Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Category/ModuleCat/Monoidal/Basic.lean

Statistics

MetricCount
DefinitionsinstMonoidalCategoryStruct, tensorLift, instCommRingCarrierTensorUnit, monoidalCategory, associator, instMonoidalCategoryStruct, leftUnitor, rightUnitor, tensorHom, tensorLift, tensorObj, whiskerLeft, whiskerRight, instCommSemiringCarrierTensorUnit, monoidalCategory
15
Theoremsassociator_def, associator_hom_apply, associator_inv_apply, leftUnitor_def, leftUnitor_hom_apply, leftUnitor_inv_apply, rightUnitor_def, rightUnitor_hom_apply, rightUnitor_inv_apply, tensorHom_def, tensorHom_tmul, tensorLift_tmul, tensorObj, tensorObj_carrier, tensorObj_def, tensorObj_isAddCommGroup, tensorObj_isModule, tensorUnit_carrier, tensorUnit_isAddCommGroup, tensorUnit_isModule, tensor_ext, tensor_ext₃, tensor_ext₃', whiskerLeft_apply, whiskerLeft_def, whiskerRight_apply, whiskerRight_def, hom_hom_associator, hom_hom_leftUnitor, hom_hom_rightUnitor, hom_inv_associator, hom_inv_leftUnitor, hom_inv_rightUnitor, hom_tensorHom, hom_whiskerLeft, hom_whiskerRight, instMonoidalLinear, instMonoidalPreadditive, ofHomβ‚‚_comprβ‚‚, associator_def, associator_hom_apply, associator_inv_apply, associator_naturality, id_tensorHom_id, leftUnitor_def, leftUnitor_hom_apply, leftUnitor_inv_apply, leftUnitor_naturality, pentagon, rightUnitor_def, rightUnitor_hom_apply, rightUnitor_inv_apply, rightUnitor_naturality, tensorHom_comp_tensorHom, tensorHom_def, tensorHom_tmul, tensorLift_tmul, tensorObj_def, tensorUnit_carrier, tensorUnit_isAddCommMonoid, tensorUnit_isModule, tensor_ext, tensor_ext₃, tensor_ext₃', triangle, whiskerLeft_apply, whiskerLeft_def, whiskerRight_apply, whiskerRight_def, hom_hom_associator, hom_hom_leftUnitor, hom_hom_rightUnitor, hom_inv_associator, hom_inv_leftUnitor, hom_inv_rightUnitor, hom_tensorHom, hom_whiskerLeft, hom_whiskerRight
78
Total93

