.resolution.Ï_f, CoalgCat.toComon_obj, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, Rep.instAdditiveModuleCatCoinvariantsFunctor, PresheafOfModules.forgetToPresheafModuleCat_map, MonModuleEquivalenceAlgebra.inverseObj_one, groupCohomology.cochainsFunctor_obj, restrictScalarsComp'App_inv_apply, FDRep.endRingEquiv_comp_Ï, Rep.linearization_map_hom, CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForgetâLinearMapIdCarrierAddMonoidHomCarrier, groupHomology.mem_cyclesâ_iff, isZero_of_subsingleton, isZero_of_iff_subsingleton, Rep.FiniteCyclicGroup.groupCohomologyÏOdd_eq_zero_iff, groupCohomology.mapCocyclesâ_comp_i, groupHomology.boundariesToCyclesâ_apply, groupHomology.single_mem_cyclesâ_iff_inv, groupHomology.dââ_single, SheafOfModules.Finite.evaluationPreservesFiniteLimits, CategoryTheory.IsGrothendieckAbelian.instIsRightAdjointModuleCatMulOppositeEndPreadditiveCoyonedaObj, instHasCoequalizers, exteriorPower.functor_obj, TannakaDuality.FiniteGroup.equivHom_apply, ihom_ev_app, groupCohomology.cocyclesâ.dââ_apply, FDRep.simple_iff_char_is_norm_one, Rep.indResHomEquiv_symm_apply_hom, groupHomology.isoCyclesâ_hom_comp_i_assoc, FilteredColimits.colimit_add_mk_eq, groupHomology.comp_dââ_eq, groupCohomology.Ï_comp_H2Iso_hom, free_hom_ext_iff, groupHomology.chainsMap_f_0_comp_chainsIsoâ, groupHomology.H2Ï_eq_zero_iff, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierObjOppositeOpensCarrierCarrierCommRingCatSpecModuleCatPresheafModulesSheafModulesSpecToSheafOpBasicOpenPowersHomToOpen, CategoryTheory.ShortComplex.moduleCatMk_Xâ_isAddCommGroup, LightCondensed.instIsMonoidalFunctorOppositeLightProfiniteModuleCatWCoherentTopology, enoughInjectives, FGModuleCat.instIsMonoidalModuleCatIsFG, extendScalars_assoc, MonoidalCategory.associator_inv_apply, preservesColimit_restrictScalars, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, isSeparator, instHasFiniteBiproducts, Rep.norm_comm, exteriorPower.functor_map, instEnoughInjectivesModuleCatInt, Rep.linearization_ÎŒ_hom, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, groupHomology.H1Ï_eq_iff, ExtendRestrictScalarsAdj.unit_app, biprodIsoProd_inv_comp_fst_apply, groupHomology.dââ_comp_dââ_apply, FGModuleCat.instIsIsoCoimageImageComparison, CoextendScalars.map_apply, groupCohomology.shortComplexH1_g, groupHomology.chainsMap_f, Rep.quotientToCoinvariantsFunctor_obj_V, SheafOfModules.unitHomEquiv_apply_coe, CategoryTheory.Abelian.IsGrothendieckAbelian.OppositeModuleEmbedding.preservesFiniteLimits_embedding, Profinite.NobelingProof.succ_mono, CategoryTheory.preadditiveYonedaObj_map, groupHomology.chainsMap_f_2_comp_chainsIsoâ_apply, groupCohomology.map_comp_assoc, groupHomology.cyclesMap_comp_isoCyclesâ_hom, groupCohomology.cochainsMap_id, forgetâ_map, AlgebraicGeometry.tilde.toOpen_map_app, groupCohomology.dââ_eq_zero, Rep.instInjective, ChainComplex.linearYonedaObj_X, toMatrixModCat_obj_isModule
|
