Documentation Verification Report

Abelian

📁 Source: Mathlib/Algebra/Category/ModuleCat/Presheaf/Abelian.lean

Statistics

MetricCount
DefinitionsinstAbelian
1
TheoremsinstIsNormalEpiCategory, instIsNormalMonoCategory
2
Total3

PresheafOfModules

Definitions

NameCategoryTheorems
instAbelian 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instIsNormalEpiCategory 📖mathematicalCategoryTheory.IsNormalEpiCategory
PresheafOfModules
instCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instPreadditive
hasLimit
small_subtype
small_Pi
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.kernel.condition
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instAdditiveModuleCatCarrierObjOppositeRingCatEvaluation
CategoryTheory.Functor.map_epi
CategoryTheory.preservesEpimorphisms_of_preservesColimitsOfShape
evaluation_preservesColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
AddCommGrpCat.hasColimitsOfSize
evaluation_preservesLimit
instIsNormalMonoCategory 📖mathematicalCategoryTheory.IsNormalMonoCategory
PresheafOfModules
instCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instPreadditive
hasColimit
ModuleCat.preservesColimit_restrictScalars
AddCommGrpCat.hasColimit
UnivLE.small
univLE_of_max
UnivLE.self
ModuleCat.HasColimit.instHasColimit
CategoryTheory.Limits.cokernel.condition
small_subtype
small_Pi
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instAdditiveModuleCatCarrierObjOppositeRingCatEvaluation
CategoryTheory.Functor.map_mono
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
instPreservesLimitsOfShapeModuleCatCarrierObjOppositeRingCatEvaluation
evaluation_preservesColimit

---

← Back to Index