ModuleCat

Definitions

NameCategoryTheorems
instCommRingCarrierTensorUnit πŸ“–CompOp
3 mathmath: free_Ξ΅_one, free_Ξ·_freeMk, FGModuleCat.FGModuleCatEvaluation_apply'
monoidalCategory πŸ“–CompOp
99 mathmath: Representation.repOfTprodIso_inv_apply, MonoidalCategory.braiding_hom_apply, Rep.MonoidalClosed.linearHomEquiv_symm_hom, TannakaDuality.FiniteGroup.toRightFDRepComp_in_rightRegular, FDRep.char_tensor, Representation.repOfTprodIso_apply, instSmallUnitsSkeletonModuleCat, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, monoidalClosed_uncurry, TannakaDuality.FiniteGroup.forget_obj, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, Rep.coinvariantsTensorFreeLEquiv_symm_apply, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, CoalgCat.comonEquivalence_inverse, Rep.homEquiv_apply_hom, CoalgCat.comonEquivalence_counitIso, Module.Flat.lTensor_shortComplex_exact, Rep.ihom_ev_app_hom, Rep.MonoidalClosed.linearHomEquivComm_hom, Rep.homEquiv_def, FGModuleCat.FGModuleCatEvaluation_apply, monoidalClosed_curry, Module.Flat.iff_rTensor_preserves_shortComplex_exact, CoalgCat.toComonObj_X, FGModuleCat.instIsMonoidalClosedModuleCatIsFG, Rep.coinvariantsTensorFreeLEquiv_apply, Module.Flat.iff_lTensor_preserves_shortComplex_exact, CoalgCat.comul_def, CoalgCat.MonoidalCategory.inducingFunctorData_μIso, CoalgCat.MonoidalCategory.inducingFunctorData_ΡIso, FGModuleCat.FGModuleCatCoevaluation_apply_one, MonModuleEquivalenceAlgebra.functor_map_hom_apply, Rep.finsuppTensorRight_hom_hom, free_Ρ_one, TannakaDuality.FiniteGroup.forget_map, MonModuleEquivalenceAlgebra.functor_obj_carrier, Rep.tensor_ρ, Rep.linearization_η_hom_apply, FGModuleCat.ihom_obj, CoalgCat.comonEquivalence_functor, CoalgCat.ofComonObjCoalgebraStruct_comul, MonoidalCategory.tensorμ_eq_tensorTensorTensorComm, free_η_freeMk, MonModuleEquivalenceAlgebra.inverse_obj_mon, CoalgCat.comonEquivalence_unitIso, free_μ_freeMk_tmul_freeMk, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, CoalgCat.counit_def, MonModuleEquivalenceAlgebra.algebraMap, MonoidalCategory.tensorμ_apply, ihom_map_apply, MonModuleEquivalenceAlgebra.inverseObj_mul, ihom_coev_app, Rep.finsuppTensorRight_inv_hom, instMonoidalLinear, Rep.finsuppTensorLeft_inv_hom, free_δ_freeMk, Rep.leftRegularTensorTrivialIsoFree_inv_hom, FGModuleCat.tensorObj_obj, FGModuleCat.tensorUnit_obj, Rep.linearization_δ_hom, MonModuleEquivalenceAlgebra.inverse_obj_X_isAddCommGroup, Rep.MonoidalClosed.linearHomEquiv_hom, Module.Flat.iff_preservesFiniteLimits_tensorLeft, Rep.finsuppTensorLeft_hom_hom, Rep.coinvariantsTensorMk_apply, Rep.homEquiv_symm_apply_hom, CoalgCat.toComon_map_hom, preservesFiniteLimits_tensorLeft_of_ringHomFlat, Rep.ihom_coev_app_hom, FGModuleCat.FGModuleCatEvaluation_apply', Module.Flat.instPreservesFiniteLimitsModuleCatTensorLeftOfCarrier, MonModuleEquivalenceAlgebra.inverse_obj_X_carrier, CoalgCat.ofComonObjCoalgebraStruct_counit, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, instMonoidalPreadditive, groupHomology.inhomogeneousChains.d_eq, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, TannakaDuality.FiniteGroup.map_mul_toRightFDRepComp, MonModuleEquivalenceAlgebra.inverse_map_hom, MonModuleEquivalenceAlgebra.inverse_obj_X_isModule, MonoidalCategory.braiding_inv_apply, instInvertibleCarrierOutModuleCatValSkeleton, monoidalClosed_pre_app, Rep.ihom_obj_ρ_def, TannakaDuality.FiniteGroup.equivHom_surjective, Rep.leftRegularTensorTrivialIsoFree_hom_hom, TannakaDuality.FiniteGroup.equivHom_injective, FDRep.dualTensorIsoLinHom_hom_hom, Rep.linearization_Ρ_hom, CoalgCat.toComon_obj, MonModuleEquivalenceAlgebra.inverseObj_one, Module.Flat.rTensor_shortComplex_exact, TannakaDuality.FiniteGroup.equivHom_apply, ihom_ev_app, LightCondensed.instIsMonoidalFunctorOppositeLightProfiniteModuleCatWCoherentTopology, FGModuleCat.instIsMonoidalModuleCatIsFG, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, Rep.linearization_μ_hom