of đ | CompOp | 428 mathmath: CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, groupCohomology.instEpiModuleCatH2Ï, groupHomology.Ï_comp_H2Iso_hom_assoc, of_coe, biproductIsoPi_inv_comp_Ï, groupHomology.mapCyclesâ_comp_assoc, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, CategoryTheory.linearCoyoneda_map_app, groupCohomology.isoCocyclesâ_hom_comp_i_apply, groupCohomology.dââ_hom_apply, groupHomology.dââ_single_one, groupCohomology.dââ_comp_dââ, epi_as_hom''_mkQ, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_apply, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIsoâ_apply, groupCohomology.cocyclesIsoâ_hom_comp_f, Rep.resCoindAdjunction_counit_app_hom_hom, groupHomology.dââ_single, groupCohomology.eq_dââ_comp_inv, extendScalarsId_hom_app_one_tmul, groupCohomology.H1Ï_comp_map_assoc, groupHomology.mapCyclesâ_comp_apply, groupHomology.cyclesIsoâ_inv_comp_iCycles_apply, groupCohomology.Ï_comp_H0Iso_hom, ofHom_comp, groupCohomology.Ï_comp_H1Iso_hom_assoc, Îč_coprodIsoDirectSum_hom_apply, groupCohomology.eq_dââ_comp_inv, cokernel_Ï_cokernelIsoRangeQuotient_hom_apply, groupCohomology.mapCocyclesâ_comp_i, groupHomology.eq_dââ_comp_inv, groupCohomology.H0IsoOfIsTrivial_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_i_hom, groupCohomology.coe_mapCocyclesâ, CoextendScalars.smul_apply', groupHomology.cyclesMap_comp_isoCyclesâ_hom, groupCohomology.dââ_hom_apply, groupHomology.comp_dââ_eq, groupHomology.mapCyclesâ_comp_assoc, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_assoc, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, linearEquivIsoModuleIso_hom, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ, RestrictionCoextensionAdj.HomEquiv.toRestriction_hom_apply, groupCohomology.comp_dââ_eq, groupCohomology.cocyclesâ.dââ_apply, groupCohomology.dââ_hom_apply, extendRestrictScalarsAdj_homEquiv_apply, groupHomology.dââ_single_one_thd, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, groupCohomology.dArrowIsoââ_inv_right, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.dââ_comp_dââ_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, groupCohomology.eq_dââ_comp_inv_assoc, groupCohomology.eq_dââ_comp_inv_apply, groupCohomology.eq_dââ_comp_inv_apply, groupHomology.chainsâToCoinvariantsKer_surjective, Rep.coinvariantsTensorFreeLEquiv_symm_apply, LinearEquiv.toModuleIso_inv, Profinite.NobelingProof.GoodProducts.linearIndependent_comp_of_eval, exteriorPower.isoâ_hom_naturality, ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars_hom_apply, Rep.resCoindAdjunction_unit_app_hom_hom, groupHomology.dââ_comp_dââ_assoc, endRingEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.groupHomologyÏOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupCohomology.mapCocyclesâ_comp_i_apply, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_apply, groupHomology.dââArrowIso_hom_left, groupHomology.cyclesâIsoOfIsTrivial_hom_apply, HasLimit.productLimitCone_cone_Ï, CoalgCat.moduleCat_of_toModuleCat, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_apply, groupHomology.dââ_single_inv_mul_Ï_add_single, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles, groupCohomology.mapCocyclesâ_comp_i_assoc, groupHomology.dââ_comp_coinvariantsMk_apply, ExtendRestrictScalarsAdj.Counit.map_hom_apply, groupCohomology.H1IsoOfIsTrivial_inv_apply, biprodIsoProd_inv_comp_snd_apply, RestrictionCoextensionAdj.counit'_app, groupHomology.chainsMap_f_3_comp_chainsIsoâ, groupHomology.mapCyclesâ_id_comp_assoc, groupHomology.eq_dââ_comp_inv, groupCohomology.cocyclesâIsoOfIsTrivial_hom_hom_apply_apply, groupCohomology.H2Ï_comp_map_apply, groupHomology.mapCyclesâ_comp, Profinite.NobelingProof.succ_exact, groupCohomology.dArrowIsoââ_hom_right, CompHausLike.LocallyConstantModule.functorToPresheaves_map_app, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_assoc, imageIsoRange_hom_subtype, groupHomology.mapCyclesâ_comp_i, CoextendScalars.smul_apply, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, groupCohomology.H1IsoOfIsTrivial_H1Ï_apply_apply, imageIsoRange_inv_image_Îč_apply, groupCohomology.comp_dââ_eq, cokernel_Ï_cokernelIsoRangeQuotient_hom, Rep.FiniteCyclicGroup.groupCohomologyÏOdd_eq_iff, groupCohomology.dââ_apply_mem_cocyclesâ, groupHomology.mapCyclesâ_id_comp, groupCohomology.dââ_apply_mem_cocyclesâ, exteriorPower.isoâ_hom_apply, groupHomology.dââ_single_inv_self_Ï_sub_self_inv, groupCohomology.subtype_comp_dââ_apply, groupCohomology.H2Ï_eq_iff, CoalgCat.toComonObj_X, groupCohomology.comp_dââ_eq, homAddEquiv_symm_apply_hom, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, groupHomology.mapCyclesâ_comp_i, groupCohomology.map_H0Iso_hom_f, groupCohomology.dArrowIsoââ_inv_left, groupCohomology.Ï_comp_H1Iso_hom, Rep.FiniteCyclicGroup.groupCohomologyÏEven_eq_zero_iff, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_assoc_apply, groupHomology.eq_dââ_comp_inv_apply, lof_coprodIsoDirectSum_inv, CategoryTheory.linearYoneda_map_app, CoalgCat.comul_def, groupHomology.mapCyclesâ_id_comp_apply, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_assoc, simple_iff_isSimpleModule, groupCohomology.instEpiModuleCatH1Ï, IsProjective.iff_projective, groupCohomology.H2Ï_comp_map, groupHomology.Ï_comp_H2Iso_hom, Rep.indResAdjunction_counit_app_hom_hom, FGModuleCat.FGModuleCatDual_obj, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, groupHomology.mapCyclesâ_comp_i_apply, Rep.FiniteCyclicGroup.groupHomologyÏEven_eq_iff, groupHomology.mapCyclesâ_comp, kernelIsoKer_inv_kernel_Îč_apply, ExtendRestrictScalarsAdj.HomEquiv.fromExtendScalars_hom_apply, groupCohomology.isoCocyclesâ_hom_comp_i, groupCohomology.Ï_comp_H0Iso_hom_apply, groupHomology.coe_mapCyclesâ, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, groupHomology.comp_dââ_eq, groupHomology.H1Ï_comp_map_apply, groupCohomology.dArrowIsoââ_hom_left, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, groupCohomology.eq_dââ_comp_inv_apply, simple_of_isSimpleModule, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_assoc, groupCohomology.mapCocyclesâ_one, groupHomology.H2Ï_comp_map_assoc, biprodIsoProd_inv_comp_snd, piIsoPi_inv_kernel_Îč_apply, lof_coprodIsoDirectSum_inv_apply, groupHomology.dââArrowIso_inv_right, range_mkQ_cokernelIsoRangeQuotient_inv, exteriorPower.isoâ_hom_naturality_assoc, groupCohomology.Ï_comp_H0Iso_hom_assoc, imageIsoRange_hom_subtype_assoc, groupCohomology.H2Ï_comp_map_assoc, groupHomology.dââ_comp_coinvariantsMk, groupHomology.dââ_comp_dââ_apply, groupHomology.mapCyclesâ_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, groupCohomology.dââ_ker_eq_invariants, groupHomology.H2Ï_eq_iff, groupHomology.H1AddEquivOfIsTrivial_single, groupHomology.range_dââ_eq_coinvariantsKer, groupCohomology.inhomogeneousCochains.d_comp_d, groupHomology.isoCyclesâ_hom_comp_i_apply, groupCohomology.Ï_comp_H0IsoOfIsTrivial_hom_apply, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_assoc, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, RestrictionCoextensionAdj.unit'_app, AlgebraicGeometry.tilde.instIsLocalizedModuleCarrierCarrierOfCarrierStalkAbPresheafPrimeComplAsIdealHomToStalk, groupHomology.eq_dââ_comp_inv_assoc, imageIsoRange_inv_image_Îč, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom_assoc, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom, groupHomology.inhomogeneousChains.d_single, groupCohomology.dââ_comp_dââ_assoc, ExtendScalars.smul_tmul, QuadraticModuleCat.forgetâ_obj, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_apply, groupHomology.mapCyclesâ_id_comp_assoc, groupHomology.