Documentation Verification Report

Presheaf

πŸ“ Source: Mathlib/Algebra/Category/ModuleCat/Differentials/Presheaf.lean

Statistics

MetricCount
DefinitionsDerivation', mk, app, mk, Universal, desc, d, postcomp, derivation', isUniversal', relativeDifferentials', HasDifferentials
12
Theoremsapp_apply, d_app, mk_app, fac, postcomp_injective, congr_d, d_app, d_map, d_mul, d_one, ext, ext_iff, instSubsingletonUniversal, postcomp_d_apply, instHasDifferentials, relativeDifferentials'_map, relativeDifferentials'_map_d, relativeDifferentials'_obj, exists_universal_derivation
19
Total31

PresheafOfModules

Definitions

NameCategoryTheorems
Derivation' πŸ“–CompOpβ€”
HasDifferentials πŸ“–CompData
1 mathmath: DifferentialsConstruction.instHasDifferentials

PresheafOfModules.Derivation

Definitions

NameCategoryTheorems
Universal πŸ“–CompData
2 mathmath: instSubsingletonUniversal, PresheafOfModules.HasDifferentials.exists_universal_derivation
d πŸ“–CompOp
9 mathmath: d_map, postcomp_d_apply, d_one, d_mul, congr_d, ext_iff, PresheafOfModules.Derivation'.d_app, d_app, PresheafOfModules.Derivation'.app_apply
postcomp πŸ“–CompOp
2 mathmath: Universal.fac, postcomp_d_apply

Theorems

NameKindAssumesProvesValidatesDepends On
congr_d πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CommRingCat
CommRingCat.instCategory
ModuleCat.carrier
RingCat.carrier
RingCat
RingCat.instCategory
CategoryTheory.Functor.comp
CategoryTheory.forgetβ‚‚
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Ring.toSemiring
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
PresheafOfModules.obj
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
ModuleCat.isAddCommGroup
AddMonoidHom.instFunLike
d
β€”β€”
d_app πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CommRingCat
CommRingCat.instCategory
CategoryTheory.Functor.op
ModuleCat.carrier
RingCat.carrier
RingCat
RingCat.instCategory
CategoryTheory.Functor.comp
CategoryTheory.forgetβ‚‚
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Ring.toSemiring
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
PresheafOfModules.obj
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
ModuleCat.isAddCommGroup
AddMonoidHom.instFunLike
d
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
d_map πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CommRingCat
CommRingCat.instCategory
ModuleCat.carrier
RingCat.carrier
RingCat
RingCat.instCategory
CategoryTheory.Functor.comp
CategoryTheory.forgetβ‚‚
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Ring.toSemiring
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
PresheafOfModules.obj
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
ModuleCat.isAddCommGroup
AddMonoidHom.instFunLike
d
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
RingCat.Hom.hom
LinearMap
RingHom.id
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
PresheafOfModules.map
β€”β€”
d_mul πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CommRingCat
CommRingCat.instCategory
ModuleCat.carrier
RingCat.carrier
RingCat
RingCat.instCategory
CategoryTheory.Functor.comp
CategoryTheory.forgetβ‚‚
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Ring.toSemiring
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
PresheafOfModules.obj
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
ModuleCat.isAddCommGroup
AddMonoidHom.instFunLike
d
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
ModuleCat.isModule
β€”β€”
d_one πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CommRingCat
CommRingCat.instCategory
ModuleCat.carrier
RingCat.carrier
RingCat
RingCat.instCategory
CategoryTheory.Functor.comp
CategoryTheory.forgetβ‚‚
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Ring.toSemiring
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
PresheafOfModules.obj
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
ModuleCat.isAddCommGroup
AddMonoidHom.instFunLike
d
AddMonoidWithOne.toOne
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”mul_one
one_smul
AddLeftCancelSemigroup.toIsLeftCancelAdd
d_mul
ext πŸ“–β€”dβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”dβ€”ext
instSubsingletonUniversal πŸ“–mathematicalβ€”Universalβ€”Universal.postcomp_injective
Universal.fac
postcomp_d_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CommRingCat
CommRingCat.instCategory
ModuleCat.carrier
RingCat.carrier
RingCat
RingCat.instCategory
CategoryTheory.Functor.comp
CategoryTheory.forgetβ‚‚
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Ring.toSemiring
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
PresheafOfModules.obj
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
AddMonoidHom.instFunLike
d
postcomp
LinearMap
RingHom.id
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.Hom.hom
PresheafOfModules.Hom.app
β€”β€”

PresheafOfModules.Derivation'