Theorems

NameKindAssumesProvesValidatesDepends On
hom_hom_associator πŸ“–mathematicalβ€”Hom.hom
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
LinearEquiv.toLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.assoc
β€”β€”
hom_hom_leftUnitor πŸ“–mathematicalβ€”Hom.hom
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
LinearEquiv.toLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
carrier
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddCommGroup.toAddCommMonoid
isAddCommGroup
Semiring.toModule
isModule
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.lid
β€”β€”
hom_hom_rightUnitor πŸ“–mathematicalβ€”Hom.hom
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
LinearEquiv.toLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
isModule
Semiring.toModule
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.rid
β€”β€”
hom_inv_associator πŸ“–mathematicalβ€”Hom.hom
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
LinearEquiv.toLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearEquiv.symm
TensorProduct.assoc
β€”β€”
hom_inv_leftUnitor πŸ“–mathematicalβ€”Hom.hom
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
LinearEquiv.toLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
carrier
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddCommGroup.toAddCommMonoid
isAddCommGroup
Semiring.toModule
isModule
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearEquiv.symm
TensorProduct.lid
β€”β€”
hom_inv_rightUnitor πŸ“–mathematicalβ€”Hom.hom
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
LinearEquiv.toLinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
carrier
TensorProduct
AddCommGroup.toAddCommMonoid
isAddCommGroup
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
isModule
Semiring.toModule
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearEquiv.symm
TensorProduct.rid
β€”β€”
hom_tensorHom πŸ“–mathematicalβ€”Hom.hom
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorHom
TensorProduct.map
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Ring.toSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
β€”β€”
hom_whiskerLeft πŸ“–mathematicalβ€”Hom.hom
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
LinearMap.lTensor
CommRing.toCommSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
β€”β€”
hom_whiskerRight πŸ“–mathematicalβ€”Hom.hom
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
LinearMap.rTensor
CommRing.toCommSemiring
carrier
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
β€”β€”
instMonoidalLinear πŸ“–mathematicalβ€”CategoryTheory.MonoidalLinear
CommSemiring.toSemiring
CommRing.toCommSemiring
ModuleCat
CommRing.toRing
moduleCategory
instPreadditive
instLinear
monoidalCategory
instMonoidalPreadditive
β€”instMonoidalPreadditive
hom_ext
TensorProduct.ext
LinearMap.ext
smulCommClass_self
RingHomCompTriple.ids
MonoidalCategory.whiskerLeft_apply
TensorProduct.tmul_smul
TensorProduct.CompatibleSMul.isScalarTower
IsScalarTower.left
MonoidalCategory.whiskerRight_apply
TensorProduct.smul_tmul
instMonoidalPreadditive πŸ“–mathematicalβ€”CategoryTheory.MonoidalPreadditive
ModuleCat
CommRing.toRing
moduleCategory
instPreadditive
monoidalCategory
β€”hom_ext
TensorProduct.ext
LinearMap.ext
smulCommClass_self
RingHomCompTriple.ids
MonoidalCategory.whiskerLeft_apply
TensorProduct.tmul_zero
MonoidalCategory.whiskerRight_apply
TensorProduct.zero_tmul
TensorProduct.tmul_add
TensorProduct.add_tmul
ofHomβ‚‚_comprβ‚‚ πŸ“–mathematicalβ€”ofHomβ‚‚
LinearMap.comprβ‚‚
CommRing.toCommSemiring
CommSemiring.toSemiring
carrier
CommRing.toRing
AddCommGroup.toAddCommMonoid
isAddCommGroup
isModule
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CategoryTheory.CategoryStruct.comp
ModuleCat
CategoryTheory.Category.toCategoryStruct
moduleCategory
of
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
instAddCommGroupHom
Hom.instModule
CategoryTheory.Preadditive.homGroup
instPreadditive
CategoryTheory.Linear.homModule
instLinear
ofHom
CategoryTheory.Linear.rightComp
β€”smulCommClass_self
IsScalarTower.left