Ï_comp_H1Iso_hom_apply, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.subtype_comp_dââ_assoc, groupHomology.toCycles_comp_isoCyclesâ_hom, groupCohomology.map_id_comp_H0Iso_hom, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_assoc_apply, groupHomology.mapCyclesâ_id_comp, coe_of, groupCohomology.cocyclesâIsoOfIsTrivial_inv_hom_apply_coe, ExtendScalars.map_tmul, forgetâ_obj_moduleCat_of, groupHomology.eq_dââ_comp_inv, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, groupHomology.isoShortComplexH1_inv, groupHomology.eq_dââ_comp_inv_assoc, groupCohomology.dââ_comp_dââ, groupHomology.chainsMap_f_1_comp_chainsIsoâ_assoc, groupHomology.isoCyclesâ_hom_comp_i_apply, groupCohomology.cocyclesIsoâ_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_apply, imageIsoRange_inv_image_Îč_assoc, groupCohomology.H1Ï_eq_zero_iff, Profinite.NobelingProof.GoodProducts.square_commutes, groupCohomology.cochainsMap_f, groupHomology.dââ_single_one_fst, inhomogeneousCochains.d_hom_apply, CoalgCat.counit_def, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, groupHomology.dââ_comp_dââ, groupHomology.dââ_single_self_inv_Ï_sub_inv_self, kernelIsoKer_hom_ker_subtype, groupHomology.chainsMap_f_3_comp_chainsIsoâ_assoc, groupHomology.H1ToTensorOfIsTrivial_H1Ï_single, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc_apply, Rep.FiniteCyclicGroup.groupHomologyÏEven_eq_zero_iff, groupCohomology.cocyclesMkâ_eq, AlgCat.forgetâ_module_obj, Îč_coprodIsoDirectSum_hom, Rep.quotientToInvariantsFunctor_obj_V, groupHomology.inhomogeneousChains.ext_iff, groupHomology.dââ_apply_mem_cyclesâ, MonModuleEquivalenceAlgebra.inverseObj_mul, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, groupCohomology.H2Ï_eq_zero_iff, groupCohomology.mapCocyclesâ_comp_i_assoc, groupCohomology.H1Ï_comp_map_apply, groupHomology.eq_dââ_comp_inv_assoc, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f, CoalgCat.forgetâ_obj, groupCohomology.Ï_comp_H2Iso_hom_assoc, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, Rep.coinvariantsMk_app_hom, AddCommGrpCat.injective_as_module_iff, groupHomology.mapCyclesâ_hom, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, range_mkQ_cokernelIsoRangeQuotient_inv_apply, groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, kernelIsoKer_hom_ker_subtype_apply, groupHomology.cyclesMkâ_eq, groupHomology.chainsMap_f_1_comp_chainsIsoâ, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_assoc, groupHomology.H1Ï_eq_zero_iff, groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, groupHomology.Ï_comp_H1Iso_hom_assoc, groupHomology.chainsMap_f_2_comp_chainsIsoâ, groupHomology.dââ_single_one_fst, groupHomology.H2Ï_comp_map, CategoryTheory.ShortComplex.