Definitions

NameCategoryTheorems
app πŸ“–CompOp
2 mathmath: mk_app, app_apply
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
app_apply πŸ“–mathematicalβ€”ModuleCat.Derivation.d
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CommRingCat
CommRingCat.instCategory
PresheafOfModules.obj
CategoryTheory.Functor.comp
RingCat
RingCat.instCategory
CategoryTheory.forgetβ‚‚
RingHom
CommRingCat.carrier
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
RingCat.carrier
Ring.toSemiring
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
CategoryTheory.NatTrans.app
app
DFunLike.coe
AddMonoidHom
ModuleCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
ModuleCat.isAddCommGroup
AddMonoidHom.instFunLike
PresheafOfModules.Derivation.d
CategoryTheory.Functor.id
β€”β€”
d_app πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CommRingCat
CommRingCat.instCategory
ModuleCat.carrier
RingCat.carrier
RingCat
RingCat.instCategory
CategoryTheory.Functor.comp
CategoryTheory.forgetβ‚‚
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Ring.toSemiring
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
PresheafOfModules.obj
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
ModuleCat.isAddCommGroup
AddMonoidHom.instFunLike
PresheafOfModules.Derivation.d
CategoryTheory.Functor.id
CategoryTheory.ConcreteCategory.hom
CategoryTheory.NatTrans.app
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”PresheafOfModules.Derivation.d_app
mk_app πŸ“–mathematicalModuleCat.Derivation.d
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CommRingCat
CommRingCat.instCategory
PresheafOfModules.obj
CategoryTheory.Functor.comp
RingCat
RingCat.instCategory
CategoryTheory.forgetβ‚‚
RingHom
CommRingCat.carrier
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
RingCat.carrier
Ring.toSemiring
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
CategoryTheory.NatTrans.app
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
RingCat.Hom.hom
ModuleCat.carrier
LinearMap
RingHom.id
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
PresheafOfModules.map
appβ€”β€”

PresheafOfModules.Derivation'.Universal

Definitions

NameCategoryTheorems
mk πŸ“–CompOpβ€”

PresheafOfModules.Derivation.Universal

Definitions

NameCategoryTheorems
desc πŸ“–CompOp
1 mathmath: fac

Theorems

NameKindAssumesProvesValidatesDepends On
fac πŸ“–mathematicalβ€”PresheafOfModules.Derivation.postcomp
desc
β€”β€”
postcomp_injective πŸ“–β€”PresheafOfModules.Derivation.postcompβ€”β€”β€”

PresheafOfModules.DifferentialsConstruction

Definitions

NameCategoryTheorems
derivation' πŸ“–CompOpβ€”
isUniversal' πŸ“–CompOpβ€”
relativeDifferentials' πŸ“–CompOp
3 mathmath: relativeDifferentials'_map_d, relativeDifferentials'_obj, relativeDifferentials'_map

Theorems

NameKindAssumesProvesValidatesDepends On
instHasDifferentials πŸ“–mathematicalβ€”PresheafOfModules.HasDifferentials
CategoryTheory.Functor.id
β€”β€”
relativeDifferentials'_map πŸ“–mathematicalβ€”PresheafOfModules.map
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CommRingCat
CommRingCat.instCategory
RingCat
RingCat.instCategory
CategoryTheory.forgetβ‚‚
RingHom
CommRingCat.carrier
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
RingCat.carrier
Ring.toSemiring
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
relativeDifferentials'
CommRingCat.KaehlerDifferential.map
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
β€”β€”
relativeDifferentials'_map_d πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CommRingCat
CommRingCat.instCategory
Ring.toSemiring
CommRing.toRing
CommRingCat.commRing
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
PresheafOfModules.obj
CategoryTheory.Functor.comp
RingCat
RingCat.instCategory
CategoryTheory.forgetβ‚‚
RingHom
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
RingCat.carrier
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
relativeDifferentials'
ModuleCat
ModuleCat.moduleCategory
ModuleCat.restrictScalars
RingCat.Hom.hom
CategoryTheory.Functor.map
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
CommRingCat.KaehlerDifferential
CategoryTheory.NatTrans.app
LinearMap.instFunLike
ModuleCat.Hom.hom
PresheafOfModules.map
CommRingCat.KaehlerDifferential.d
CategoryTheory.ConcreteCategory.hom
β€”CommRingCat.KaehlerDifferential.map_d
CategoryTheory.NatTrans.naturality
relativeDifferentials'_obj πŸ“–mathematicalβ€”PresheafOfModules.obj
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
CommRingCat
CommRingCat.instCategory
RingCat
RingCat.instCategory
CategoryTheory.forgetβ‚‚
RingHom
CommRingCat.carrier
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
RingCat.carrier
Ring.toSemiring
RingCat.ring
RingCat.instConcreteCategoryRingHomCarrier
CommRingCat.hasForgetToRingCat
relativeDifferentials'
CommRingCat.KaehlerDifferential
CategoryTheory.Functor.obj
CategoryTheory.NatTrans.app
β€”β€”

PresheafOfModules.HasDifferentials

Theorems

NameKindAssumesProvesValidatesDepends On
exists_universal_derivation πŸ“–mathematicalβ€”PresheafOfModules.Derivation.Universalβ€”β€”

---

← Back to Index