ModuleCat.MonoidalCategory

Definitions

NameCategoryTheorems
instMonoidalCategoryStruct πŸ“–CompOp
50 mathmath: PresheafOfModules.Monoidal.tensorObj_obj, QuadraticModuleCat.forgetβ‚‚_map_associator_inv, ModuleCat.hom_tensorHom, associator_hom_apply, tensorHom_tmul, whiskerLeft_def, tensorHom_def, PresheafOfModules.Monoidal.tensorObj_map_tmul, ModuleCat.monoidalClosed_curry, leftUnitor_hom_apply, ModuleCat.hom_whiskerRight, ModuleCat.hom_inv_associator, rightUnitor_def, associator_def, ModuleCat.hom_whiskerLeft, tensorUnit_carrier, rightUnitor_hom_apply, tensorLift_tmul, ModuleCat.hom_hom_leftUnitor, ModuleCat.hom_hom_rightUnitor, QuadraticModuleCat.forgetβ‚‚_map_associator_hom, ModuleCat.FreeMonoidal.Ξ΅Iso_inv_freeMk, ModuleCat.hom_inv_rightUnitor, QuadraticModuleCat.toModuleCat_tensor, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, tensorObj, ModuleCat.FreeMonoidal.ΞΌIso_hom_freeMk_tmul_freeMk, rightUnitor_inv_apply, leftUnitor_inv_apply, tensorObj_isModule, tensorObj_isAddCommGroup, ModuleCat.hom_hom_associator, PresheafOfModules.Monoidal.tensorHom_app, whiskerRight_apply, tensorUnit_isModule, FGModuleCat.tensorObj_obj, FGModuleCat.tensorUnit_obj, ModuleCat.FreeMonoidal.ΞΌIso_inv_freeMk, leftUnitor_def, tensorObj_def, FGModuleCat.FGModuleCatEvaluation_apply', ModuleCat.hom_inv_leftUnitor, ModuleCat.FreeMonoidal.Ξ΅Iso_hom_one, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, whiskerLeft_apply, whiskerRight_def, tensorObj_carrier, tensorUnit_isAddCommGroup, associator_inv_apply, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single
tensorLift πŸ“–CompOp
1 mathmath: tensorLift_tmul