Ï_moduleCatCyclesIso_hom_apply, Module.injective_iff_injective_object, groupCohomology.eq_dââ_comp_inv, Rep.FiniteCyclicGroup.groupCohomologyÏEven_eq_iff, groupHomology.H1Ï_comp_map_assoc, groupHomology.instEpiModuleCatH1Ï, piIsoPi_hom_ker_subtype_apply, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, inhomogeneousCochains.d_eq, groupHomology.instEpiModuleCatH2Ï, piIsoPi_hom_ker_subtype, groupCohomology.cocyclesMkâ_eq, groupHomology.H1Ï_comp_map, groupHomology.chainsMap_f_hom, groupHomology.dââ_apply_mem_cyclesâ, piIsoPi_inv_kernel_Îč, Rep.indResAdjunction_unit_app_hom_hom, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.cyclesMkâ_eq, groupHomology.mapCyclesâ_comp_i_assoc, groupCohomology.isoCocyclesâ_hom_comp_i, groupCohomology.mapCocyclesâ_comp_i_apply, groupHomology.mapCyclesâ_id_comp_apply, directLimitCocone_Îč_app, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ, groupHomology.H2Ï_comp_map_apply, Hom.homâ_apply, uliftFunctor_obj, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, Rep.FiniteCyclicGroup.groupHomologyÏOdd_eq_iff, groupHomology.inhomogeneousChains.d_comp_d, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_K, groupCohomology.Ï_comp_H2Iso_hom_apply, HasLimit.lift_hom_apply, binaryProductLimitCone_isLimit_lift, groupHomology.isoCyclesâ_hom_comp_i_assoc, extendScalarsComp_hom_app_one_tmul, Rep.invariantsFunctor_map_hom, linearEquivIsoModuleIso_inv, groupHomology.dââ_eq_zero_of_isTrivial, groupCohomology.Ï_comp_H1Iso_hom_apply, groupCohomology.dââ_comp_dââ_assoc, preservesFiniteLimits_tensorLeft_of_ringHomFlat, groupHomology.dââ_single_one_snd, biprodIsoProd_inv_comp_fst, groupHomology.dââ_comp_dââ, groupHomology.dââ_single_one_snd, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_apply, groupHomology.Ï_comp_H2Iso_hom_apply, FDRep.of_Ï, biproductIsoPi_inv_comp_Ï_apply, groupHomology.mapCyclesâ_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_Ï_hom, groupHomology.isoCyclesâ_inv_comp_iCycles, Module.injective_object_of_injective_module, groupHomology.cyclesMap_comp_isoCyclesâ_hom_assoc, FGModuleCat.FGModuleCatEvaluation_apply', groupHomology.isoShortComplexH2_inv, groupHomology.coe_mapCyclesâ, groupHomology.toCycles_comp_isoCyclesâ_hom, groupCohomology.dââ_comp_dââ_apply, groupHomology.chainsMap_f_2_comp_chainsIsoâ_assoc, groupHomology.mapCyclesâ_comp_i_apply, binaryProductLimitCone_cone_pt, groupCohomology.cocyclesIsoâ_hom_comp_f_apply, ofHomâ_hom_apply_hom, groupCohomology.subtype_comp_dââ, groupHomology.isoCyclesâ_hom_comp_i, groupHomology.Ï_comp_H1Iso_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc_apply, groupHomology.isoCyclesâ_inv_comp_iCycles, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_Ï_apply, groupHomology.dââ_single_inv, groupHomology.mkH1OfIsTrivial_apply, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom, ofHomâ_comprâ, groupHomology.dââArrowIso_hom_right, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_assoc, groupHomology.Ï_comp_H1Iso_inv_apply, groupCohomology.isoCocyclesâ_hom_comp_i_apply, groupHomology.dââ_single, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc_apply, hom_ofHom, groupHomology.inhomogeneousChains.d_eq, groupHomology.cyclesâIsoOfIsTrivial_inv_apply, groupHomology.eq_dââ_comp_inv_apply, groupHomology.dââ_comp_coinvariantsMk_assoc, groupHomology.isoCyclesâ_hom_comp_i, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_apply, groupHomology.chainsMap_f_0_comp_chainsIsoâ_apply, groupCohomology.H1Ï_comp_map, MonModuleEquivalenceAlgebra.inverse_map_hom, PresheafOfModules.ofPresheaf_map, groupCohomology.cocyclesMkâ_eq, groupHomology.lsingle_comp_chainsMap_f_assoc, ofHom_id, groupCohomology.isoShortComplexH1_inv, mono_as_hom'_subtype, extendScalarsId_inv_app_apply, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.Îč_d_assoc, sMulCommClass_mk, QuadraticModuleCat.moduleCat_of_toModuleCat, Rep.ihom_obj_Ï, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ, groupCohomology.map_H0Iso_hom_f_assoc, ofHom_apply, kernelIsoKer_inv_kernel_Îč, groupCohomology.eq_dââ_comp_inv_assoc, imageIsoRange_hom_subtype_apply, groupHomology.dââArrowIso_inv_left, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, Rep.coinvariantsFunctor_map_hom, groupHomology.dââ_single_Ï_add_single_inv_mul, LinearEquiv.toModuleIso_hom, HasLimit.productLimitCone_isLimit_lift, groupCohomology.isoShortComplexH2_inv, groupCohomology.map_id_comp_H0Iso_hom_assoc, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, groupHomology.eq_dââ_comp_inv_apply, CoextendScalars.map'_hom_apply_apply, RestrictionCoextensionAdj.HomEquiv.fromRestriction_hom_apply_apply, ulift_injective_of_injective, ExtendScalars.hom_ext_iff, groupHomology.dââ_comp_dââ_assoc, groupCohomology.coe_mapCocyclesâ, groupCohomology.eq_dââ_comp_inv_assoc, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom_assoc, groupCohomology.H1Ï_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIsoâ_apply, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, groupHomology.mapCyclesâ_quotientGroupMk'_epi, groupHomology.mapCyclesâ_comp_i_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_apply, groupHomology.Ï_comp_H2Iso_inv_apply, MonModuleEquivalenceAlgebra.inverseObj_one, isZero_of_iff_subsingleton, Rep.FiniteCyclicGroup.groupCohomologyÏOdd_eq_zero_iff, groupCohomology.mapCocyclesâ_comp_i, groupHomology.dââ_single, groupCohomology.cocyclesâ.dââ_apply, groupHomology.isoCyclesâ_hom_comp_i_assoc, groupHomology.comp_dââ_eq, groupCohomology.Ï_comp_H2Iso_hom, groupHomology.H2Ï_eq_zero_iff, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, isSeparator, groupHomology.H1Ï_eq_iff, biprodIsoProd_inv_comp_fst_apply, groupHomology.dââ_comp_dââ_apply, CoextendScalars.map_apply, groupHomology.chainsMap_f, Rep.quotientToCoinvariantsFunctor_obj_V, Profinite.NobelingProof.succ_mono, groupHomology.chainsMap_f_2_comp_chainsIsoâ_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom, groupCohomology.dââ_eq_zero
|
ofHom đ | CompOp | 130 mathmath: Rep.resCoindHomEquiv_symm_apply_hom, Rep.resCoindHomEquiv_apply_hom, CategoryTheory.preadditiveCoyonedaObj_map, biproductIsoPi_inv_comp_Ï, CategoryTheory.linearCoyoneda_map_app, Rep.MonoidalClosed.linearHomEquiv_symm_hom, epi_as_hom''_mkQ, toMatrixModCat_map, Rep.leftRegularHom_hom, ofHom_comp, CategoryTheory.linearYoneda_obj_map, CategoryTheory.ShortComplex.moduleCatMk_g, PresheafOfModules.restrictScalarsObj_map, Rep.standardComplex.d_eq, LinearEquiv.toModuleIso_inv, Profinite.NobelingProof.GoodProducts.linearIndependent_comp_of_eval, Rep.homEquiv_apply_hom, HasLimit.productLimitCone_cone_Ï, QuadraticModuleCat.forgetâ_map, RestrictionCoextensionAdj.counit'_app, MonoidalCategory.whiskerLeft_def, Rep.ihom_ev_app_hom, Profinite.NobelingProof.succ_exact, Rep.MonoidalClosed.linearHomEquivComm_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_map_app, imageIsoRange_hom_subtype, groupCohomology.shortComplexH0_f, binaryProductLimitCone_cone_Ï_app_right, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom, MonoidalCategory.tensorHom_def, Rep.subtype_hom, cokernel_Ï_cokernelIsoRangeQuotient_hom, Rep.invariantsAdjunction_unit_app, lof