Theorems

NameKindAssumesProvesValidatesDepends On
associator_def πŸ“–mathematicalβ€”CategoryTheory.MonoidalCategoryStruct.associator
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
LinearEquiv.toModuleIso
TensorProduct
CommRing.toCommSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.addCommGroup
TensorProduct.assoc
β€”β€”
associator_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
TensorProduct.tmul
CommRing.toCommSemiring
TensorProduct
TensorProduct.addCommMonoid
β€”β€”
associator_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
TensorProduct.tmul
CommRing.toCommSemiring
TensorProduct
TensorProduct.addCommMonoid
β€”β€”
leftUnitor_def πŸ“–mathematicalβ€”CategoryTheory.MonoidalCategoryStruct.leftUnitor
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
LinearEquiv.toModuleIso
TensorProduct
CommRing.toCommSemiring
ModuleCat.carrier
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
Semiring.toModule
ModuleCat.isModule
TensorProduct.addCommGroup
Ring.toAddCommGroup
TensorProduct.instModule
TensorProduct.lid
β€”β€”
leftUnitor_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
TensorProduct.tmul
CommRing.toCommSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
β€”TensorProduct.lid_tmul
leftUnitor_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
TensorProduct.tmul
CommRing.toCommSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”TensorProduct.lid_symm_apply
rightUnitor_def πŸ“–mathematicalβ€”CategoryTheory.MonoidalCategoryStruct.rightUnitor
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
LinearEquiv.toModuleIso
TensorProduct
CommRing.toCommSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ModuleCat.isModule
Semiring.toModule
TensorProduct.addCommGroup
TensorProduct.instModule
TensorProduct.rid
β€”β€”
rightUnitor_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
TensorProduct.tmul
CommRing.toCommSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
β€”TensorProduct.rid_tmul
rightUnitor_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
TensorProduct.tmul
CommRing.toCommSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”TensorProduct.rid_symm_apply
tensorHom_def πŸ“–mathematicalβ€”CategoryTheory.MonoidalCategoryStruct.tensorHom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
ModuleCat.ofHom
TensorProduct
CommRing.toCommSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
TensorProduct.addCommGroup
TensorProduct.instModule
TensorProduct.map
RingHom.id
Semiring.toNonAssocSemiring
Ring.toSemiring
ModuleCat.Hom.hom
β€”β€”
tensorHom_tmul πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.MonoidalCategoryStruct.tensorHom
TensorProduct.tmul
CommRing.toCommSemiring
β€”β€”
tensorLift_tmul πŸ“–mathematicalModuleCat.carrier
CommRing.toRing
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
ModuleCat.isModule
DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
ModuleCat.moduleCategory
instMonoidalCategoryStruct
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
tensorLift
TensorProduct.tmul
β€”β€”
tensorObj πŸ“–mathematicalβ€”ModuleCat.carrier
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
ModuleCat.moduleCategory
instMonoidalCategoryStruct
TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
β€”tensorObj_carrier
tensorObj_carrier πŸ“–mathematicalβ€”ModuleCat.carrier
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
ModuleCat.moduleCategory
instMonoidalCategoryStruct
TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
β€”β€”
tensorObj_def πŸ“–mathematicalβ€”ModuleCat.carrier
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
ModuleCat.moduleCategory
instMonoidalCategoryStruct
TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
β€”tensorObj_carrier
tensorObj_isAddCommGroup πŸ“–mathematicalβ€”ModuleCat.isAddCommGroup
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
ModuleCat.moduleCategory
instMonoidalCategoryStruct
TensorProduct.addCommGroup
CommRing.toCommSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
β€”β€”
tensorObj_isModule πŸ“–mathematicalβ€”ModuleCat.isModule
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
ModuleCat.moduleCategory
instMonoidalCategoryStruct
TensorProduct.instModule
CommRing.toCommSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
β€”β€”
tensorUnit_carrier πŸ“–mathematicalβ€”ModuleCat.carrier
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorUnit
ModuleCat
ModuleCat.moduleCategory
instMonoidalCategoryStruct
β€”β€”
tensorUnit_isAddCommGroup πŸ“–mathematicalβ€”ModuleCat.isAddCommGroup
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorUnit
ModuleCat
ModuleCat.moduleCategory
instMonoidalCategoryStruct
Ring.toAddCommGroup
β€”β€”
tensorUnit_isModule πŸ“–mathematicalβ€”ModuleCat.isModule
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorUnit
ModuleCat
ModuleCat.moduleCategory
instMonoidalCategoryStruct
Semiring.toModule
Ring.toSemiring
β€”β€”
tensor_ext πŸ“–β€”DFunLike.coe
LinearMap
Ring.toSemiring
CommRing.toRing
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
ModuleCat.moduleCategory
instMonoidalCategoryStruct
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.Hom.hom
TensorProduct.tmul
CommRing.toCommSemiring
β€”β€”ModuleCat.hom_ext
TensorProduct.ext
LinearMap.ext
smulCommClass_self
RingHomCompTriple.ids
tensor_ext₃ πŸ“–β€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
TensorProduct.tmul
CommRing.toCommSemiring
β€”β€”CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
tensor_ext₃'
tensor_ext₃' πŸ“–β€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
TensorProduct.tmul
CommRing.toCommSemiring
β€”β€”ModuleCat.hom_ext
TensorProduct.ext_threefold
whiskerLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
TensorProduct.tmul
CommRing.toCommSemiring
β€”β€”
whiskerLeft_def πŸ“–mathematicalβ€”CategoryTheory.MonoidalCategoryStruct.whiskerLeft
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
ModuleCat.ofHom
TensorProduct
CommRing.toCommSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
TensorProduct.addCommGroup
TensorProduct.instModule
LinearMap.lTensor
ModuleCat.Hom.hom
β€”β€”
whiskerRight_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.MonoidalCategoryStruct.whiskerRight
TensorProduct.tmul
CommRing.toCommSemiring
β€”β€”
whiskerRight_def πŸ“–mathematicalβ€”CategoryTheory.MonoidalCategoryStruct.whiskerRight
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
instMonoidalCategoryStruct
ModuleCat.ofHom
TensorProduct
CommRing.toCommSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
TensorProduct.addCommGroup
TensorProduct.instModule
LinearMap.rTensor
ModuleCat.Hom.hom
β€”β€”

SemimoduleCat

Definitions

NameCategoryTheorems
instCommSemiringCarrierTensorUnit πŸ“–CompOpβ€”
monoidalCategory πŸ“–CompOp
13 mathmath: CommRing.Pic.mul_eq_tensor, instInvertibleCarrierOutSemimoduleCatValSkeleton, CommRing.Pic.inv_eq_dual, CommRing.Pic.mk_eq_iff, CommRing.Pic.mk_eq_self, CommRing.Pic.mapAlgebra_apply, CommRing.Pic.ext_iff, CommRing.Pic.instFreeAsModuleOfNat, MonoidalCategory.tensorΞΌ_apply, MonoidalCategory.braiding_hom_apply, MonoidalCategory.braiding_inv_apply, MonoidalCategory.tensorΞΌ_eq_tensorTensorTensorComm, instSmallUnitsSkeletonSemimoduleCat

Theorems

NameKindAssumesProvesValidatesDepends On
hom_hom_associator πŸ“–mathematicalβ€”Hom.hom
CommSemiring.toSemiring
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
carrier
isAddCommMonoid
isModule
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.assoc
β€”β€”
hom_hom_leftUnitor πŸ“–mathematicalβ€”Hom.hom
CommSemiring.toSemiring
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
carrier
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
isAddCommMonoid
Semiring.toModule
isModule
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.lid
β€”β€”
hom_hom_rightUnitor πŸ“–mathematicalβ€”Hom.hom
CommSemiring.toSemiring
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
carrier
isAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
isModule
Semiring.toModule
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.rid
β€”β€”
hom_inv_associator πŸ“–mathematicalβ€”Hom.hom
CommSemiring.toSemiring
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
TensorProduct
carrier
isAddCommMonoid
isModule
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearEquiv.symm
TensorProduct.assoc
β€”β€”
hom_inv_leftUnitor πŸ“–mathematicalβ€”Hom.hom
CommSemiring.toSemiring
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
carrier
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
isAddCommMonoid
Semiring.toModule
isModule
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearEquiv.symm
TensorProduct.lid
β€”β€”
hom_inv_rightUnitor πŸ“–mathematicalβ€”Hom.hom
CommSemiring.toSemiring
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
carrier
TensorProduct
isAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
isModule
Semiring.toModule
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearEquiv.symm
TensorProduct.rid
β€”β€”
hom_tensorHom πŸ“–mathematicalβ€”Hom.hom
CommSemiring.toSemiring
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorHom
TensorProduct.map
RingHom.id
Semiring.toNonAssocSemiring
carrier
isAddCommMonoid
isModule
β€”β€”
hom_whiskerLeft πŸ“–mathematicalβ€”Hom.hom
CommSemiring.toSemiring
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
LinearMap.lTensor
carrier
isAddCommMonoid
isModule
β€”β€”
hom_whiskerRight πŸ“–mathematicalβ€”Hom.hom
CommSemiring.toSemiring
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
moduleCategory
MonoidalCategory.instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.whiskerRight
LinearMap.rTensor
carrier
isAddCommMonoid
isModule
β€”β€”

SemimoduleCat.MonoidalCategory

Definitions

NameCategoryTheorems
associator πŸ“–CompOp
4 mathmath: triangle, associator_naturality, associator_def, pentagon
instMonoidalCategoryStruct πŸ“–CompOp
34 mathmath: rightUnitor_hom_apply, SemimoduleCat.hom_inv_rightUnitor, tensorHom_tmul, whiskerRight_apply, braiding_naturality_right, rightUnitor_inv_apply, SemimoduleCat.hom_hom_rightUnitor, tensorLift_tmul, tensorUnit_isAddCommMonoid, whiskerLeft_def, SemimoduleCat.hom_inv_leftUnitor, tensorObj_def, SemimoduleCat.hom_tensorHom, SemimoduleCat.hom_inv_associator, associator_def, SemimoduleCat.hom_whiskerLeft, leftUnitor_def, hexagon_forward, rightUnitor_def, associator_inv_apply, whiskerLeft_apply, SemimoduleCat.hom_whiskerRight, SemimoduleCat.hom_hom_associator, leftUnitor_inv_apply, tensorHom_def, braiding_naturality, hexagon_reverse, SemimoduleCat.hom_hom_leftUnitor, tensorUnit_isModule, leftUnitor_hom_apply, whiskerRight_def, braiding_naturality_left, associator_hom_apply, tensorUnit_carrier
leftUnitor πŸ“–CompOp
3 mathmath: triangle, leftUnitor_def, leftUnitor_naturality
rightUnitor πŸ“–CompOp
3 mathmath: triangle, rightUnitor_def, rightUnitor_naturality
tensorHom πŸ“–CompOp
7 mathmath: triangle, associator_naturality, tensorHom_comp_tensorHom, leftUnitor_naturality, tensorHom_def, rightUnitor_naturality, id_tensorHom_id
tensorLift πŸ“–CompOp
1 mathmath: tensorLift_tmul
tensorObj πŸ“–CompOp
7 mathmath: triangle, associator_naturality, tensorObj_def, tensorHom_comp_tensorHom, leftUnitor_naturality, rightUnitor_naturality, pentagon
whiskerLeft πŸ“–CompOp
2 mathmath: whiskerLeft_def, pentagon
whiskerRight πŸ“–CompOp
2 mathmath: whiskerRight_def, pentagon