_coprodIsoDirectSum_inv, CategoryTheory.linearYoneda_map_app, CoalgCat.comul_def, directLimitIsColimit_desc, smulShortComplex_g, Rep.coindMap'_hom, biprodIsoProd_inv_comp_snd, range_mkQ_cokernelIsoRangeQuotient_inv, TannakaDuality.FiniteGroup.equivApp_inv, Rep.finsuppTensorRight_hom_hom, imageIsoRange_hom_subtype_assoc, TannakaDuality.FiniteGroup.equivApp_hom, MonoidalCategory.tensorÎŒ_eq_tensorTensorTensorComm, RestrictionCoextensionAdj.unit'_app, imageIsoRange_inv_image_Îč, Rep.ofMulActionSubsingletonIsoTrivial_inv_hom, CompHausLike.LocallyConstantModule.functorToPresheaves_obj_map, Rep.diagonalOneIsoLeftRegular_inv_hom, PresheafOfModules.homMk_app, groupCohomology.subtype_comp_dââ_assoc, groupHomology.lsingle_comp_chainsMap_f, imageIsoRange_inv_image_Îč_assoc, Rep.invariantsAdjunction_counit_app_hom, Profinite.NobelingProof.GoodProducts.square_commutes, groupCohomology.cochainsMap_f, CoalgCat.counit_def, CategoryTheory.ShortComplex.pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, binaryProductLimitCone_cone_Ï_app_left, kernelIsoKer_hom_ker_subtype, smulShortComplex_f, Rep.ofMulActionSubsingletonIsoTrivial_hom_hom, Îč_coprodIsoDirectSum_hom, groupHomology.inhomogeneousChains.ext_iff, MonModuleEquivalenceAlgebra.inverseObj_mul, CategoryTheory.linearCoyoneda_obj_map, Rep.finsuppTensorRight_inv_hom, Rep.coindVEquiv_apply_hom, Rep.ihom_map_hom, Rep.finsuppTensorLeft_inv_hom, CoalgCat.forgetâ_map, piIsoPi_hom_ker_subtype, Rep.leftRegularTensorTrivialIsoFree_inv_hom, piIsoPi_inv_kernel_Îč, Rep.norm_hom, Rep.ofHom_Ï, uliftFunctor_map, Rep.linearization_ÎŽ_hom, ofHom_hom, Rep.coindMap_hom, ChainComplex.linearYonedaObj_d, directLimitCocone_Îč_app, Rep.MonoidalClosed.linearHomEquiv_hom, Hom.homâ_apply, Rep.finsuppTensorLeft_hom_hom, MatrixModCat.toModuleCat_map, binaryProductLimitCone_isLimit_lift, CategoryTheory.ShortComplex.moduleCatMk_f, Rep.indMap_hom, Rep.homEquiv_symm_apply_hom, AlgCat.forgetâ_module_map, CoalgCat.toComon_map_hom, biprodIsoProd_inv_comp_fst, Rep.diagonalOneIsoLeftRegular_hom_hom, Rep.ihom_coev_app_hom, groupCohomology.subtype_comp_dââ, Rep.freeLift_hom, ofHomâ_comprâ, hom_ofHom, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, Rep.applyAsHom_hom, Rep.indResHomEquiv_apply_hom, MonModuleEquivalenceAlgebra.inverse_map_hom, PresheafOfModules.ofPresheaf_map, groupHomology.lsingle_comp_chainsMap_f_assoc, directLimitDiagram_map, ofHom_id, mono_as_hom'_subtype, MonoidalCategory.whiskerRight_def, ofHom_apply, TannakaDuality.FiniteGroup.ofRightFDRep_hom, kernelIsoKer_inv_kernel_Îč, Representation.linHom.invariantsEquivRepHom_apply_hom, Rep.mkQ_hom, monoidalClosed_pre_app, LinearEquiv.toModuleIso_hom, HasLimit.productLimitCone_isLimit_lift, semilinearMapAddEquiv_apply, Rep.leftRegularTensorTrivialIsoFree_hom_hom, Rep.linearization_Δ_hom, MonModuleEquivalenceAlgebra.inverseObj_one, Rep.linearization_map_hom, ihom_ev_app, Rep.indResHomEquiv_symm_apply_hom, Rep.linearization_ÎŒ_hom, groupHomology.chainsMap_f, Profinite.NobelingProof.succ_mono, CategoryTheory.preadditiveYonedaObj_map
|
ofHomâ đ | CompOp | 5 mathmath: ofHomâ_homâ, ihom_coev_app, ofHomâ_hom_apply_hom, ofHomâ_comprâ, Hom.homâ_ofHomâ
|
smul đ | CompOp | 4 mathmath: smul_naturality, smulNatTrans_apply_app, HasColimit.coconePointSMul_apply, mkOfSMul_smul
|
smulNatTrans đ | CompOp | 1 mathmath: smulNatTrans_apply_app
|
«termâ_» đ | CompOp | â |