Theorems

NameKindAssumesProvesValidatesDepends On
associator_def πŸ“–mathematicalβ€”CategoryTheory.MonoidalCategoryStruct.associator
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
associator
β€”β€”
associator_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
SemimoduleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
LinearMap.instFunLike
SemimoduleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
TensorProduct.tmul
TensorProduct
TensorProduct.addCommMonoid
β€”β€”
associator_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
SemimoduleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
LinearMap.instFunLike
SemimoduleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
TensorProduct.tmul
TensorProduct
TensorProduct.addCommMonoid
β€”β€”
associator_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
SemimoduleCat
CommSemiring.toSemiring
CategoryTheory.Category.toCategoryStruct
SemimoduleCat.moduleCategory
tensorObj
tensorHom
CategoryTheory.Iso.hom
associator
β€”SemimoduleCat.hom_ext
TensorProduct.ext_threefold
id_tensorHom_id πŸ“–mathematicalβ€”tensorHom
CategoryTheory.CategoryStruct.id
SemimoduleCat
CommSemiring.toSemiring
CategoryTheory.Category.toCategoryStruct
SemimoduleCat.moduleCategory
SemimoduleCat.of
TensorProduct
SemimoduleCat.carrier
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
TensorProduct.addCommMonoid
TensorProduct.instModule
β€”SemimoduleCat.hom_ext
TensorProduct.ext
smulCommClass_self
RingHomCompTriple.ids
leftUnitor_def πŸ“–mathematicalβ€”CategoryTheory.MonoidalCategoryStruct.leftUnitor
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
leftUnitor
β€”β€”
leftUnitor_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
SemimoduleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
LinearMap.instFunLike
SemimoduleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.leftUnitor
TensorProduct.tmul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”TensorProduct.lid_tmul
leftUnitor_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
SemimoduleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
LinearMap.instFunLike
SemimoduleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”TensorProduct.lid_symm_apply
leftUnitor_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
SemimoduleCat
CommSemiring.toSemiring
CategoryTheory.Category.toCategoryStruct
SemimoduleCat.moduleCategory
tensorObj
SemimoduleCat.of
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
tensorHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
TensorProduct
SemimoduleCat.carrier
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
TensorProduct.addCommMonoid
TensorProduct.instModule
leftUnitor
β€”SemimoduleCat.hom_ext
TensorProduct.ext
LinearMap.ext_ring
smulCommClass_self
RingHomCompTriple.ids
LinearMap.ext
one_smul
RingHomInvPair.ids
pentagon πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
SemimoduleCat
CommSemiring.toSemiring
CategoryTheory.Category.toCategoryStruct
SemimoduleCat.moduleCategory
tensorObj
whiskerRight
CategoryTheory.Iso.hom
associator
whiskerLeft
β€”SemimoduleCat.hom_ext
TensorProduct.ext_fourfold
rightUnitor_def πŸ“–mathematicalβ€”CategoryTheory.MonoidalCategoryStruct.rightUnitor
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
rightUnitor
β€”β€”
rightUnitor_hom_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
SemimoduleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
LinearMap.instFunLike
SemimoduleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.rightUnitor
TensorProduct.tmul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”TensorProduct.rid_tmul
rightUnitor_inv_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
SemimoduleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
LinearMap.instFunLike
SemimoduleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
TensorProduct.tmul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”TensorProduct.rid_symm_apply
rightUnitor_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
SemimoduleCat
CommSemiring.toSemiring
CategoryTheory.Category.toCategoryStruct
SemimoduleCat.moduleCategory
tensorObj
SemimoduleCat.of
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
tensorHom
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom
TensorProduct
SemimoduleCat.carrier
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
TensorProduct.addCommMonoid
TensorProduct.instModule
rightUnitor
β€”SemimoduleCat.hom_ext
TensorProduct.ext
LinearMap.ext
smulCommClass_self
RingHomCompTriple.ids
LinearMap.ext_ring
one_smul
RingHomInvPair.ids
tensorHom_comp_tensorHom πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
SemimoduleCat
CommSemiring.toSemiring
CategoryTheory.Category.toCategoryStruct
SemimoduleCat.moduleCategory
tensorObj
tensorHom
β€”SemimoduleCat.hom_ext
TensorProduct.ext
smulCommClass_self
RingHomCompTriple.ids
tensorHom_def πŸ“–mathematicalβ€”CategoryTheory.MonoidalCategoryStruct.tensorHom
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
tensorHom
β€”β€”
tensorHom_tmul πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
SemimoduleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
LinearMap.instFunLike
SemimoduleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.MonoidalCategoryStruct.tensorHom
TensorProduct.tmul
β€”β€”
tensorLift_tmul πŸ“–mathematicalSemimoduleCat.carrier
CommSemiring.toSemiring
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SemimoduleCat.isAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
SemimoduleCat.isModule
DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
SemimoduleCat.instConcreteCategoryLinearMapIdCarrier
tensorLift
TensorProduct.tmul
β€”β€”
tensorObj_def πŸ“–mathematicalβ€”CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
tensorObj
β€”β€”
tensorUnit_carrier πŸ“–mathematicalβ€”SemimoduleCat.carrier
CommSemiring.toSemiring
CategoryTheory.MonoidalCategoryStruct.tensorUnit
SemimoduleCat
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
β€”β€”
tensorUnit_isAddCommMonoid πŸ“–mathematicalβ€”SemimoduleCat.isAddCommMonoid
CommSemiring.toSemiring
CategoryTheory.MonoidalCategoryStruct.tensorUnit
SemimoduleCat
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”
tensorUnit_isModule πŸ“–mathematicalβ€”SemimoduleCat.isModule
CommSemiring.toSemiring
CategoryTheory.MonoidalCategoryStruct.tensorUnit
SemimoduleCat
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
Semiring.toModule
β€”β€”
tensor_ext πŸ“–β€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
SemimoduleCat.carrier
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
LinearMap.instFunLike
SemimoduleCat.Hom.hom
TensorProduct.tmul
β€”β€”SemimoduleCat.hom_ext
TensorProduct.ext
LinearMap.ext
smulCommClass_self
RingHomCompTriple.ids
tensor_ext₃ πŸ“–β€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
SemimoduleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
LinearMap.instFunLike
SemimoduleCat.instConcreteCategoryLinearMapIdCarrier
TensorProduct.tmul
β€”β€”CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
tensor_ext₃'
tensor_ext₃' πŸ“–β€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
SemimoduleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
LinearMap.instFunLike
SemimoduleCat.instConcreteCategoryLinearMapIdCarrier
TensorProduct.tmul
β€”β€”SemimoduleCat.hom_ext
TensorProduct.ext_threefold
triangle πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
SemimoduleCat
CommSemiring.toSemiring
CategoryTheory.Category.toCategoryStruct
SemimoduleCat.moduleCategory
tensorObj
SemimoduleCat.of
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
CategoryTheory.Iso.hom
associator
tensorHom
CategoryTheory.CategoryStruct.id
TensorProduct
SemimoduleCat.carrier
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
TensorProduct.addCommMonoid
TensorProduct.instModule
leftUnitor
rightUnitor
β€”SemimoduleCat.hom_ext
TensorProduct.ext_threefold
TensorProduct.tmul_smul
smulCommClass_self
TensorProduct.CompatibleSMul.isScalarTower
IsScalarTower.left
whiskerLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
SemimoduleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
LinearMap.instFunLike
SemimoduleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
TensorProduct.tmul
β€”β€”
whiskerLeft_def πŸ“–mathematicalβ€”CategoryTheory.MonoidalCategoryStruct.whiskerLeft
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
whiskerLeft
β€”β€”
whiskerRight_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.MonoidalCategoryStruct.tensorObj
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
SemimoduleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
SemimoduleCat.isAddCommMonoid
SemimoduleCat.isModule
LinearMap.instFunLike
SemimoduleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.MonoidalCategoryStruct.whiskerRight
TensorProduct.tmul
β€”β€”
whiskerRight_def πŸ“–mathematicalβ€”CategoryTheory.MonoidalCategoryStruct.whiskerRight
SemimoduleCat
CommSemiring.toSemiring
SemimoduleCat.moduleCategory
instMonoidalCategoryStruct
whiskerRight
β€”β€”

---

← Back to Index